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1 singleCellHaystack methodology 
The main function in singleCellHaystack is the haystack function. The input 

parameters to haystack are 1) the coordinates of cells in a multi-dimensional (≥2D) 

space (e.g. t-SNE, UMAP, or PC coordinates), and 2) data indicating for each gene in 

which cells it was detected and not detected. We refer to Supplementary Fig. S1 for an 

overview of the workflow. 

Step 0: Optional normalization of input space 
In this optional step, each dimension of the input coordinates is rescaled to mean 0 and 

standard deviation 1. 

Step 1: Setting parameters 
Steps 2-4 depend on using grid points for estimating the local density of cells using a 

Gaussian kernel, in function of their distance to the grid points. In the first step, 

haystack_highD decides the grid points and bandwidths for doing these 

calculations.  

By default, 100 grid points are decided in a way that results in grid points being roughly 

uniformly spread over the subspace in which the cells are located. In other words, grid 

points should not be located close to each other, but should be proximal to the cells, and 

no cells should be distal from all grid points. In haystack_highD, the default way of 

deciding grid points is by running k-means clustering of the input cell coordinates, and 

to use the resulting 100 centroids as grid points. Note that the clustering of cells itself is 

not important. Another approach is to use seeding, as used in k-means++ clustering, in 

which initial centers are picked iteratively so that they are distal from other centers 1. 

A bandwidth ℎ is decided as follows: for each cell, the distance to the closest grid point 

is calculated, and ℎ is defined as the median of those distances. Normalized distances 

between cells and grid points are subsequently defined as the Euclidean distances 

divided by the bandwidth ℎ. The density contributions of each cell to each grid point 

along both axes is calculated as: 

𝑑𝑐𝑒𝑙𝑙,𝑖 = 𝑒
(−
𝐷𝑖𝑠𝑡𝑐𝑒𝑙𝑙,𝑖

2

2
)
 

where 𝐷𝑖𝑠𝑡𝑐𝑒𝑙𝑙,𝑖 is the normalized distance between 𝑐𝑒𝑙𝑙 and grid point 𝑖. 
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Step 2: Estimating reference distribution 𝑄 
The density distribution of all cells in the multi-dimensional space is used as a reference 

distribution, 𝑄. The density of cells at each grid point 𝑖 in the space is calculated as: 

𝑄(𝑖) =∑𝑑𝑐𝑒𝑙𝑙,𝑖
𝑐𝑒𝑙𝑙

 

After this, 𝑄 is normalized to sum to unity. 

Step 3: Estimating distributions 𝑃(𝐺 = 𝑇)) and 𝑃(𝐺 = 𝐹)) 
The distribution of the cells in which gene 𝐺 is detected, 𝑃(𝐺 = 𝑇), and those in which 

gene 𝐺 is not detected , 𝑃(𝐺 = 𝐹), is estimated using the same bandwidth and grid 

points, as follows: 

𝑃(𝐺 = 𝑇, 𝑖) = ∑ 𝑑𝑐𝑒𝑙𝑙,𝑖
𝑐𝑒𝑙𝑙(𝐺=𝑇)

 

and 

𝑃(𝐺 = 𝐹, 𝑖) = ∑ 𝑑𝑐𝑒𝑙𝑙,𝑖
𝑐𝑒𝑙𝑙(𝐺=𝐹)

 

where 𝑐𝑒𝑙𝑙(𝐺 = 𝑇) and 𝑐𝑒𝑙𝑙(𝐺 = 𝐹) represent the subsets of cells in which 𝐺 is 

detected and not detected, respectively. Subsequently 𝑃(𝐺 = 𝑇) and 𝑃(𝐺 = 𝐹) are 

normalized to sum to unity. 

Step 4: Estimating the Kullback-Leibler divergence of gene 𝐺,  𝐷𝐾𝐿(𝐺) 
The divergence of the expression pattern of gene 𝐺,  𝐷𝐾𝐿(𝐺), is calculated as follows: 

𝐷𝐾𝐿(𝐺) = ∑ ∑𝑃(𝐺 = 𝑠, 𝑖)log (
𝑃(𝐺=𝑠,𝑖)

𝑄(𝑖)
)

𝑖𝑠∈{𝑇,𝐹}

 

If the cells in which 𝐺 is detected (and not detected) do not show a bias, and 

approximately follow the reference distribution 𝑄, then 𝐷𝐾𝐿(𝐺) is close to 0. As the 

discrepancy to the reference distribution 𝑄 increases, the value of 𝐷𝐾𝐿(𝐺) also 

increases. 

Step 5: Estimating the significance of 𝐷𝐾𝐿(𝐺) 

Finally, haystack evaluates the statistical significance of the 𝐷𝐾𝐿(𝐺) values. We can 

not naively regard high 𝐷𝐾𝐿(𝐺) values as significant, because there is a tendency for 

genes expressed in very few cells, and for genes expressed in almost all cells, to have a 

high 𝐷𝐾𝐿(𝐺). 

Instead, haystack evaluates the significance of observed 𝐷𝐾𝐿(𝐺) values be 

comparing them to randomized data. First, let 𝑐𝐺 represent the number of cells in which 

gene 𝐺 is detected in the scRNA-seq data. Randomized genes are made that are 

expressed in 𝑐 cells. This is repeated many times, and the 𝐷𝐾𝐿(𝐺) of these randomized 
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genes are recorded. In practice, the values of 𝑐 are 200 values taken from the actual 𝑐𝐺 

values of the data, evenly spread across the range of 𝑐𝐺 values, and 50 randomizations 

are done for each 𝑐 value. Since 𝑐 covers only 200 values (a subset of all unique 𝑐𝐺 

values), this typically results in a much-reduced runtime. If there are less than 200 

unique 𝑐𝐺 in the data, then all are used. 

For each 𝑐 value, randomized 𝑙𝑜𝑔2(𝐷𝐾𝐿(𝐺)) follow an approximately normal 

distribution. We can therefore use the mean and standard deviation of randomized 

𝑙𝑜𝑔2(𝐷𝐾𝐿(𝐺)) values to estimate a p-value of the actually observed 𝐷𝐾𝐿(𝐺) values. The 

mean and standard deviation of randomized 𝑙𝑜𝑔2(𝐷𝐾𝐿(𝐺)) values are modeled as a 

function of 𝑐 using B-splines (using the splines R package). By default, 10 degrees 

of freedom are used for the splines, although this is lowered if there are few 𝑐 values. 

Using the B-splines, expected means and standard deviations are predicted for each 

gene, in function of its detection count. P-values are then estimates using the pnorm 

function in R. 

The singleCellHaystack advanced mode 
In practice, in some cells more genes are detected than in others (for examples, see Fig. 

4, left). The default reference distribution 𝑄 does not take this into account, which can 

lead to genes being judged to be highly biased, even if they are merely detected in cells 

that have many detected genes. 

To address this, the function haystack can take this into account by weighting the 

density contributions of cells by the number of genes detected in each cell: 

𝑑𝑐𝑒𝑙𝑙,𝑖
𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 = 𝑒

(−
𝐷𝑖𝑠𝑡𝑐𝑒𝑙𝑙,𝑖

2

2
)
× 𝑔𝑐𝑒𝑙𝑙 

where 𝑔𝑐𝑒𝑙𝑙 is the number of genes detected in 𝑐𝑒𝑙𝑙. This assigns a larger influence to 

cells with many detected genes in the calculation of 𝑄. Estimation of 𝑃(𝐺 = 𝑇) and 

𝑃(𝐺 = 𝐹) is done as in the default mode. 

A second difference is in the construction of the randomized “genes” (see Step 5 

above). In the default mode randomized genes are simulated by randomly picking 𝑐 
cells from all cells in the input data according to a uniform probabilities (i.e. each cell 

has the same chance of being selected). In the advanced mode, the probabilities reflect 

the number of genes detected in each cell (i.e. cells in which many genes are detected 

have a higher chance of being selected). As a result, randomized genes tend to follow 

the detection levels of the actual cells more closely. 

The advanced mode can be activated by giving the vector of 𝑔𝑐𝑒𝑙𝑙 values as input to the 

use.advanced.sampling parameter of the haystack function.  

The haystack_2D function for 2-dimensional input 

In addition to haystack_highD, which is aimed at >2D input, singleCellHaystack 

includes the function haystack_2D, which was specifically designed for 2D input 
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coordinates. The general concept is the same. Below, we discuss differences in steps 1-

4. Step 5 is the same as introduces above. 

Step 1: Setting parameters 

For haystack_2D, steps 2-4 depend on the mapping of 2D coordinates onto a grid, 

and estimating the local density of cells using a Gaussian kernel, in function of their 

distance to the grid points. In the first step, haystack decides the parameters for 

doing these calculations. Bandwidths ℎ𝑥 and ℎ𝑦 for the X and Y axes are decided using 

the rule-of-thumb of the bandwidth.nrd function (MASS package in R). The 

number of grid points is decided so that there are 25 grid points between the 10% and 

90% percentile of coordinates along both axes. The grid is then further extended until it 

covers all points. The goal of this strategy is to reduce the influence of outliers on the 

definition of the grid. 

The density contributions of each cell to each grid point along both axes is calculated 

as: 

𝑑𝑐𝑒𝑙𝑙,𝑖 = 𝑒
(−

(
𝑥𝑐𝑒𝑙𝑙−𝑥𝑖
ℎ𝑥

)
2

2
)

 for the X-axis grid points, and 

𝑑𝑐𝑒𝑙𝑙,𝑗 = 𝑒(

 
 
−
(
𝑦𝑐𝑒𝑙𝑙−𝑦𝑗

ℎ𝑦
)

2

2

)

 
 

 for the Y-axis grid points, where 𝑥𝑐𝑒𝑙𝑙 and 𝑦𝑐𝑒𝑙𝑙 represent the 

coordinates of each cell 𝑐𝑒𝑙𝑙, 𝑥𝑖 and 𝑦𝑗 the coordinates of grid points of the X-axis and 

Y-axis, respectively. 

Step 2: Estimating reference distribution 𝑄 

The density distribution of all cells in the 2D plot is used as a reference distribution, 𝑄. 

The density at each grid point in the 2D plot is calculated as: 

𝑄(𝑖, 𝑗) =∑∑𝑑𝑐𝑒𝑙𝑙,𝑖 × 𝑑𝑐𝑒𝑙𝑙,𝑗
𝑖,𝑗𝑐𝑒𝑙𝑙

 

To each 𝑄(𝑖, 𝑗) value, a small pseudo count is added, defined as the 1% percentile value 

of non-zero 𝑄(𝑖, 𝑗) values. After this, 𝑄 is normalized to sum to unity. 

Step 3: Estimating distributions 𝑃(𝐺 = 𝑇)) and 𝑃(𝐺 = 𝐹)) 

The distribution of the cells in which gene 𝐺 is detected, 𝑃(𝐺 = 𝑇), and those in which 

gene 𝐺 is not detected , 𝑃(𝐺 = 𝐹), is estimated using the same bandwidths and grid 

points, as follows: 

𝑃(𝐺 = 𝑇, 𝑖, 𝑗) = ∑ ∑𝑑𝑐𝑒𝑙𝑙,𝑖 × 𝑑𝑐𝑒𝑙𝑙,𝑗
𝑖,𝑗𝑐𝑒𝑙𝑙(𝐺=𝑇)

 

and 
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𝑃(𝐺 = 𝐹, 𝑖, 𝑗) = ∑ ∑𝑑𝑐𝑒𝑙𝑙,𝑖 × 𝑑𝑐𝑒𝑙𝑙,𝑗
𝑖,𝑗𝑐𝑒𝑙𝑙(𝐺=𝐹)

 

where 𝑐𝑒𝑙𝑙(𝐺 = 𝑇) and 𝑐𝑒𝑙𝑙(𝐺 = 𝐹) represent the subsets of cells in which 𝐺 is 

detected and not detected, respectively. The same pseudo count is added as for 𝑄, and 

subsequently 𝑃(𝐺 = 𝑇) and 𝑃(𝐺 = 𝐹) are normalized to sum to unity. 

Step 4: Estimating the Kullback-Leibler divergence of gene 𝐺,  𝐷𝐾𝐿(𝐺) 

The divergence of the expression pattern of gene 𝐺,  𝐷𝐾𝐿(𝐺), is calculated as follows: 

𝐷𝐾𝐿(𝐺) = ∑ ∑𝑃(𝐺 = 𝑠, 𝑖, 𝑗)log (
𝑃(𝐺=𝑠,𝑖,𝑗)

𝑄(𝑖,𝑗)
)

𝑖,𝑗𝑠∈{𝑇,𝐹}

 

Step 5: Estimating the significance of 𝐷𝐾𝐿(𝐺) 

This step is the same as for haystack_highD (see above). 

2 scRNA-seq datasets and processing 
Datasets were processed as described below. In many steps, we followed the 

recommendations described by Kobak and Berens 2. 

Step 1: Data sources 
- Tabula Muris data was download from https://tabula-muris.ds.czbiohub.org/ 3. 

- Mouse Cell Atlas data file MCA_BatchRemove_dge.zip was downloaded from 

https://figshare.com/articles/MCA_DGE_Data/5435866. This data has been 

treated to reduce batch effects 4. 

- The Nestorowa et al. dataset (processed read counts) was downloaded from 

GEO, accession number GSE81682 5. 

Step 2: Filtering of cells and genes 
Library sizes of each cell were calculated by summing the number of reads or UMI 

(Universal Molecular Identifier) counts over all genes. Counts were then converted to 

counts per million counts (TPM). Genes were defined to be detected in a cell if their 

TPM was above a threshold TPM. The used thresholds were: 0 for the Tabula Muris 

microfluidic droplet data and the Mouse Cell Atlas data, and 32 for the Tabula Muris 

FACS-sorted data and the Nestorowa data. 

In datasets with more than 20,000 cells, we randomly selected 20,000 cells. For the 

Tabula Muris microfluidic droplet data, we selected the 20,000 cells with the most 

detected genes. 

We filtered out cells with fewer than 100 detected genes, and genes detected in fewer 

than 10 cells. 

Step 3: Principal Component Analysis and t-SNE 
We selected 1000 genes with large variance given their mean using dropout rates and 

mean TPM across non-zero counts, as described by Kobak and Berens 2. The log2 TPM 

https://tabula-muris.ds.czbiohub.org/
https://figshare.com/articles/MCA_DGE_Data/5435866
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values of these 1000 genes (adding pseudocount of 1) were used as input for PCA, 

without scaling. Subsequently, t-SNE and UMAP was run on the first 5, 10, 15, 25, and 

50 PCs. For t-SNE, we used the “Rtsne” package (version 0.15) 6. t-SNE was run using 

perplexity 30, for a maximum of 500 iterations. For UMAP, we used the “umap” 

package (version 0.2.0.0) 7.  

Step 4: singleCellHaystack analysis 

singleCellHaystack was applied on the datasets using the haystack function, with as 

input 1) the coordinates of cells in a ≥2D space (2D t-SNE coordinates, 2D UMAP 

coordinates, or 5, 10, 15, 25, and 50 PCs) and 2) the detection data of each gene in each 

cell. This includes all genes that passed the filtering step (i.e. not only the 1000 genes 

used as input for PCA). haystack was run both using the default mode and the 

advanced mode which takes into general detection levels of genes (see main manuscript 

and explanation above). Run times were recorded for each run. 

Step 5 Visualization of results 

For the results returned by haystack by the default mode and the advanced mode, the 

following was done, separately: 

- Genes with significantly biased expression patterns in the t-SNE plot were 

selected, using the function show_result_haystack. For this, the p-value 

threshold 1e-6 was used.  

- Significantly biased genes were grouped into clusters by similarity of their 

expression pattern in the input space by hierarchical clustering. This was done 

using the function hclust_haystack. For the example application on the 

Mouse Cell Atlas Testis 1 dataset (Supplementary Fig. S8), the function 

kmeans_haystack for k-means clustering was used. In all cases the number 

of clusters was arbitrarily set to 5. 

- The average distribution of the genes in each of the clusters was visualized using 

function plot_gene_set_haystack (see for example Supplementary Fig. 

4). 

- Within each cluster, the most significantly biased gene was plotted using 

plot_gene_haystack (see for example Fig. 1 and Supplementary Fig. S7 

and S8). 
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Supplementary Figures 

 

Supplementary Figure S1: Overview of the singleCellHaystack workflow.  From the 

scRNA-seq data, cell coordinates in multi-dimensional space are obtained through PCA 

and (optionally) t-SNE or UMAP (or similar approaches). Read counts or UMI counts 

are converted to gene detection data (detected or not detected). The input to 

singleCellHaystack are the detection data, and multi-dimensional coordinates 

(haystack_2D for 2D coordinates and haystack_highD for ≥2D coordinates). 

The output is a list of all genes, their 𝐷𝐾𝐿and p-value. singleCellHaystack contains 

additional functions for visualization and clustering of genes according to their 

expression pattern in the multi-dimensional space. 
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Supplementary Figure S2: Example of trends of the mean and standard deviation 

of 𝑫𝑲𝑳(𝑮).  The example shows the mean and standard deviation obtained from 

randomizations of the Mouse Cell Atlas muscle tissue dataset. Mean and standard 

deviations are shown for each value of 𝑐 (the number of cells in which a gene was 

detected) used in the randomizations. Fitted B-splines are shown in red. 

 

 

 

Supplementary Figure S3: Histogram of the differential expression scores of genes 

in the artificial dataset generated using Splatter. The 1,857 genes (out of 8,090) with 

a score > 0.3 were defined as DEGs. 
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Supplementary Figure S4: Expression data for the gene we manually added to the 

Splatter artificial dataset. The scatterplots show pairwise PC coordinates of the cells 

colored by the detection (detected: cyan cells; not detected: orange cells) of the 

manually added gene. The gene is only detected in the 200 cells closest to cell No. 300 

in the plane defined by the first and second PC. The corresponding t-SNE plot is shown 

in Fig. 1E. 

(next page) Supplementary Figure S5: Runtimes of singleCellHaystack and 

Seurat’s FindAllMarkers function. (A-B) Runtimes for haystack_highD on 50 PC 

input data, for the default mode (A) and the advanced mode (B). (C-D) Runtimes for 

haystack_2D on 2D t-SNE coordinates, for the default mode (C), and the advanced 

mode (D). (E-F) Runtimes of Seurat’s FindAllMarkers function (the default Wilcoxon 

Rank Sum test), in function of number of cells in each dataset (E) and in function of the 

number of clusters of cells estimated in each dataset by the Seurat FindClusters function 

using 50 PC input data (F). Runtimes were measured on a Fujitsu Esprimo WD2/M 

(Intel® Core™ i7-4770 CPU, 3.40GHz). 
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Supplementary Figure S6: Clustering of biased genes in the Tabula Muris marrow 

tissue dataset.  Biased genes were grouped into 5 clusters using the 

hclust_haystack function, according to their density distribution in the input space 

(50 first PCs). (A-E) For each of the 5 resulting clusters, the mean detection level (the 

fraction of genes in the cluster detected in each cell) is shown (color scale from grey to 

red), as well as the averaged estimated density distribution of the genes in each cluster 

(color scale from white to blue). Genes shown in Figure 2 are the most significantly 

biased genes of each cluster. 
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Supplementary Figure S7: Application of singleCellHaystack on Tabula Muris 

(microfluidic droplet) Trachea (P8_14) tissue dataset. (A) t-SNE plot of the 12,033 

cells. The color scale shows the number of genes detected in each cell. (B-F) Expression 

pattern of five highly biased genes, representative of the five groups in which the genes 

were clustered. 
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Supplementary Figure S8: Application of singleCellHaystack on Mouse Cell Atlas 

testis 1 dataset. (A) UMAP plot of the 3,217 cells. The color scale shows the number of 

genes detected in each cell. (B-F) Expression pattern of five highly biased genes, 

representative of the five groups in which the genes were clustered. 

 

 

 

(next page) Supplementary Figure S9: Consistency of singleCellHaystack results. 

The distribution of ranks of genes in individual runs (Y-axis) is compared to the ranking 

using 5 PCs as input (based on mean rankings). (A) Rankings of individual runs on 5 

PCs are in general consistent with the averaged ranking. (B-D) Consistency of results 

on 2D inputs: 2D t-SNE coordinates based on 50 PCs (B), 2D UMAP coordinates based 

on 50 PCs (C), and especially the first 2 PCs (D) result in higher variation of rankings. 

(E-H) Consistency of results on higher numbers of PCs as input: 10 PCs (E), 15 PCs 

(F), 25 PCs (G), and 50 PCs (H) results in incrementally lower consistency (larger 

variation in the ranking of genes) with the averaged results based on 5 PCs.  
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Supplementary Figure S10: Comparison of ranking of genes by singleCellHaystack 

and Seurat’s FindAllMarkers function on the Tabula Muris marrow tissue dataset. 

Scatterplot of the ranks of p-values estimated by FindAllMarkers (X-axis) and 

singleCellHaystack (Y-axis) for all 13,756 genes in the dataset. Fig. 5 (top-left panel) in 

the main manuscript shows the scatterplot of p-values on which these rankings are 

based. Red: 176 genes with p-value of 0 by FindAllMarkers; Green: top 100 genes with 

highest significance according to singleCellHaystack. Cyan: three genes in the intersect 

of the above two sets of genes. 
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Supplementary Figure S11: Clusters in the Tabula Muris marrow dataset decided 

by Seurat’s FindClusters function. Different colors represent different clusters of 

cells. There are 17 different clusters in total. 

 


