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Abstract  
While deep learning methods exist to guide protein optimization, examples of novel proteins 
generated with these techniques require a priori mutational data. Here we report a 3D 
convolutional neural network that associates amino acids with neighboring chemical 
microenvironments at state-of-the-art accuracy. This algorithm enables identification of novel 
gain-of-function mutations, and subsequent experiments confirm substantive phenotypic 
improvements in stability-associated phenotypes in vivo across three diverse proteins. 
 
Introduction 
Protein engineering is a transformative approach in biotechnology and biomedicine commonly 
used to alter natural proteins to tolerate non-native environments1, modify substrate specificity2, 
and improve catalytic activity3. Underpinning these properties is a protein’s ability to fold and adopt 
a stable active configuration. This property is currently engineered either from sequence4, or 
energetic simulations5. Deep learning approaches have been reported, however these models 
either predict empirically measured stability effects in biased datasets containing only thousands 
of annotated observations6 or require model training on the target protein7, 8. Recently, a 3D-CNN 
was trained to associate local protein microenvironments with their central amino acid9. Given 
structural data, this model was able to predict wild type amino acids at positions where 
destabilizing mutations had been experimentally introduced. We hypothesized that the converse 
might also be true:  stabilizing, gain-of-function mutations could be introduced at positions where 
the wild-type residue is disfavored. Here, we use a deep learning algorithm to improve in vivo 
protein functionality several fold by introducing mutations to better align proteins with amino acid-
structure relationships gleaned from the entirety of the observed proteome.  
 
Results  
In order to generate an algorithm that could identify unfavorable amino acid residues in virtually 
any protein structure, we trained a model to learn the correct association between an amino acid 
and its surrounding chemical environment, relying on the wealth of structures in the Protein Data 
Bank. We began by rebuilding the neural network architecture published by Torng and Altman 
with minor modifications (Fig. 1a, see Online Methods for details), replicating the reported 
classification accuracy of 41.2% (Fig. 1b) using the original training and testing sets (32,760 and 
1601 structures, respectively)9. To improve the model’s performance, we made several discrete 
changes towards more explicit biophysical annotations adding in new atomic channels for 
hydrogen atoms and accommodating the partial charge and solvent accessibility for each atom, 
increasing accuracy to 43.4% and 52.4% respectively.  
 
The selection methodology for both protein structures and amino acid residues introduced several 
biases to the training data. The dataset contained multiple structures of closely related proteins 
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which biased training towards overrepresented protein structures, where the 32,760 PDB IDs map 
to only 11,418 UniProtKB IDs. Additionally, deposited crystallographic structures are refined by 
algorithms of their time which are not necessarily the current state of the art. To improve dataset 
composition and uniformity, we gathered all PDB structures with less than 2.5 angstrom resolution 
and at most 50% sequence similarity and drew from structures in the PDB-REDO database, 
where existing protein structures are refined in a uniform manner10. These two changes in data 
consistency resulted in 19,436 structures for training with an additional 300 structures for out-of-
sample testing and increased wild-type prediction accuracy to 63%. Finally, by sampling amino 
acids randomly throughout a protein sequence and by mirroring the relative abundance amino 
acids in proteins represented in the PDB database (SI Fig. 1) the new training set, consisting of 
1.6 million amino acid environments, improved classification accuracy to nearly 70%.  In 
assessing a confusion matrix (Fig. 1c), similar amino acids were commonly misclassified, 
indicating that the neural network recapitulates known biochemistry and the genetic code. 
Furthermore, proline and glycine, which have unique structures, are classified with above 96% 
accuracy while glutamine is classified at only 33% accuracy.  
 
We next investigated the performance of the model using empirical data from deep mutational 
scanning (DMS) experiments for the proteins TEM-1 β-lactamase, immunoglobulin binding 
domain of protein G (gb1), Aminoglycoside-3′-Phosphotransferase-Iia, ubiquitin, and Hsp9011. In 
this aggregate dataset, the effects of all possible single substitutions were quantified with a ceiling 
for activity set at wild-type function, i.e. no beneficial mutations were observable. We identified 
292 positions where any substitution incurred a measurable fitness cost and benchmarked 
classification accuracy on this subset, the presumption being that the model’s classification 
accuracy on amino acids that are demonstrably best suited for a defined environment should 
exceed its overall classification accuracy. Consistent with this, the final version of the model 
achieves a recall of 87.0%, which is 25.4% higher than the starting model (SI Fig. 2), and 17% 
higher than its baseline out-of-sample accuracy. Precision recall curves for this task also confirm 
improvement over the starting point (SI Fig. 3). Taken together, these data confirm our model 
classifies wild-type amino acids with unprecedented accuracy compared to previously reported 
deep learning approaches9, 12-14. 
 
Having shown that we could accurately assign wild-type residues which are an optimal fit for their 
surroundings, we attempted to identify a series of gain-of-function mutations at wild-type amino 
acids assigned a low probability to occur in their native microenvironment. These disfavored wild-
type residues might be substituted to improve fit within the panorama of natural protein structures 
and similarly improve folding and function of a protein. To assess phenotypes associated with 
folding and stability we investigated three model proteins: BFP, phosphomannose isomerase, and 
TEM-1 β-lactamase. 
 
We initially tested this hypothesis in an engineered blue fluorescent protein secBFP2.115 (SI Table 
1) by building saturating libraries at residues assigned either the lowest (disfavored) or highest 
(favored) wild-type probabilities by our model. We also mutagenized ten residues selected at 
random to establish a control. Six of nine disfavored residues, one of ten random residues, and 
zero of ten favored residues could be substituted to improve fluorescence of secBFP2.1 (p = 0.01 
by a Fisher’s exact test for disfavored versus random subsets; Fig. 2a and SI Figs. 4-6). We 
amalgamated the beneficial substitutions into a single variant, designated BFP-Bluebonnet (BB), 
which improved florescence in E. coli by more than six-fold (Fig. 2b-c). Furthermore, purified 
BFP-Bluebonnet exhibited improved thermal tolerance and chemical stability in guanidinium as 
compared to both secBFP2.1 and mTagBFP2 (SI Fig. 7). Blue fluorescent proteins are used less 
frequently than their counterparts across the visual spectrum for localization studies, e.g. GFP 
and RFP, in large part due to their maturation kinetics and solubility in vivo. Bluebonnet addresses 
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these limitations and offers improved in vivo performance while retaining the advantageous 
secretory properties of its ancestor. 
 
To verify that our model was generalizable to catalytically active proteins, we built site-saturation 
libraries at the ten most disfavored residues in each of two structurally and functionally unrelated 
enzymes, TEM-1 β-lactamase and Candida albicans phosphomannose isomerase (CaPMI). 
TEM-1 β-lactamase is a model protein for deep mutational scanning and protein evolution, 
thereby providing a rich benchmark of cross-validated mutational annotations for the 3D CNN’s 
predictions. CaPMI is poorly soluble in E. coli and lacks an easily screened readout for directed 
evolution, and thereby serves as an exemplar of how the model can be applied in conjunction 
with a generalizable high-throughput protein engineering workflow (see Online Methods).  Seven 
of the ten residues in TEM-1 β-lactamase and six of the ten residues in CaPMI could be 
substituted to improve phenotypes associated with folding and stability (Fig. 2d-e). Aggregating 
these stabilizing mutations improved the folding of CaPMI in E. coli by five-fold without abolishing 
catalytic activity (SI Fig. 8).  
 
To further simulate a situation in which large-scale screens are not possible, we examined the 
ability of the model to directly predict the beneficial substitutions for positions where the wild-type 
residue was assigned a low probability. Using this approach, more than 20% of directly predicted 
mutations improved the functional readout and furthermore, mutational effects additively 
improved each of the three distinct phenotypes at least five-fold in combination (see Supporting 
Results and SI Figs. 9-11). Additionally, the assignment of probabilities for all amino acids at a 
given position provides opportunities to explore fundamental aspects of protein structure and 
function. Using our model, we interrogated the microenvironment surrounding Met 182 in TEM-1 
β-lactamase where a Met to Thr substitution results in global stabilization. We identified key 
backbone atoms which favor the Thr substitution in agreement with the findings of previous MD 
work at this locus16 (see Supporting Results and SI Fig. 12). 
 
Two well-documented, alternative computational approaches to guide protein stabilization are 
Rosetta pmut_scan and FoldX PositionScan, both of which rely on energetics simulations. If our 
model learned inferences accessible by energetics calculations in either of these programs, we 
would expect significant overlap between the disfavored residues it identified and destabilizing 
positions predicted by either of these programs. Only three of thirty positions identified by the 
model were also identified by either Rosetta or FoldX, which also largely identified separate 
residues. Furthermore, in TEM-1 β-lactamase, each of these methods uniquely identified 
stabilizing mutations reported elsewhere in the literature17, 18 (SI Fig. 13). Therefore, our model 
can identify novel stabilizing loci not captured by other commonly used programs.  
 
Discussion 
Here we report a modified 3D CNN architecture with state-of-the-art classification accuracy for 
assigning wild-type residues throughout proteins. Where native amino acids deviate from their 
structural and chemical consensus, we demonstrate that these positions with low wild-type 
favorability are excellent targets for site-saturation mutagenesis and yield stabilizing mutants at 
frequencies that exceed random selection. Combining the stabilizing mutations identified in three 
model proteins improved variant phenotypes several fold relative to their ancestor. Furthermore, 
this model is synergistic with existing protein design tools by identifying sets of mutations that do 
not overlap with those derived from energetics simulations. This work is the first demonstration of 
using deep learning to empirically improve protein function and opens a new avenue for protein 
engineering. 
 
This tool is freely available for academic use at www.mutcompute.com.   
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Methods: Detailed methods are available in the Online Methods. 
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Figures and Figure Legends: 

 

 
Figure 1: Design and performance of a deep learning program capable of classifying wild-type amino acids with 

improved accuracy. a) Schematic of the model depicting the data pipeline and neural network architecture. b) Discrete 
changes made to the neural net framework described by Torng and Altman9 and their effect on classification accuracy. 
*Normalizing the amino acid abundance of the training data increased the size of the dataset by roughly 4-fold. While 
the number of epochs decreased, the number of training iterations needed for convergence remained similar to the 
other versions. c) Confusion matrix showing bias of wild-type amino acid classification. Structurally unique amino acids 
Gly and Pro are assigned as wild-type with very high probability. 
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Figure 2: Empirical validation of the model as a tool for protein engineering using three model proteins. a) Heatmap 

showing fold-change over wild-type for site-saturation mutants of secBFP2.1. The light grey, dark grey and black bars 
on the right indicate the series of disfavored, random and favored residues respectively. Note, L228 is only five residues 
away from the C-terminus. Substitutions at this position, including stop codons, have minimal impact on fluorescence. 
b) An improved variant of secBFP2.1 containing mutations T18W, S28A, S114V, V124T, T127P, D151G, N173T and 
R198L. was ~6-fold more fluorescent in vivo than the parental protein. This variant was named BFP-Bluebonnet (BB). 
c) Plate assay showing increased in vivo fluorescence of BFP-Bluebonnet compared to secBFP2.1. d) Stabilizing 
mutations were identified in TEM-1 β-lactamase at N52, F60, Q88, Q99, T114, M182 and E197. WT* contains the 
destabilizing mutation L250Q. Residue Q88 was ranked as the 11th least favorable in TEM-1 β-lactamase and was 
included in place of D214 which lies in the active site.  e) Beneficial mutations were identified in CaPMI at residues 
D229, N272, L335, S368, N388 and S425. A combined mutant containing D229W, N272K, L335A, N388S and S425T 
was five-fold more fluorescent than wild-type using the split-GFP assay. While S368P was identified as stabilizing by 
itself, it was deleterious in combination. 
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Online Methods: A structure-based deep learning framework for protein engineering  
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Computational Methods 

 

Dataset 

 

To reduce any bias resulting from the differential abundance of protein families in the PDB, we 

sought to build a dataset of protein structures with balanced phylogeny. To achieve this, we took 

all structures in the PDB database and clustered to 50% similarity to avoid oversampling towards 

certain protein classes. We further reduced the variability in the dataset by cross-referencing the 

structures to the PDB-redo database1, which uses a consistent algorithm to refine, rebuild, and 

validate structures from raw crystallographic data.  Within each clustered set of sequences, we 

identified the structure with the lowest resolution. If no structure existed below a resolution of 2.5 

angstroms the entire cluster was discarded. This process yielded 19436 structures, of which 300 

were randomly set aside for out of sample testing and the remainder used to generate the training 

set.  

 

Box Extraction 

 

In addition to atomic annotations, our model adds additional channels for the partial charges and 

solvent accessibility associated with each atom. While all structure files label oxygen, carbon, 

nitrogen, and sulfur, hydrogens may be missing depending on the resolution of the structure. 

Using the program pdb2pqr (v2.2.1)2, hydrogens were placed into the structure and optimized 

while partial charges were assigned with the CHARMM force field. Solvent accessibility was 

calculated with the program FreeSASA (v2.0.2)3. To avoid oversampling residues from larger 

proteins, we limited the number of sampled environments from an individual protein to either half 

of the length of the protein or 100 amino acids, whichever number was less. Atomic environments 

consisting of a 20 angstrom cube centered around a single residue were generated as described 

in Torng and Altman4.  

 

Neural Network Training 
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The convolutional neural network was built using theano (v1.0.3) and consists of six layers, all 

with ReLu (rectified linear unit) activations. The first two convolutions were performed with a filter 

size of 3x3x3 with no padding and increased the depth to 200 channels. We then performed a 

max pooling step, followed by two additional convolutions with a filter size of 2x2x2 and increasing 

the depth to 400. Max pooling was used again before flattening and feeding into two successive 

fully connected layers with dropout rates of 0.5 and 0.2, respectively. Softmax activation was 

applied to the logits to obtain probability scores for each of the 20 amino acids. 

 

Neural network training was performed on TACC’s Maverick cluster with a NVIDIA Tesla K40 

GPU. 1.6 million amino acid environments were generated with the abundance of individual amino 

acids mirroring the natural frequency observed in the PDB. As the dataset was too large to load 

entirely into memory, we split the data into 20,000 samples and randomly shuffled the order after 

loading. Batch sizes of 20 samples were used and the loss was calculated through RMSprop. 

Training was performed with an adaptive learning rate and lowered by 10% if validation accuracy 

did not decrease within 8000 training iterations.  Four epochs were run, at which point overfitting 

was observed. Test and validation accuracy were measured in 6000 amino acid environments 

with equal representation of each residue. 

 

Confusion Matrix and Regression Bias 

 

To calculate the frequency at which wild-type residues were correctly predicted, 20,000 amino 

acid environments were generated from out of sample PDBs (i.e. structures not seen during 

training) with an amino acid distribution mirroring natural frequencies. Regressions highlighting 

amino acid bias were created by plotting the sum of the predicted probability values against the 

frequency in the test set. The confusion matrix was generated by plotting the single amino acid 

assigned the highest probability at each microenvironment sampled compared to the wild-type 

amino acid.  

 

Rosetta/FoldX Calculations 

 

The pmut_scan program within the Rosetta software suite (v3.9) was used to calculate the 

computational effect of mutations with a large ∆∆G cutoff value to output both stabilizing and 

destabilizing mutations. To perform the analogous operation in FoldX (ver. 4), the PositionScan 

module was used. In either program, the least favorable sites were found by summing values less 

than zero (the sign change of a stabilizing mutation) and identifying the ten sites with the most 

negative value.  

 

Deep Mutational Scanning Analysis 

 

Each computational method was assessed using deep mutational scanning data sets paired with 

the corresponding structures: TEM-1 β-lactamase, PDB:1BTL; protein G, PBD:2QMT; 

aminoglycoside-3'-phosphotransferase-IIa, PDB:1ND4; ubiqutin, PDB:4XOF, and Hsp90, 

PDB:2BRC. Normalized fitness values were derived from Gray et al. (2018)5 with a threshold of 

1.02 to determine if a variant greater than wild-type exists. Within this subset, a positive result 
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was defined if no other variant empirically exhibited better fitness than wild-type and, for our 

model, the wild-type amino acid was assigned the largest probability, or, for Rosetta and FoldX 

calculations, the minimum ∆∆G value (i.e. the most stabilizing value) was greater than zero. 

 

Molecular Methods 

 

Molecular Biology 

 

Experiments described in this manuscript were performed using standard molecular biology 

techniques. Unless otherwise indicated, all plasmids, single point mutations in reporter genes and 

site-saturation mutagenesis libraries were constructed using Gibson assembly. For site-saturation 

mutagenesis libraries, 2 µL of the reaction mixture was transformed into 50 µL of chemically 

competent E. coli cells. Transformations were required to exceed 10-fold library coverage (> 320 

single colonies). 

 

BFP Fluorescence Assay 

 

SecBFP2.1 was cloned into a kanamycin resistant derivative of plasmid pQE flanked by a T7 

promoter and terminator.  Site-saturation libraries were transformed into E. coli strain BL21 DE3 

and a series of 10-fold dilutions (spanning two orders of magnitude) were plated on solid media 

to ensure sufficient discrete single colonies. 96-well deep-well plates were inoculated with 92 

individual library transformants and four wild-type controls. Two plates were assayed for each 

library. Cells were cultured ON at 37 ºC in plate shakers at 850 rpm. 20 µL of the ON cultures 

were diluted into 880 µL LB and incubated for two hours. Cells were induced by the addition of 

100 µL media containing 0.5 mM IPTG, resulting in a final concentration of 50 µM. After a four 

hour induction, cells were harvested by centrifugation and resuspended in 1 mL PBS. 

Fluorescence was measured on a Tecan M200 Pro using 400 nm for excitation and 460 nm for 

emission. A maximum of 12 individuals at each library site exhibiting fluorescence / OD600 values 

greater than wild-type were sequenced. Candidate mutations were re-cloned into the pQE 

plasmid and rephenotyped. Rephenotyping was performed in biological and technical triplicate. 

  

Protein Purification 

 

To purify secBFP2.1 mutants, a 6xHis tag was appended to the C-terminus via a Gly-Ser-Gly 

linker. BL21 DE3 cells were cultured in Superior Broth to mid-log phase (~ OD600 0.6) and induced 

with 1 mM IPTG for 16 hours at 18 ºC. Following induction, cells were harvested by centrifugation 

and lysed by sonication in 50 mM sodium phosphate, 300mM NaCl, 20mM Imidazole pH 7.4 

buffer containing protease inhibitor (Pierce Protease Inhibitor) and Benzonase Nuclease (EMD 

Millipore). Cell lysate was clarified by centrifugation (40000 x g) and BFP variants purified using 

HisPur™ Ni-NTA Resin. Purified protein was dialyzed into 50 mM sodium phosphate pH 7.4 buffer 

and analyzed by SDS PAGE to assess purity. 

 

Thermal Melt Assay 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833905doi: bioRxiv preprint 

https://doi.org/10.1101/833905
http://creativecommons.org/licenses/by-nc-nd/4.0/


Purified blue fluorescent proteins were diluted to 0.01 mg.mL-1 in PBS pH 7.4 and 100 uL aliquots 

were heat treated for 10 minutes in PCR strips on a thermal gradient using a thermal cycler. 

Fluorescence of thermally challenged variants and controls incubated at room temperature was 

assayed using excitation and emission wavelengths of 402 nm and 457 nm respectively. 

Fluorescence readings were normalized to the mean of solutions incubated at room temperature 

e.g. a measurement of 0.8 indicates that a heat treated protein retained 80% of its untreated 

fluorescence.  

 

Guanidinium Denaturation Assay 

 

Purified blue fluorescent proteins were diluted to 0.01 mg.mL-1 in 6 M guanidinium hydrochloride. 

100 uL aliquots in technical triplicate were added to wells of a 96-well clear-bottom black-walled 

plate and incubated at 25 ºC for 23 hours. These purified fluorescent proteins were assayed at 

30 minute intervals using excitation and emission wavelengths of 402 nm and 457 nm 

respectively. Plates were agitated preceding each measurement. Fluorescence values measured 

at time zero were used to normalize fluorescence through the remainder of the assay e.g. a 

measurement of 0.8 indicates that the protein retained 80% of its initial fluorescence.  

 

TEM-1 Assay 

 

The blaTEM-1 gene encoding TEM-1 β-lactamase, including the native promoter, was amplified 

from pETDuet-1 and cloned into pCDFDuet-1 immediately upstream of the second T7 terminator, 

replacing both T7 promoters and both polylinkers. The L250Q mutation was introduced into TEM-

1 to destabilize the protein and enable easy identification of compensatory stabilizing mutations6. 

Site-saturation libraries were transformed into E. coli strain DH10B and recovered ON in liquid 

medium supplemented with spectinomycin. ON cultures were diluted and plated on a range of 

different carbenicillin concentrations (0, 50, 125, 250 and 500 µg.mL-1). For each library, 12 single 

colonies from the plate containing the highest concentration of carbenicillin were isolated and the 

blaTEM-1 gene sequenced. Beta-lactamase variants identified by library screening were recloned 

into pCDFDuet-1 and rephenotyped. Rephenotyping was performed by diluting overnight 

cultures, in biological triplicate, 100-fold and spotting 5 µL onto solid media containing a gradient 

of carbenicillin concentrations. 

 

PMI Stability Assay 

 

Improved variants of CaPMI were identified using the split GFP reporter system described by 

Cabantous et al. (2008) with minor modifications7. Briefly, a fusion protein consisting of residues 

173-238 of folding reporter GFP, a (GGGS)2 linker, residues 2-440 of CaPMI, a (GGGS)2 linker 

and residues 2-172 of superfolder GFP was assembled in a derivative of pACYCDuet-1 (SI Table 

1). Site-saturation libraries were transformed into E. coli strain BL21 DE3 and a series of dilutions 

plated on solid media supplemented with 0.25 mM IPTG. Following ON incubation at 37 ºC, plates 

were further incubated at 4 ºC for eight hours at which point highly fluorescent colonies were 

manually selected. PMI variants were subcloned and the fusion protein ORF fully sequenced prior 

to rephenotyping to ensure that increased fluorescence was not the result of mutations in the GFP 
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fragments, linker regions, or plasmid backbone. Transformants were screened as described for 

BFP in 96-well deep-well plates in biological and technical triplicate. Fluorescence was measured 

on a Tecan M200 Pro using 475 nm for excitation and 535 nm for emission. 

  

PMI Functional Assay 

 

The manA gene encoding phosphomannose isomerase was disrupted in E. coli strain BL21 DE3 

using lambda red recombineering to introduce a kanamycin resistance marker. Successful 

deletions were confirmed by colony PCR of KanR colonies using primers which flanked the manA 

locus. The wild-type C. albicans manA gene or variants containing combinations of stabilizing 

point mutations were cloned into a derivative of pACYCDuet-1 using Gibson assembly. BL21 DE3 

∆manA::kan cells were transformed with PMI expression plasmids and plated on LB agar with 

appropriate antibiotics. Single transformants, in biological triplicate, were transferred to liquid M9 

minimal medium with 0.4% glucose and cultured ON. Cells were washed in a 1:1 volume of M9 

medium without any carbon source and 2 µL streaked on M9 minimal medium plates 

supplemented with 0.4% mannose and 0.25 mM IPTG. Wild-type BL21 DE3 cells and BL21 DE3 

∆manA::kan cells containing an empty expression plasmid were used as positive and negative 

controls respectively. Plates were incubated at 37 ºC for 24 hours. 

 

NGS 

 

Purified plasmids encoding BFP variants were quantified using the QuantIT dsDNA Assay Kit 

(Thermo Scientific) and 50 ng of each plasmid was pooled by well position, resulting in 192 

samples each with a different variant for each tested position. Samples were prepped for 

sequencing by amplifying two discrete ~350 bp regions of the BFP gene with primers containing 

Illumina adapters and dual indexes.  Sequencing was performed using Illumina MiSeq with paired 

end 2x300 bp reads.  

 

Variant Calling 

 

Following sequencing, paired end reads were joined together using fastq-join (v1.3.1). Raw 

sequences were aligned to the original gene sequence with bwa (v0.7.17). Read counts across a 

single position were normalized to the observed fraction of each codon. Variants that contained 

at least 100 read counts and exceeding 1% of wild-type counts were labeled as such, while 

variants that failed were left unlabeled. Outliers were identified through the OPTICS algorithm in 

the scikit-learn package (v0.21.3). Each sample was normalized by dividing the fluorescence by 

the OD600 and as well as to the average wild-type value per plate. Significance was determined 

using a Fisher’s exact test where success of a position was defined as the mean fluorescence of 

the most fluorescent variant being at least three standard deviations higher than the wild-type 

mean.  

 

Statistical Methods and Data Presentation 
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All data in the manuscript are displayed as mean ± s.e.m. unless specifically indicated. Bar 

graphs, regressions, confusion matrix, NGS variant graphs were plotted in R 3.4.1 using the 

package ggplot2 (v2.2.1). 
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Supplementary Results 

 

While site-saturation mutagenesis at candidate residues is a good option for identifying beneficial 

mutations, it relies on the ability to screen protein variants in at least moderate throughput. To 

simulate a situation in which screening at such a scale is not possible, we examined the ability of 

the model to directly identify beneficial substitutions at residues where it did not assign the highest 

probability to the wild-type amino acid. We built all unique single point mutations in the three 

proteins (secBFP2.1, TEM-1 β-lactamase and CaPMI) using the top ten substitutions generated 

by three different but largely overlapping interpretations of the model: the amino acid assigned 

the highest probability at the residues with lowest assigned probability of the wild-type amino acid 

(the residues selected for site-saturation mutagenesis), the amino acid assigned the highest 

probability where it differed from wild-type (regardless of the wild-type probability),  and mutation 

to the amino acid assigned the highest probability differing from wild-type resulting in the greatest 

log-fold change over the wild-type probability (SI Figs. 9-11). Using this approach, several 

individual stabilizing mutations were identified for each protein and the effects were largely 

additive when combined. Although no single interpretation of the output data was clearly superior, 

this methodology resulted in at most 22 unique variants, which is a manageable number to 

synthesize and screen for all but the most challenging proteins.  

 

Although we focused on protein engineering applications for our model, it also has considerable 

potential as a tool to unravel fundamental biology. In particular, we sought to explain the model’s 

ability to flag the mutation M182T in TEM-1 β-lactamase, a global suppressor mutation that has 

been identified in many clinical isolates. Despite its identification decades ago, the mechanistic 

explanation for stabilization remains under debate. One model proposes that the threonine 

hydroxyl forms an N-cap H bond with Ala 185 as determined through crystallographic analysis1, 

while a competing explanation determined through molecular modeling suggests a stabilizing 

hydrogen bond with Glu 63 and/or Glu 642-4. To find the contributing atoms that most favor a 

mutation to threonine, we systematically deleted every atom in the Met 182 microenvironment 

and used the used the model to analyze where the probabilities changed the most. Our method 

flagged two atoms, the backbone oxygen of Glu 63 and the amide hydrogen on Ala 185, in which 

the removal of either atom decreased the probability of observing a threonine by over 200 fold (SI 

Figure 12). Thus, a neural network framework can be used to suggest stabilization mechanisms 

in addition to identifying candidate residues for mutagenesis.  
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Supplementary Figures 
 

 
SI Figure 1: Improvement in predictive accuracy of the model when training was normalized for amino acid abundance. 

a) Classification accuracy of the model trained for 84,000 iterations without normalization. The p-value for a two-sided 
t-test against null hypothesis: 'the slope is equal to 1' is less than 10e-6. b) Classification accuracy of the model following 
training for 240,000 iterations correcting for amino acid abundance. The grey line depicts a line with slope 1 and the 
blue line is the regression for the observed amino frequencies compared to the natural abundance. Dotted lines 
delineate 95% confidence intervals for the regression. The p-value for a two-sided t-test against null hypothesis: 'the 
slope is equal to 1' is 0.48. 
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Protein PDB n 4-Ch5 This work Rosetta FoldX 

TEM-1 β-lactamase 1BTL 110 0.627 0.936 0.773 0.440 

Protein G 2QMT 17 0.529 0.941 0.882 0.471 

Aminoglycoside-3'-

phosphotransferase-IIa 1ND4 77 0.727 0.870 0.610 0.493 

Ubiquitin 4XOF 30 0.567 0.767 0.467 0.172 

Hsp90 2BRC 58 0.500 0.776 0.569 0.379 

Combined - 292 0.616 0.870 0.664 0.426 

Figure 2: Classification accuracy of different computation tools for protein engineering using a dataset of true positive 

wild-type residues. For the 4-channel model and the model presented in this work, classification was considered 
correct if the wild-type amino acid was assigned the highest probability. For Rosetta and FoldX, classification was 
considered correct if the wild-type amino acid was assigned the lowest ∆∆G. 
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SI Figure 3: Precision recall curve of the initial and improved deep learning models. Positions where the wild-type 

residue exhibited the greatest normalized fitness were aggregated from five deep mutational scanning (DMS) datasets. 
Input data was drawn from DMS datasets and PBD files for the following proteins: TEM-1 β-lactamase, PDB:1BTL; 
protein G, PBD:2QMT; aminoglycoside-3'-phosphotransferase-IIa, PDB:1ND4; ubiqutin, PDB:4XOF, and Hsp90, 
PDB:2BRC. The ability of both methods to identify these positions as wild-type was analyzed as the threshold for 
classification was varied.  
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SI Figure 4: Fluorescence data for site-saturation libraries at disfavored residues in secBFP2.1 identified by the model. 

Raw fluorescence values were normalized to OD600 and to the average wild-type value. Outliers were identified through 
the OPTICS algorithm and removed. n/a represents variant calls that failed to meet the specified thresholds (see 
Methods). 
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SI Figure 5: Fluorescence data for site-saturation libraries at random locations in secBFP2.1. Raw fluorescence values 

were normalized to OD600 and to the average wild-type value. Outliers were identified through the OPTICS algorithm 
and removed. n/a represents variant calls that failed to meet the specified thresholds (see Methods). 
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SI Figure 6: Fluorescence data for site-saturation libraries at favored residues in secBFP2.1 identified by the model. 

Raw fluorescence values were normalized to OD600 and to the average wild-type value. Outliers were identified through 
the OPTICS algorithm and removed. n/a represents variant calls that failed to meet the specified thresholds (see 
Methods). 
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Figure 7: BFP-Bluebonnet (BB) exhibited improved folding compared to parental proteins. a) Plot of residual 

fluorescence after a ten minute thermal challenge at the indicated temperatures. Quadratic terms were significant in 
the global linear model and lines correspond to a quadratic model fit for each blue fluorescent protein. Dotted lines 
delineate 95% confidence intervals for the regression. mTagBFP2 and secBFP2.1 were not significantly different from 
each other while first order and quadratic terms for BB were significantly different compared to either parental protein. 
The assay was performed with 4-fold replication. b) Guanidinium melt of BFP variants. This assay was performed with 
3-fold replication. 
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Figure 8: Mutant CaPMI variants can complement deletion of the E. coli manA gene. CaPMI-comb1 contains 
mutations D229W, N272K, L335A, N388S and S425T. CaPMI-comb2 contains mutations S56A, G119A, Q157I, 
Q193D, D229T, C295V, L335E, K347R, S368N, K402R and Q428T. Growth of CaPMI-comb2 was poorer than wild-
type CaPMI and CaPMI-comb1. 
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SI Figure 9: Fluorescence assay of secBFP2.1 variants containing a series of mutations predicted by the model. The 

combined BFP variant contains mutations S28A, S114T, T127L and N173H. While Y96F was identified as stabilizing 
by itself, it was deleterious in combination. 
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Figure 10: Antibiotic resistance assay of TEM-1 β-lactamase variants containing mutations predicted by the model. 

Individual mutants N52K, F60Y, M182T, E197D and A294V singularly and a combined variant containing all five 
stabilizing mutations resulted in increased ampicillin resistance. WT* contains the destabilizing mutation L250Q. 
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Figure 11: Fluorescence assay of the split-GFP-CaPMI fusions containing a series of mutations predicted by the model. 
The combined CaPMI variant contains mutations S56A, G119A, Q157I, Q193D, D229T, C295V, L335E, K347R, 
S368N, K402R and Q428T. 
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SI Figure 12: Masking of atoms reveals the mechanism of a global stabilizing mutation. Each atom in the Met 182 

microenvironment was systematically deleted and the atoms favoring a mutation to threonine were identified. Of these, 
the two atoms, O Glu 63 and H Ala 185, change in probability by over 200-fold and have been identified previously in 
the literature as stabilization pathways for M182T2. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833905doi: bioRxiv preprint 

https://doi.org/10.1101/833905
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

SI Figure 13: Venn diagram showing overlap between predictions of the 10 least favorable residues in model proteins 

made by different computational tools for protein design. Residues colored red indicate positions where we identified 
beneficial substitutions. Q39 in secBFP2.1 was not analyzed due repeated failure of our site-saturation library to 
assemble. D214 in TEM-1 β-lactamase was excluded due to its location in the enzyme active site. * Locations in TEM-
1 β-lactamase where global suppressors and other beneficial substitutions have been identified6, 7. 
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Supplementary Tables 
 
SI Table 1. Amino acid sequences of model proteins. 
 
Amino acid sequence of secBFP2.1. Residue C26 is indicated in blue. Mutations for secBFP are 
indicated in yellow. 
 
MSEELIKENMHMKLYMEGTVDNHHFKCTSEGEGKPYEGTQTMRIKVVEGGPLPFAFDILA 

TSFLYGSKTFIDHTQGIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQDGSLIYNV 

KIRGVDFTSNGPVMQKKTLGWEAFTETLYPADGGLEGRNDMALKLVGGSHLIANAKTTYR 

SKKPAKNLKMPGVYYVDYRLERIKEANDETYVEQHEVAVARYSDLPSKLGHKLN* 

 
Amino acid sequence of TEM-1 β-lactamase L250Q. L250 is indicated in blue. 
 
MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRP 

EERFPMMSTFKVLLCGAVLSRIDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVREL 

CSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTM 

PVAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGS 

RGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW* 

 
Amino acid sequence of frGFP173-238-CaPMI-sfGFP2-172 reporter. The glycine-serine linkers are 
indicated in blue and CaPMI is underlined. 
 
MDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITH 

GMDELYKGGGSGGGSSSEKLFRIQCGYQNYDWGKIGSSSAVAQFVHNSDPSITIDETKPY 

AELWMGTHPSVPSKAIDLNNQTLRDLVTAKPQEYLGESIITKFGSSKELPFLFKVLSIEK 

VLSIQAHPDKKLGAQLHAADPKNYPDDNHKPEMAIAVTDFEGFCGFKPLDQLAKTLATVP 

ELNEIIGQELVDEFISGIKLPAEVGSQDDVNNRKLLQKVFGKLMNTDDDVIKQQTAKLLE 

RTDREPQVFKDIDSRLPELIQRLNKQFPNDIGLFCGCLLLNHVGLNKGEAMFLQAKDPHA 

YISGDIIECMAASDNVVRAGFTPKFKDVKNLVEMLTYSYESVEKQKMPLQEFPRSKGDAV 

KSVLYDPPIAEFSVLQTIFDKSKGGKQVIEGLNGPSIVIATNGKGTIQITGDDSTKQKID 

TGYVFFVAPGSSIELTADSANQDQDFTTYRAFVEAGGGSGGGSSKGEELFTGVVPILVEL 

DGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLAYGLQCFARYPDHM 

KQHDFFKSAMPEGYVQERTIFFEDDGYYKTRAEVKFEGDTLVNRIVLKGIDFKEDGNILG 

HKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE* 
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