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ABSTRACT: Linear B-cell epitope prediction research has received a steadily growing 

interest ever since the first method was developed in 1981.  B-cell epitope identification with 

the help of an accurate prediction method can lead to an overall faster and significantly 

cheaper vaccine design process.  Consequently, several B-cell epitope prediction methods 

have been developed over the past few decades, but without significant success.  In this 

study, we review the current performance and methodology, of some the most widely used 

linear B-cell epitope predictors: BcePred, BepiPred, ABCpred, COBEpro, SVMTriP, LBtope 

and LBEEP.  Additionally, we attempt to remedy performance issues of the individual 

methods by developing a consensus classifier, that combines the separate predictions of these 

methods into a single output.  The performance of these methods was evaluated using a large 

unbiased data set.  All methods performed worse than documented in the original 

manuscripts, since all predictors performed marginally better than random classification 

against the test data set.  While the method comparison was performed with some necessary 

caveats, we hope that this update in performance can aid researchers towards the choice of a 

predictor, whilst conducting their research.  The necessary files for the execution of the 

consensus method that we developed can be found at http://thalis.biol.uoa.gr/BCEconsensus/ 

. 
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Introduction 

B-cell epitopes are regions on the surface of an antigen, where specific antibodies recognize 

and bind to, triggering the immune response.  This interaction is at the core of the adaptive 

immune system, where among others is responsible for immunological memory and antigen-

specific responses in vertebrates.  The ability to identify these binding areas in the antigen’s 

sequence or structure is important for the development of synthetic vaccines [1-3], diagnostic 

tests [4] and immunotherapeutics [5, 6].  Focus on these applications, through the lens of 

epitope discovery, has gained attention over the years, especially in regard to the safety 

benefits of synthetic vaccine development [7]. 

Generally, B-cell epitopes are divided into two categories: linear (continuous) epitopes, that 

consist of a linear sequence of residues and conformational (discontinuous) epitopes, that 

consist of residues that are not contiguous in the primary protein sequence, but are brought 

together by the folded protein structure [8].  Moreover, about 90% of B-cell epitopes have 

been estimated to be conformational and only about 10% to be linear [9].  Nonetheless, it has 

been shown that many discontinuous epitopes contain several groups of continuous residues 

that are also contiguous in the tertiary structure of the protein [10], making the distinction 

between them unclear.  

All aforementioned immunological applications share the need for discovery of all possible 

epitopes for any given antigen, a process called “Epitope mapping”.  Although epitope 

mapping can be carried out using several experimental techniques [11], it is time consuming 

and expensive, especially on a genomic scale.  To address this problem and tap into the ever-

growing data on epitopes deposited in biological databases daily, several computational 

methods for predicting conformational or linear B-cell epitopes have been published over the 

last decades [12-14] (Table 1).  Despite the relatively small percentage of linear B-cell 

epitopes, most methods developed over the past few years focus on their prediction.  This is 

mainly attributed to the requirement of an antigen’s 3D structure when predicting its 

conformational epitopes [15].  Thus, in this review we will discuss solely the performance of 

linear B-cell epitope (BCE) predictors. 

In most cases, the algorithms that predict BCEs can either be sequence-based and/or 

structure-based.  Most predictors utilize only data derived from the protein sequence of the 

antigen and thus are sequence-based, while structure-based predictors utilize only an 
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antigen’s 3D structure.  Furthermore, some hybrid methods employ both approaches for 

better predictive performance [16, 17].  Historically, initial attempts at predicting epitopes 

made use of a single amino acid propensity scale, assigning each amino acid a numerical 

value, followed by a local averaging of these values along the peptide chain.  The first 

method, implementing this approach, was published by Hopp and Woods [18] in 1981, and it 

utilized Levitt’s hydrophilicity scale [19].  Aside from hydrophilicity, which was utilized 

again in another scale by Parker et al. [20], other amino acid properties were explored in later 

methods, such as antigenicity [21], flexibility [22], surface accessibility [23], and turns [24].  

The next wave of predictors built upon this development, when methods like PREDITOP 

[25], PEOPLE [26], BEPITOPE [27] and BcePred [28], combined multiple physicochemical 

properties.  Although these methods represented the best attempts yet at predicting epitopes, 

Blythe and Flower [29] demonstrated that the performance of such methods was overstated.  

They did a thorough assessment of 484 amino acid propensity scales in combination with 

information on the location of epitopes for 50 known proteins and found that even the best 

possible combination of scales performed only slightly better than random [29].  In their 

work they also correctly suggested, that more advanced approaches for predicting linear B-

cell epitopes needed to be developed, such as methods that employ artificial intelligence 

technology.   

As anticipated, given the booming of available biological data, the entire next generation of 

methods utilized some form of machine learning models.  One of the first such approaches 

was BepiPred [30], that combined a Hidden Markov Model (HMM) with an amino acid 

propensity scale.  Additionally, other machine learning models were used in methods 

developed afterwards, including Neural Networks in ABCpred [31], a Naïve Bayes classifier 

in Epitopia [32] and Support Vector Machines (SVMs) in most of the recent predictors.  

SVM-based predictors dominated the machine learning approaches used in BCE prediction, 

each one differing from the other on feature selection, data set curation and SVM specific 

parameters (Table 1).  The BCPred [33] and FBCPred [34] methods published in 2008, 

predict fixed linear B-cell epitopes and flexible length linear B-cell epitopes respectively, 

utilizing SVM models with the subsequence kernel.  The AAPPRED [35] method also 

utilizes SVM models trained on the frequency of Amino Acid Pairs (AAP), a scale first 

developed by Chen et al. [36].  Other notable approaches include: BayesB [37], LEPS [38] 

and BEORACLE [39].  A new machine learning approach that was developed in 2014, called 

EPMLR [40], utilizes multiple linear regression for epitope classification.  Another recent 
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novel approach is the DMN-LBE [41] method, that was developed using deep maxout 

networks, a type of deep neural network with a different activation layer called maxout.  The 

DRREP [42] method was published in 2016, and it also utilizes deep neural network 

technology to extrapolate structural features related to epitopes from protein sequences.  One 

of the latest additions is the second version of the BepiPred method, BepiPred-2.0 [17], that 

was developed in 2017.  This method is based on a random forest algorithm and differs from 

its predecessor in that it was trained only on epitope data derived from crystal structures.  

Another promising algorithm is iBCE-EL [43], which is an ensemble learning framework 

combining Extremely Randomized Tree (ERT) and Gradient Boosting (GB) classifiers.   

Table 1.  Linear B-cell epitope predictors in chronological order, alongside a short 

description of their methodology, their current status and their web page.  After 

researching the relevant publications, we gathered up all the linear B-cell epitopes predictors 

we could find in this fairly complete, but not exhaustive catalogue.  For every method we 

reference the source material to determine their methodology, which we have summed up for 

each predictor in a short description.  For every predictor we also checked their availability 

status, as of writing this review, and categorized them regarding their general and current 

availability online as tools, as well as their obtainability as standalone software packages.  In 

the last column, we provide the website links for each method, when available.   

Predictor Description Status Link 

Antigenic [21] 
Physico-chemical propensity 
scales, occurrence of residues 

Not currently available 
online 

http://www.emboss.bioinfo
rmatics.nl/cgi-

bin/emboss/antigenic 

PEOPLE [26] 
Physico-chemical propensity 

scales 
Not available online - 

BEPITOPE [27] 
Physico-chemical propensity 

scales 
Freely available online http://bepitope.ibs.fr/ 

BcePred [28] 
Physico-chemical propensity 

scales 
Freely available online 

and downloadable 
http://crdd.osdd.net/raghav

a/bcepred/index.html 

BepiPred-1.0 
[30] 

HMM & Parker hydrophilicity 
scale 

Freely available online 
and downloadable 

http://www.cbs.dtu.dk/serv
ices/BepiPred-1.0/ 

Söllner [44] 
Physicochemical  

Properties, MOE, KNN, 
Decision Tree 

Not available online - 

Chen [36] SVM & AAP Not available online - 

ABCpred [31] 
Neural networks (feed 
forward & reccurent) 

Freely available online 
and downloadable 

http://crdd.osdd.net/raghav
a/abcpred/index.html 
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Predictor Description Status Link 

BCPREDS [33, 
34] 

SVM 
Not currently available 

online 
http://ailab.ist.psu.edu/bcpr

ed/ 

AAPPred [35] SVM & AAP 
Freely available online 

and downloadable 
http://www.bioinf.ru/aappr

ed/predict 

Epitopia [32] 
ML algorithm trained to 

discern antigenic features 
Freely available online 

and downloadable 
http://epitopia.tau.ac.il/ind

ex.html 

COBEpro [16] SVM Freely available online 
and downloadable 

http://scratch.proteomics.ic
s.uci.edu/ 

BayesB [37] SVM 
Not currently available 

online 
http://immunopred.org/bay

esb/index.html 

LEPS[38] 
SVM & Physicochemical 
propensity scales & AAS 

Not currently available 
online 

http://leps.cs.ntou.edu.tw/ 

BEOracle [39] SVM Not available online - 

BEST [45] SVM Not available online - 

SVMTriP [46] SVM 
Freely available online 

and downloadable 
http://sysbio.unl.edu/SVM

TriP/ 

BEEPro [47] 
SVM & Physicochemical 
propensity scales & PSSM 

Not available online - 

LBtope [48] 
SVM & Physicochemical 
propensity scales & AAP 

Freely available online 
and downloadable 

http://crdd.osdd.net/raghav
a/lbtope/protein.php 

Random Forest 
[49] 

Amino acid descriptors & 
Random Forest 

Not currently available 
online 

http://sysbio.yznu.cn/Rese
arch/Epitopesprediction.as

px 

EPMLR [40] Multiple Linear Regression 
Not currently available 

online 
http://www.bioinfo.tsinghu
a.edu.cn/epitope/EPMLR/ 

DMN-LBE [41] Deep Maxout Networks 
Not currently available 

online 
http://bioinfo.tsinghua.edu.

cn/epitope/DMNLBE/ 

LBEEP [50] DDE - SVM 
Freely available 

download 
https://github.com/brsaran/

LBEEP 

APCpred [51] APC & SVM 
Not currently available 

online 
http://ccb.bmi.ac.cn/APCp

red/ 

DRREP [42] Deep Ridge Neural Network 
Not currently available 

online 
https://github.com/gsher1/

DRREP 

BepiPred-2.0 
[17] 

Random forest algorithm 
trained on epitopes derived 

from crystal structures 

Freely available online 
and downloadable 

http://www.cbs.dtu.dk/serv
ices/BepiPred/ 

iBCE-EL [43] 
Ensemble framework 
combining ERT & GB 

Freely available online 
http://thegleelab.org/iBCE-

EL/ 

Here, we review the performance of some of the most widely used linear B-cell epitope 

predictors currently available, namely BcePred, BepiPred, ABCpred, COBEpro, SVMTriP, 

LBtope and LBEEP.  We also examine the performance of a consensus classifier combining 
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these methods, to test whether a consensus approach can boost predictive performance[52-

54].  Finally, we compare the performance of all these classifiers and the consensus method 

we developed against one of the most recently published BCE predictors, BepiPred-2.0.  This 

review aims to give non-expert researchers an overview of available linear BCE predictors, as 

well as an update in their current performance and availability, which they can use to quickly 

locate them and choose the appropriate tools for their research work.  Moreover, we have 

created contemporary non-redundant datasets of linear BCEs that could aid both experimental 

researchers as well as bioinformaticians actively working in the field of algorithm 

development.  
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Materials and Methods 

Selection of suitable linear B-cell epitope predictors 

The first priority of this work was to gather and test as many individual predictors as 

possible.  However, the scope of methods that were to be tested could not be limitless, and 

thus some criteria for their selection were applied.  At first, we decided to catalogue all 

available B-cell epitope predictors (Table 1).  This is when we first noticed an alarming trend; 

where many of the online tools of the predictors that we looked up were either offline for 

some hours during the day or – even worse –completely unreachable.  Furthermore, even 

when operational, most prediction servers have limitations on the amount of sequences and 

the workload they can process.  Considering the present issues and the future problems that 

might arise, we decided to resort only to methods that were available as standalone software, 

that became our main criterion.  The second criterion was that methods should be usable via 

the command line and not only through a Graphical User Interface (GUI) and the third 

criterion was that each method’s way of operation should be somewhat comparable and in 

tune with the rest of the available predictors.  Out of the many methods that have been 

developed through the years  (Table 1), seven were selected for testing: BcePred [28], 

BepiPred [30], ABCpred [31], COBEpro [16], SVMTriP [46], LBtope [48] and LBEEP 

[50] (Table 1).  During our study the second version of BepiPred was released, and its 

comparison with the rest of the methods and our decision not to utilize it in the development 

of the consensus method is discussed later in this article. 

BcePred was published in 2004 by Raghava et al. [28], and is based on a plethora of 

physicochemical propensity scales utilizing amino acid properties, such as hydrophilicity and 

antigenicity, either individually or in combination.  Moreover, it achieved a reported 56% 

sensitivity, 61% specificity and its highest accuracy of 58.70%, on a data set obtained from 

the database Bcipep [55], using a combination of flexibility, hydrophilicity, polarity and 

surface accessibility propensity scales.   

BepiPred was developed in 2006 by Lund et al.[30], and it is the first ever method that 

utilizes an HMM.  The HMM was trained using a data set derived from the database Antijen 

[56] and the Pellequer data set [24], and was then combined with Parker’s hydrophilicity 

scale, resulting in the BepiPred method.  This method managed to achieve an Area Under 
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Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.671 ± 0.013 on the 

Pellequer data set. 

ABCpred was created in 2006 [31], again by the Raghava group and it was the first test case 

of a more sophisticated machine learning model.  It is based on a Recurrent Neural Network 

(RNN), that was trained using a variety of different window sizes and hidden units.  The 

window sizes that were tested, were 10, 12, 14, 16, 18 and 20.  Thus six models were 

developed in total, with the window size of 16 amino acid residues achieving the highest 

accuracy of 65.93% and a Matthews Correlation Coefficient (MCC) of 0.3187, after five-fold 

cross-validation on a data set derived from Bcipep [55]. 

COBEpro was published in 2009 by Baldi et al. [16] at the University of California.  This 

method utilizes a novel two-step system for the prediction of both linear and discontinuous B-

cell epitopes.  Firstly, it utilizes an SVM model to assign an epitopic propensity score to 

fragments within the given peptide sequence.  Additionally, COBEpro is able to incorporate 

into the SVM model the provided or predicted secondary structure and solvent accessibility 

of the given sequence, that are predicted by SSpro [57] and ACCpro [58] respectively.  

During the second stage, the method calculates an epitopic propensity score for each amino 

acid, based on the previous scores assigned by the model in the first stage.  Among others, 

this predictor was tested on the fragmented version of Chen’s [36] data set, achieving an 

AUC of 0.829 and an accuracy of 78%. 

SVMTriP was developed in 2012 [46] and it is an application of an SVM model that employs 

tri-peptide similarity calculated through the Blosum62 matrix in combination with amino acid 

propensity scales.  Its prediction suite comes with six different models corresponding to 

window sizes of 10, 12, 14, 16, 18 and 20 of which the 20 amino acid residue model 

performed the best with a reported 80.10% sensitivity and 55.20% precision on a data set 

gathered from the Immune Epitope Data Base (IEDB) [59].  

LBtope was the most recent effort, out of our selected predictors,on epitope prediction 

published by Raghava’s lab in 2013.  This method uses, among other previously used types 

of features, a modified AAP profile from Chen’s method [36].  These profiles are used to 

convert the input sequence into numerical features that are then used as input for an SVM 

model that predicts epitopes.  LBtope was trained and tested on a data set collected from 

IEDB, which comprised of experimentally verified epitopes and non-epitopes, in contrast to 
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previous methods that used random peptides as non-epitopes.  Its reported performance on 

different data sets varied significantly, with an accuracy ranging from 51.57% to 85.74%. 

LBEEP was developed in 2015 by Saravan et al. [50] from the University of Madras in India.  

In this work, a novel amino acid feature descriptor called Dipeptide Deviation from Expected 

Mean (DDE) was developed, in an attempt to distinguish linear epitopes from non-epitopes.  

This new descriptor was then implemented with both SVM and AdaBoost-Random Forest 

machine learning techniques.  The method was trained for window sizes of 5-15 amino acids 

and it achieved an accuracy between 61% and 73%, after five-fold cross-validation, on a data 

set derived from IEDB [60]. 

Once all methods were installed in a local unix-based machine, their output was validated by 

comparing example sequences of the local versions of software with the corresponding online 

tools.  Additionally, all methods used in this analysis, had their threshold set on its default 

value except for BcePred and COBEpro (Table 2).  In the case of BcePred the default 

threshold value of the method used, which combined the results of four different propensity 

scales, was decreased from 2.38 to 2.  This decrease was decided after extensive testing, 

because the default threshold value proved to be extremely high.  Nevertheless, it should be 

noted that the new value used agreed with the default threshold currently used by both the 

online and the local version of the method, in contrast with the one reported in the initial 

publication.  COBEpro on the other hand didn’t have a default threshold value, since its 

results are printed out in a graph where epitopic propensity is given a relative positive or 

negative score for each position of the query protein.  The threshold value that was chosen for 

this method was that of four positive votes above the baseline score of zero, because it 

yielded the best results during testing.   

Table 2.  A summary of methods, threshold values and modifications applied to each 

predictor.  Each predictor first had its best performing mode selected and its threshold value 

set to a specific value shown in the table, using the criteria described in the manuscript. 

Predictor Threshold Mode Threshold Type 

BcePred 2 Combined Not Default 

BepiPred-1.0 0.35 BepiPred Default 

ABCpred 0.51 20 Default 

COBEpro 4 - Not Default 

SVMTriP 0.2 20 Default 
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LBtope 0.6 - Default 

LBEEP 0.6 Balanced Default 

 

Development of the consensus method 

A consensus method was developed to incorporate all available methods that were selected in 

the first stage and is available at http://thalis.biol.uoa.gr/BCEconsensus/ as a standalone 

application.  Instructions on how to install and use the consensus method can be found both 

in the web page where it is hosted and in Supplementary File 1.  All sequence-based 

methods can be divided into two categories based on their classification approach.  The first 

category comprises of the methods that assign an epitopic propensity score to each residue of 

the provided sequence.  Four methods are included in it; BcePred, BepiPred, COBEpro and 

LBtope.  The second category comprises of the methods that classify peptides within certain 

length sizes as epitopes or non-epitopes and such methods are ABCpred, SVMTriP and 

LBEEP.  The two categories are summarized in Table 3. 

Table 3.  Input window sizes and prediction approach of each method.  The classification 

of query proteins as epitopes can generally be performed in either a “per residue” or a “per 

peptide” basis.  In the “per residue” methods each separate residue of a protein is assigned an 

antigenicity score, while in the “per peptide” methods, a prediction is limited within fixed 

windows sizes. 

Predictor Prediction Window Size 

ABCpred Per peptide 10, 12, 14, 16, 18, 20 

SVMTriP Per peptide 10, 12, 14, 16, 18, 20 

LBEEP Per peptide 5 - 15 

BcePred Per residue - 

BepiPred-1.0 Per residue - 

COBEpro Per residue - 

LBtope Per residue - 

The methods that predict per peptide, ABCpred and SVMTriP, use predetermined fixed 

window sizes.  Thus, it was necessary to choose a window size where these methods would 

operate sufficiently well, both in individual testing and as part of the consensus classifier.  
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The window size chosen for these methods after initial testing was that of 20 residues.  The 

main reasons were the better reported performance of SVMTriP at that window size and the 

lack of any default threshold values for the rest of the models in the documentation.  As far as 

ABCpred is concerned, the performance penalty of selecting a window size of 20 instead of 

the reported best of 16 residues was minor.  It should also be noted that initial testing for 

LBEEP at a window size of 20 was experimental, since the method was trained using only 

epitopes of lengths between 5 and 15, and thus any results outside that range were unreliable. 

Once a window size of 20 was selected for the “per peptide” methods, an effective strategy 

had to be formulated where the two different categories of output would produce a single 

consensus result.  The solution was a consensus voting system that classifies a residue as 

belonging to an epitope when a predetermined threshold of votes has been achieved.  When a 

“per residue” method classifies a residue of the query sequence as “epitopic” it counts as one 

positive vote, while when a “per peptide” method classifies a fragment of a protein as an 

epitope each amino acid of that peptide is classified as “epitopic”.  So, when the sum of 

positive votes for a given position of a query sequence surpasses the threshold of the 

consensus classifier, that residue is marked as part of an epitope.  The consensus threshold 

chosen, after testing, is defined as the hit overlap of at least half out of “n” selected methods, 

where “n” is the number of methods embedded in the algorithm [61].  The consensus method 

accepts protein sequences, of a length of 20 amino acid residues or higher, in FASTA format 

as input.  The workflow of the consensus method is shown in Supplementary File 2. 

For testing purposes, a slightly different architecture of the consensus method was 

implemented, that specialized in rapid consensus output on our fixed length data sets (Figure 

1).  All methods – including the consensus – were mainly tested on a data set consisting of 

peptides with a length of 20.  To resolve this issue, two parallel approaches were explored.  In 

the first approach, all methods were included, and each method predicted whether an entire 

peptide is an epitope or not.  However, in order for the results between the “per peptide” and 

“per residue” methods to be comparable, since only “per peptide” methods classify protein 

fragments, it was accepted that when “per residue” methods have predicted half or more of a 

peptide’s fragments as “epitopic”, then the whole peptide too is a predicted epitope.  Such 

caveats are generally found in other forms of predictors of biological nature[62, 63], and thus 

were chosen in our evaluation approach, as well.  In the second approach, only “per residue” 

methods were included, and the consensus result was simply, a combination of only those 

predictions. 
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Figure 1.  The workflow of the validation experiment performed to assess the 

performance of the consensus predictor during testing.  A data set of multiple fixed length 

peptides of 20 amino acid residues in FASTA format is used as input.  For each peptide a 

separate prediction is made by every individual method.  “Per residue” methods predict a 

peptide as an epitope, when 10 more of its residues are predicted as epitopic, by classifying 

the entire peptide as an epitope or a non-epitope.  On the other hand, “per peptide” methods 

classify the whole peptide as either an epitope or a non-epitope.  The scores of these 

predictions are then summed using a vote system and the algorithm checks the score against 

the consensus threshold.  Each separate peptide can be ranked from a minimum of 0 votes to 

a maximum of “m” votes, where “m” is the number of predictors embedded in our consensus 

method.  If the score of a peptide is greater or equal than the number of half the methods used 

“m”, then the peptide is classified as an epitope, otherwise the peptide is classified as a non-

epitope.  Once all peptides of a given data set have been parsed, the prediction results for all 

of them are printed out in a single text file.   
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Data sets 

Typically, the development of machine learning classifiers requires a training data set and a 

test data set, but since all the predictors tested in this work were previously developed, only 

the latter was necessary.  However, due to the fact that the individual training data sets for 

each predictor contained a significant number of overlapping sequences, gathered from a 

select few databases (like IEDB and Bcipep), their inclusion in our test data set would 

introduce bias in the results.  So, in order to test all the different methods in an unbiased 

manner, the positive and negative training data sets for each method were gathered from their 

respective publications and webpages.  As shown in Table 4, the positive training data set for 

the majority of predictors comprises of all available BCEs from a given database, while the 

negative set contains random amino acid sequences from Swiss-Prot [64].  The way the 

negative set of control data is constructed, changed in algorithms developed after 2012 to 

include only sequences from confirmed non-epitopes, as is the case for SVMTriP, LBtope 

and LBEEP.  This change was introduced in order to improve the ability of prediction 

algorithms to effectively distinguish “epitopic” from random sequences, as it had been 

previously proposed [65].   

Table 4.  A summary of the source of positive and negative data sets for each predictor.  

For every predictor a database had to be used to construct its training data sets, which are 

comprised of a positive and a negative subset of data.  In this table, we outline the database or 

curated data set from which each method sourced its training data set, along with the date that 

the data was obtained.  The date could be used to determine the snapshot of the data, which 

could have been obtained for each predictor’s training, allowing us to determine possible 

overlaps of our testing data set with the relevant training data. 

Predictor Positive Negative 

BcePred BCIPEP (2004) 1029 random sequences 

BepiPred-1.0 HΙV/PELLEQUER/ANTIJEN 
Not described in the original 

publication 

ABCpred BCIPEP (2006) 700 random sequences 

COBEpro HΙV/PELLEQUER HIV/Pellequer non-Epitopes 

SVMTriP ΙEDB (2012) 4925 IEDB non-epitopes 

LBtope ΙEDB (2012) IEDB (2012) non-epitopes 

LBEEP ΙEDB (2015) IEDB (2015) non-epitopes 
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While developing the consensus algorithm, a new version of BepiPred was published called 

BepiPred-2.0 [17].  Even though the method itself wasn’t utilized in the development of the 

consensus method, its curated publicly available data set of linear epitopes was used as the 

source for this work’s data sets.  This data set represents the biggest collection of linear 

epitope and non-epitope data used for the development of a prediction method to date, as 

IEDB is the largest and most frequently updated epitope database [60].  The BepiPred-2.0 

data set was created by procuring from this database, all available epitopes (positive assay 

results) and non-epitopes (negative assay results), which were confirmed as such from two or 

more separate experiments.  Afterwards, all peptides with a length smaller than 5 and longer 

than 25 residues were removed from the data set, because epitopes are rarely found outside 

this range [66].  Any epitopes that were found both in the positive and negative subsets were 

also removed.  The resulting data set contains 11834 epitopes in the positive subset and 

18722 non-epitopes in the negative subset.  Aside from its curation, a useful feature of this 

data set was the mapping of all epitopes and non-epitopes on their respective parent protein 

sequence.  This made extending each epitope to a desired length much easier.   

The predictors that used IEDB as their source of epitope data are SVMTriP, LBtope and 

LBEEP (Table 4).  In order to produce an unbiased data set, their data sets were compared 

with BepiPred-2.0’s data set and all the matching peptides were removed.  This resulted in 

our first data set, named Consensus_Redundant (Consensus_R) which comprises of 7675 

epitopes and 15617 non-epitopes.  Using this data set as the source, a second non-redundant 

data set was constructed, by clustering peptides with the online tool CD-HIT [67].  All 

parameters were set to default and the sequence identity cut-off was set to 0.6 or 60%, as 

previously done in LBEEP’s data set creation [50].  The resulting data set was named 

Consensus_Non_Redundant (Consensus_NR) and it includes 4286 epitopes and 5266 non-

epitopes.  By creating the Consensus_NR data set in this manner, we essentially made the 

largest non-redundant data set possible, which contained known sequences that none of 

predictors had previously “seen”.  Additionally, from the Consensus_NR data set a subset 

was extracted, containing 552 epitopes and 480 non-epitopes with a peptide length of exactly 

20 amino acids, which was named Consensus_NR_exact.  This subset was used to test the 

performance of predictors using only true epitopes and not epitope containing regions that 

result from the extension-truncation technique.  A summary of all data sets used in this study 

is presented in Table 5, while the complete data sets are provided in Supplementary Table 1.   
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Table 5.  A summary of test data sets utilized in this study.  The counts of positive and 

negative subsets of data used in each of the three data sets developed for method testing is 

shown. 

Data set Epitopes Non-Epitopes 

BepiPred-2.0* 11814 18689 

Consensus_R 7675 15617 

Consensus_NR 4286 5266 

*A slightly modified version of BepiPred-2.0’s data set was used, which had a few epitopes removed because their sequence 

of origin was shorter than 20 amino acid residues and thus the epitope couldn’t be extended to the desired length. 

Each data set used for testing contained peptides modified beforehand into fixed length 

patterns using the technique of sequence extension and truncation, employed in previous 

methods [12, 16, 31, 41].  This was done to accommodate the fixed size input methods and 

thus included only their corresponding input lengths, namely 10, 12, 14, 16, 18 and 20 

residues.  For example, for a window size of 20, any epitopes or non-epitopes that were 

longer than 20 amino acids were shortened from both sides to have the desired length.  

Moreover, peptides with a length shorter than 20 residues were extended sideways on their 

parent sequence up to the desired length.  The primary input size that was tested in this study 

was that of 20 residues for performance reasons as described in the development of the 

consensus algorithm.  However, preliminary testing was also performed on a length of 16 

residues, after analyzing the distribution of epitope lengths in the BepiPred-2.0 data set 

(Figure 2).  The mean peptide length of the data set was about 14 and the median value 15, 

which coincides with previous research on the characteristics of epitopes [66].   

The workflow used to create the non-redundant data sets is shown in Supplementary File 2 

and all data sets referenced in this section can be downloaded from this web page 

http://thalis.biol.uoa.gr/BCEconsensus/   
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Figure 2.  Distribution of epitope lengths in BepiPred-2.0 data set.  The number of 

sequences is shown in the vertical axis, while the epitope length is shown in the horizontal 

axis.  The most frequent epitope lengths are 10, 15 and 20 amino acid residues.  The mean 

peptide length is 14, while the median value is ca. 15 residues. 

Performance measures 

Generally, to evaluate a classifier’s performance both threshold dependent and independent 

metrics are used.  The main threshold independent metric used in such cases is the AUC of 

the ROC curve.  This metric was suggested as the preferred metric for benchmarking epitope 

prediction performance at a workshop by Greenbaum et al. [65] and thus, it grew to become a 

standard in the BCE prediction field.  However, because all the predictors that we examined 

were already fully developed and their optimal thresholds set, it didn’t make sense to use 

such a metric in our testing, since no model training was performed.  For that reason, only 

threshold dependent metrics were employed, namely Sensitivity (SN), Specificity (SP), 

Accuracy (ACC) and MCC.  Out of these metrics, significant attention was given to MCC, 

since it is generally regarded as the best performance metric for binary classifiers [68, 69].  

The coefficient’s value can range from -1 to +1, were the maximum value represents a perfect 
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prediction and the minimum a total disagreement between predictions and observations.  

When the coefficient’s value is zero it indicates a prediction that is no better than random.  

Aside from the known value in accessing performance utilizing the MCC and accuracy 

metrics, regarding the other metrics, more importance was attached to sensitivity rather than 

specificity.  Sensitivity indicates how effectively a predictive method manages to successfully 

locate areas that are actual epitopes, in contrast to specificity, which measures how 

effectively a predictive method manages to locate the sites that are not epitopes.  In this 

study, the correctly predicted epitopes or “epitopic” residues were considered True Positive 

(TP), whereas the correctly predicted non-epitopes or “non-epitopic” residues were 

characterized as True Negative (TN).  Conversely, the respective false predictions were 

defined as False Positive (FP) and False Negative (FN), respectively.  
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RESULTS AND DISCUSSION 

As mentioned in the Methods section, two approaches are followed to evaluate all predictions 

made by the consensus algorithm.  In the first approach results from all methods are 

incorporated in the consensus method — both those predicting in a “per residue” and in a 

“per peptide” manner — while in the second approach the consensus prediction only utilizes 

the “per residue” methods.  Two different versions of the consensus algorithm were created 

in the “per peptide” mode, as seen in Table 6; one which includes all predictors and one 

which utilizes all of them except for LBEEP.  This was done after noticing that LBEEP 

performs much worse, compared to the rest of the predictors.  This performance issue can be 

partly attributed to the fact that the optimal prediction window of 5-15 residues for LBEEP is 

different than the 20-residue length that was used for our testing purposes (Supplementary 

File 2). 

The evaluation of the predictors’ performance was done primarily by measuring their MCC 

values, while secondary importance was assigned to achieving higher accuracy, and 

sensitivity.  Sensitivity was considered more important than specificity for this particular 

application, since a BCE predictor’s primary goal is to find possible BCEs in unknown 

sequences.  Naturally, sensitivity and specificity are not mutually exclusive entities, yet in 

this study optimal sensitivity is preferred to optimal specificity. 

Performance of all predictors on Consensus_NR 

The results regarding the “per peptide” approach (Table 6) show that the highest MCC value 

was achieved by the BepiPred method with 0.0778, followed by our Consensus_NoLBEEP 

algorithm — the one without LBEEP — that achieved an MCC of 0.0721.  Moreover, 

LBEEP had the lowest MCC (-0.0103), while BcePred and SVMTriP also scored low (0.0251 

and 0.0290, respectively).  The highest accuracy was achieved by our Consensus_ALL 

method with 55.59%, which was marginally better than those of SVMTriP and BcePred.  

SVMTriP had the best specificity out of all the methods (85.87%), followed by LBEEP and 

BcePred.  Additionally, the ABCpred method achieved the greatest sensitivity with 66.44%, 

and COBEpro achieved the second highest with 58.63%.  The Consensus_NoLBEEP 

algorithm achieved values close to the best for both MCC and accuracy, and also had a 

relatively improved MCC and a significantly increased sensitivity compared to its first 

version. 
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Table 6.  Performance of all predictors in “per peptide” mode.  The methods are tested 

against the Consensus_NR data set.  
Predictor SN% SP% ACC% MCC 

Consensus_noLBEEP  48.39 58.81 54.14 0.0721 

Consensus_ALL 27.15 78.73 55.59 0.0687 

BcePred 22.21 79.85 53.99 0.0251 

ABCpred 66.44 36.9 50.16 0.0348 

LBtope 45.91 58.94 53.1 0.0488 

BepiPred-1.0 49.95 57.84 54.3 0.0778 

COBEpro 58.63 45.67 51.49 0.0431 

SVMTriP 16.21 85.87 54.62 0.0290 

LBEEP 19.06 80.12 52.72 -0.0103 

In the case of the “per residue” approach (Table 7), the consensus method (Consensus_RES) 

achieved the best MCC with 0.489, while BepiPred scored marginally worse with 0.0488.  

The same pattern was also observed for accuracy, where the Consensus_RES method scored 

53.04% and BepiPred 52.88%.  The greatest sensitivity was achieved by COBEpro with 

49.27%, while BepiPred was again second best with 48.12%.  The worst performance 

regarding MCC was attained by BcePred and COBEpro with scores of 0.0154 and 0.0175 

respectively.  Overall, despite the slight improvement in MCC and accuracy, the performance 

of the consensus algorithm was not significantly better in any of the statistical measures 

examined in the second part of the results.   

Table 7.  Performance of “per residue” predictors.  The methods are tested against the 

Consensus_NR data set.   
Predictor SN% SP% ACC% MCC 

Consensus_RES 46.64 58.24 53.04 0.0489 

BcePred  29.18 72.21 52.9 0.0154 

LBtope 45.56 57.47 52.13 0.0304 

BepiPred-1.0 48.12 56.76 52.88 0.0488 

COBEpro 49.27 52.49 51.05 0.0175 

When comparing the results of the two approaches only minor differences in performance are 

observed between the two modes of prediction for the four “per residue” methods.  Generally, 

we notice a slight decrease in MCC from a maximum of 0.0778 in the first approach to a 
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maximum of 0.0489 in the second, while accuracy is comparatively worse on average.  Out 

of the “per residue” methods BepiPred comes on top in both approaches in MCC and 

accuracy.  The Bcepred method appears to perform relatively worse than the rest in both 

groups with the lowest MCC in both cases, whereas the COBEpro method performs relatively 

better in its “per peptide” iteration, with an average MCC score in the first part but a poor 

score in the second segment of the results.  Moreover, in both approaches our consensus 

algorithm doesn’t significantly outperform the rest of the predictors and only achieves a 

performance which is quite similar to that of BepiPred. 

In summary, we observe that in all cases: MCC values are less than 0.1, accuracy is ranging 

from 50% to 55%, there are relatively high specificity values in certain cases such as 

SVMTriP and BcePred, and sensitivity values are low.  Aside from our consensus methods, 

the best performers were LBtope and BepiPred and the worst ABCpred and LBEEP, which 

also displayed the lowest MCC scores.   

Using the Consensus_NR data set we implemented many iterations of the consensus method 

utilizing many different method combinations, in order to find the optimum.  As expected, 

LBEEP's presence undermined the consensus predictor’s performance and it was therefore 

omitted from the final version (Consensus_NoLBEEP) and any further testing in the 20-

residue window size.  It was also observed that ABCpred overestimated the presence of 

epitopes in their respective peptides, which led to reduced accuracy and increased sensitivity.  

Nevertheless, it remained part of the final consensus algorithm to improve its overall 

sensitivity. 

At this point it should be noted that LBEEP was also tested on a peptide length of 14-

residues, since the method was reported to perform optimally when a window size between 5-

15 residues is used for prediction.  Results showed that the method indeed performs better at 

this window size, but it is still marginally better than a random prediction according to its 

MCC (Supplementary Table 2).  Even though, the results were better for LBEEP the rest of 

the methods either cannot be used at that window size or perform way worse than what we 

had already seen and so we opted to not use the 14-residue window any further.   

Performance of all predictors  except LBEEP  on Consensus_NR_exact 

Further performance benchmarking was done on the Consensus_NR_exact data set, this time 

utilizing only the Consensus_NoLBEEP method, and all of the predictors except LBEEP.  In 
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the “per peptide” approach (Table 8), a similar pattern with the Consensus_NR results 

emerges.  The highest MCC score is achieved by BepiPred, with our Consensus_NoLBEEP 

method coming in second.  BcePred is still characterized by high specificity, while ABCpred 

shows the best sensitivity.  A slight shift in performance for the worst is observed by 

COBEpro and SVMTriP, where both methods score below 50% in accuracy and especially 

COBEpro, which also has a negative MCC.   

Table 8.  Performance of predictors in “per peptide” mode.  The methods are tested 

against the Consensus_NR_exact data set. 

Predictor SN% SP% ACC% MCC 

Consensus_NoLBEEP 50.18 58.54 54.07 0.0873 

BcePred 22.46 83.33 50.78 0.0726 

ABCpred 67.93 37.08 53.59 0.0527 

LBtope  46.2 59.58 52.42 0.0581 

BepiPred-1.0 52.72 56.88 54.65 0.0957 

COBEpro 33.15 64.79 47.87 -0.0216 

SVMTriP 15.4 88.54 49.42 0.0574 

The results obtained from the “per residue” approach (Table 9) are quite similar with those 

reported on the Consensus_NR data set.  Furthermore, the BepiPred and Consensus_RES 

classifiers still perform the best and COBEpro performs the poorest, with a negative MCC 

score of -0.0107.  LBtope seems to perform a bit worse, with a lower MCC value, in contrast 

with BcePred which showed an increase in MCC value. 

Table 9.  Performance of “per residue” predictors.  The methods are tested against the 

Consensus_NR_exact data set. 

Predictor SN% SP% ACC% MCC 

Consensus_RES 47.42 59.64 53.1 0.0709 

BcePred 28.5 75.01 50.13 0.0395 

LBtope 45.82 57.13 51.08 0.0296 

BepiPred-1.0 50.91 56.47 53.49 0.0737 

COBEpro 37.09 61.86 48.61 -0.0107 
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Performance of predictors on BepiPred-2.0’s data set at window size of 16 

All predictors were also tested using a fixed window size of 16 residues, except for SVMTriP 

which unfortunately had no default threshold value set for the corresponding model.  After 

initially obtaining poor results on the non-redundant data set, we also opted to use the entire 

BepiPred-2.0’s data set modified, so that all peptides had a fixed length of 16 residues, in 

order to ascertain the best possible performance for all methods.   

Firstly, in the “per peptide” mode (Table 10), the highest MCC score — by a wide margin — 

was achieved by LBtope, as well as the highest sensitivity, closely followed by BepiPred.  

The Consensus_noSVMTrip algorithm achieved the highest accuracy with 61.44%, but also 

exhibited an extremely low sensitivity and a specificity of nearly 100%, indicating that it 

rejected almost all sequences, perhaps as a result of a very high value in the consensus 

threshold.  High specificity values were also observed for LBEEP, COBEpro and BcePred.  

Compared to the previous results on Consensus_NR with the window size of 20 amino acid 

residues, we observe a performance boost, especially in accuracy.   

Table 10.  Performance of predictors in “per peptide” mode.  The methods are tested 

against BepiPred-2.0’s data set at fixed length of 16.   

Predictor SN% SP% ACC% MCC 

Consensus_noSVMTrip 1.39 99.41 61.44 0.0409 

BcePred 27.37 75.48 56.81 0.0319 

ABCpred 40.96 63.5 52.24 0.0459 

LBtope 57.7 56.06 56.69 0.134 

BepiPred-1.0 53.98 53.86 53.91 0.0765 

COBEpro 23.06 79.13 57.41 0.0259 

LBEEP 23.14 79.73 57.81 0.0341 

In the case of the “per residue” predictors (Table 11), LBtope had once again the highest 

MCC, followed by our consensus method.  Regarding the other metrics we see similar 

performance rankings with our previous test on the 20-residue peptides in MCC and 

accuracy.  However, there is an overwhelming difference between the method’s sensitivity 

and specificity, rendering the method incapable of performing predictions in that window 

size.   
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Table 11.  Performance of “per residue” predictors.  The methods are tested against 

BepiPred-2.0’s data set at fixed peptide length of 16. 

Predictor SN% SP% ACC% MCC 

Consensus_RES 26.7 79.9 59.3 0.0769 

BcePred 31.42 70.74 55.52 0.0231 

LBtope 50.09 58.57 55.29 0.0849 

BepiPred-1.0 51.45 54.36 53.23 0.0566 

COBEpro 36.19 64.86 53.75 0.0107 

In short, changing the window size to 16 and including all available peptides of BepiPred-

2.0’s data set, improved performance as expected, but led to a huge gap between – the 

previously balanced – sensitivity and specificity metrics.  However, even with this advantage 

for the methods that were trained using peptides from IEDB (LBtope, LBEEP), the results 

remain unimpressive.  Accuracy may have increased to ~58% for LBEEP and COBEpro, but 

their MCC values are still near zero indicating random classification.  The performance 

improvement observed for LBEEP and LBtope is biased and probably associated with the 

inclusion of sequences already present in the training data sets of the two methods.  On the 

other hand, ABCpred and COBEpro showed relatively improved accuracy without 

benefitting from the biased data set, which probably indicates their preference for shorter 

epitope segments.   

Overall method performance and comparison with BepiPred-2.0  

The performance of the linear B-cell epitope predictors examined was found to be poor in the 

data sets and window sizes used during testing (Figure 3).  Additionally, despite our 

optimization, our consensus method performed only marginally better than the rest of the 

methods, thus nullifying its usefulness.  We believe that the problems which may explain 

these results can be divided into two categories; those concerning the individual methods and 

those of the consensus approach. 
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Figure 3.  MCC values achieved by all methods tested on the Consensus_NR data set at 

20 amino acid residues in “per peptide” mode.  The vertical axis represents the MCC value 

for all the methods and the horizontal axis the names of these methods.  The best MCC is 

achieved by the BepiPred method, followed closely by our Consensus methods, while the 

worst performers are the LBEEP, SVMTriP and BcePred methods. 

The first problem regarding the prediction methods is that the epitope data used to train and 

test them, and as a result the methods themselves, is outdated.  This probably is what caused 

their significantly reduced performance in our contemporary and considerably larger set of 

data.  Furthermore, the general difficulty of creating a relatively reliable sequence-based 

predictor is well known, in contrast with those available for example in the prognosis of T-

cell epitopes [70].  This is mainly due to the 3D nature of all B-cell epitopes, which consist of 

seemingly unrelated residue patterns of the antigen.  Their emergence is also subject to 

multiple factors, such as antigen concentration and the type of chemical test [65]. 

In our attempt to create a consensus predictor, the first problem we encountered was the 

different mode of operation of the individual prediction methods, namely their distinction 

into “per peptide” and “per residue” predictors.  To effectively compare the two modes, “per 
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residue” predictor outputs were converted to “per peptide” by using a percentage cut-off to 

classify peptides as epitopes and non-epitopes.  This, however, is not their intended operation 

mode, which certainly influences the performance of these methods and thus the performance 

of the consensus method.   

Another obstacle in this effort was time and complexity.  The prediction and evaluation 

process for all possible windows (10, 12, 14, 16, 18 and 20) is very time-consuming.  This 

also had to be performed for as many predictors as possible to make the consensus classifier 

more effective, leading to a significant increase in software development complexity as the 

number of incorporated predictors grew.  In addition, accurate assessment of the viability of 

such an effort is very difficult, due to the inability to accurately compare them beforehand 

using the results presented in the corresponding publications, as there is no single set of 

evaluation data or metrics [12].  Finally, there was a lack of variety in the methods utilized in 

our selected predictors, where most of them were based on SVM models, which may have 

negatively affected the performance of our consensus predictor [71]. 

When comparing all of the methods we tested, with some of the newer methods such as 

BepiPred-2.0 and iBCE-EL, which were tested on large non-redundant data sets much like 

the ones we used, their reported superiority is apparent.  Out of the two, BepiPred-2.0 was 

released during the initial part of testing in our research, and as such it was a likely candidate 

for our consensus method.  However, after observing the poor performance of all the different 

methods tested against its data set, we decided to not include it in our consensus approach, 

but simply to use it as a reference for what a modern predictor can achieve versus the older 

ones.  Unlike its predecessor, BepiPred-1.0, and most other sequence based predictors, 

BepiPred-2.0 is trained exclusively on epitope data derived from antigen-antibody crystal 

structure complexes obtained from the Protein Data Bank [72].  This was done in order to 

combat the generally poor performance of predictors, which can be partly attributed to poorly 

annotated and noisy training data, in comparison with data derived from crystal structures 

which is presumed to be of higher quality and indeed resulted in a significantly improved 

predictive power [17].  From these complexes all antigenic residues close enough to their 

respective antibody were gathered.  These residues became the positive subset of the training 

data set, while the negative subset was constructed from randomly selected non-epitope 

residues.   
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While, BepiPred-2.0 was trained using epitope data derived only from 3D structures, its 

performance on linear BCEs was also benchmarked on one such data set.  We compared the 

performance of BepiPred-2.0 against our Consensus_noLBEEP predictor using the 

Consensus_NR dataset at a window size of 20 amino acid residues.  When compared to our 

consensus method, BepiPred-2.0 has a similar performance in accuracy and MCC, but 

exhibits higher sensitivity and lower specificity, as shown in the comparison performed in 

Table 12.  However, the results for both methods are far from optimal, and a lot of work still 

remains to be done in order to create a predictor that will perform optimally during linear 

BCE detection. 

Table 12.  Comparison of the performance of our consensus predictor and BepiPred-2.0 

against the Consensus_NR data set.   

Predictor SN% SP% ACC% MCC 

Consensus_NoLBEEP 50.18 58.54 54.07 0.0873 

BepiPred-2.0 63.35 42.63 51.93 0.0607 
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CONCLUSIONS 

In summary, in this paper we independently evaluated the performance of seven of the most 

popular linear B-cell epitope predictors on the largest unbiased data set possible.  In the 

process, we also presented the course of design, development and evaluation of a consensus 

prediction algorithm for linear B-cell epitopes.  The performance of all predictors, except for 

LBEEP on whom testing was exploratory, was found marginally better than random 

classification.  Additionally, our Consensus classifier failed to significantly outperform its 

constituent methods.  While the method comparison was performed with some necessary 

compromises, we believe that this update in performance can help to better inform 

researchers that wish to consult some of these tools to facilitate and direct their research.  

Instead, we should also like to suggest that researchers opt for some of the newer predictors 

referenced in this work, like BepiPred-2.0.  Also, due to the apparent difficulty of 

constructing an accurate general-purpose linear BCE predictor, we believe that software 

development should instead be focused to the creation of more specialized predictors for 

specific antigenic systems, such as known viruses or viral families of high interest.  This 

could lead to optimization in the feature selection process during classifier training and better 

predictive performance within that limited scope. 
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