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Abstract24

Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively25

describing complex networks of interactions, but such models are often poorly constrained by available26

data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus27

has become a prototypical system for studying how collective dynamics emerge from molecular interac-28

tions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phos-29

phorylation can be reconstituted in vitro. Here, we formulate a molecularly-detailed but mechanistically30

agnostic model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian pa-31

rameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC32

phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity33

primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We ar-34

gue that the ultrasensitive stimulus-response relation is critical to metabolic compensation by suppressing35

premature phosphorylation at nighttime.36

Synopsis37

This study takes a data-driven kinetic modeling approach to characterizing the interaction between KaiA and38

KaiC in the cyanobacterial circadian oscillator and understanding how the oscillator responds to changes in39

cellular metabolic conditions.40

• An extensive dataset of KaiC autophosphorylation measurements was gathered and fit to a detailed41

yet mechanistically agnostic kinetic model within a Bayesian parameter estimation framework.42

• KaiA concentration tunes the sensitivity of KaiC autophosphorylation and the period of the full oscil-43

lator to %ATP.44

• The model reveals an ultrasensitive dependence of KaiC phosphorylation on KaiA concentration as a45

result of differential KaiA binding affinity to ADP- vs. ATP-bound KaiC.46

• Ultrasensitivity in KaiC phosphorylation contributes to metabolic compensation by suppressing pre-47

mature phosphorylation at nighttime.48
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Introduction49

Achieving a predictive understanding of biological systems and chemical reaction networks is challenging50

because complex behavior can emerge from even a small number of interacting components. Classic ex-51

amples include the propagation of action potentials in neurobiology and chemical oscillators such as the52

Belousov–Zhabotinsky reaction. The collective dynamics in such systems cannot be easily intuited through53

qualitative reasoning alone, and thus mathematical modeling has long played an important role in summa-54

rizing and interpreting existing observations and formulating testable, quantitative hypotheses.55

In general, mathematical modeling can be classified as either “forward” or “reverse.” In forward mod-56

eling, known interactions are expressed mathematically, which allows a researcher to draw out the logical57

implications of themodel and its underlying assumptions (Gunawardena, 2014). In reversemodeling, exper-58

imental data are used to infer unknown interactions through a statistical approach (Villaverde and Banga,59

2014). Many forward modeling studies are highly phenomenological; such studies excel in showing how60

effects like feedback (Novák and Tyson, 2008) and ultrasensitivity (Ferrell and Ha, 2014a,b) can give rise to61

collective dynamics, including bistable switching, oscillation, and adaptation (Ma et al., 2009). The simplic-62

ity of this class of models, however, makes quantitative prediction and experimental verification difficult.63

Reverse modeling, on the other hand, has found success in untangling complex interactions in -omic data64

(Machado et al., 2011; Wu et al., 2017) and signaling pathways such as the eukaryotic circadian clock (Forger65

and Peskin, 2003) and the JAK2/STAT5 signaling pathway (Hug et al., 2013). However, the complexity of66

such models raises issues of identifiability, i.e., whether a model topology and/or parameter values can be67

uniquely determined given the input data (Bellman and Åström, 1970; Cobelli and DiStefano, 1980). Fur-68

thermore, the nonlinear dynamics typical of such models give rise to non-convex optimization problems69

that pose significant technical and computational challenges.70

The circadian clock from the cyanobacterial species Synechococcus elongatus PCC 7942 (Johnson et al.,71

2011) represents a unique opportunity to combine elements of both forward and reverse modeling. The72

core oscillator is post-translational (Tomita et al., 2005) and consists of just three proteins: KaiA, KaiB, and73

KaiC. A stable rhythm in KaiC phosphorylation with a period of nearly 24-h emerges spontaneously from74

these components, driven by KaiA-dependent autokinase reactions followed by a KaiB-mediated delayed75

negative feedback loop that favors dephosphorylation. The phosphorylation cycle can be reconstituted76

in vitro while still retaining the hallmarks of circadian rhythms in living organisms (Nakajima et al., 2005;77

Yoshida et al., 2009; Rust et al., 2011; Leypunskiy et al., 2017). Previous work has clearly articulated the78

basic biochemical events in the phosphorylation cycle (Johnson et al., 2011; Swan et al., 2018), allowing79

specification of a model topology with few ambiguities.80

Despite the apparent simplicity of the system, the dynamics of the Kai oscillator are sufficiently complex81

that reverse modeling can provide useful insights. KaiC molecules can exist in multiple phosphorylation82

states and nucleotide-bound states, and how these states affect KaiC’s interaction with KaiA (Mori et al.,83

2018) and KaiB (Phong et al., 2013; Lin et al., 2014) is not fully understood. A related unresolved issue is the84

effect of the solution nucleotide pool (ATP and ADP) on the oscillator. In S. elongatus, the day/night cycle is85

reflected in the cellular metabolic state, including changes in the adenylate nucleotide pool %ATP (defined86

as 100%[ATP]/([ATP] + [ADP])), which acts as a timing cue and plays an important role in controlling the87

amplitude and phase of the phosphorylation cycle (Rust et al., 2011; Phong et al., 2013; Leypunskiy et al.,88

2017). KaiC is an ATPase (Terauchi et al., 2007) and phosphotransferase (Nishiwaki and Kondo, 2012), and its89

activities are regulated by which nucleotides are bound. The nucleotide-bound state is in turn regulated by90

KaiA, which acts as a nucleotide-exchange factor (Nishiwaki-Ohkawa et al., 2014). The kinetics of nucleotide91

exchange, the affinities of KaiC for nucleotides, and the heterogeneity of nucleotide-bound states in the92

KaiC hexamer have beenmeasured (Nishiwaki-Ohkawa et al., 2014; Abe et al., 2015), but it is experimentally93

challenging to monitor all of the relevant quantities simultaneously over the course of the cycle.94

Here we take a data-driven Bayesian modeling approach (Figure 1A) to elucidate the regulatory rela-95

tions between KaiA, nucleotides in solution, KaiC phosphorylation, and KaiC nucleotide-bound state, with96

the goal of deducing dynamical rules that can predict the behavior of the system. The resulting model97
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does not include KaiB; it focuses on describing the dynamics of phosphorylation during the daytime part of98

the clock cycle. To provide a training set for this model, we collected kinetic time series characterizing the99

metabolic sensitivity of the KaiC phosphorylation kinetics (in the absence of KaiB) over a wide range of KaiA100

concentrations ([KaiA]) and %ATP. Although such data do not give us direct access to all relevant states of101

the KaiA-KaiC subsystem, they place constraints on the underlying molecular interactions. Bayesian param-102

eter estimation (MacKay and Kay, 2003) has been used to systematically quantify parameter uncertainties103

and compare models in many fields (Geweke, 1989; Wasserman, 2000; Hou et al., 2012), including systems104

biology (Flaherty et al., 2008; Klinke, 2009; Toni Tina et al., 2009; Xu et al., 2010; Schmidl et al., 2012; Eydgahi105

et al., 2013; Pullen and Morris, 2014; Mello et al., 2018). Here it allows us to estimate parameter values,106

quantify the importance of specific model elements, and make mechanistic predictions from the model.107

The Markov chain Monte Carlo (MCMC) sampling method that we use to fit the model to the data yields108

an ensemble of parameter sets, rather than a single best fit. We find that, even with extensive training109

data, many microscopic parameters in the model are not tightly constrained and their values vary widely110

across the ensemble of fits. Despite this, we show that this ensemble of fits robustly makes predictions111

that are borne out in experimental tests (Brown and Sethna, 2003; Gutenkunst et al., 2007). In particu-112

lar, the model reveals an ultrasensitive dependence of phosphorylation on the concentration of KaiA, with113

strong nonlinearity at low [KaiA], conditions that likely apply near the nighttime to daytime transition point,114

when a large fraction of KaiA molecules are inhibited. The ultrasensitive response primarily arises from115

a differential affinity of KaiA for different nucleotide-bound states of KaiC. This mechanism is analogous116

to substrate competition (Ferrell and Ha, 2014b), where kinetic competition of multiple enzyme substrates117

leads to ultrasensitivity.118

Lastly, we consider the implications of these results for the full oscillator, in which KaiC rhythmically119

switches between phosphorylation and dephosphorylation. Incorporation of the ultrasensitive response120

to KaiA into a mathematical model of the full oscillator suggests that this effect both stabilizes the period121

against changes in the nucleotide pool and allows oscillations to persist even when KaiB binds KaiA relatively122

weakly. Consistent with this prediction, we find that a substantial amount of KaiA is not bound by KaiB even123

when the clock is dephosphorylating. These results shed new light on metabolic compensation, a property124

that allows robust 24-h oscillation in spite of changes in %ATP conditions (Johnson and Egli, 2014). Taken125

together, our results show how the Bayesian framework combined with extensive training data can be used126

to discover unanticipated mechanisms and direct experimental investigations.127
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Results128

A molecularly motivated model of KaiA-KaiC dynamics129

To probe the response of KaiC phosphorylation to a wide range of metabolic conditions, we made kinetic130

measurements of KaiC phosphorylation at three %ATP conditions and six [KaiA] conditions while holding131

the KaiC concentration constant (Figure 1B). KaiC is a homohexamer and each subunit has two domains,132

termed CI and CII. Both CI and CII domains have ATPase activity (Hayashi et al., 2003; Pattanayek et al., 2004;133

Terauchi et al., 2007), while the CII domain is in addition a bidirectional phosphotransferase (Nishiwaki and134

Kondo, 2012; Egli et al., 2012) with two phosphorylation sites (Xu et al., 2004; Rust et al., 2007; Nishiwaki135

et al., 2007). Each KaiC subunit thus has four phosphoforms: the unphosphorylated (U), phosphoserine-136

431 (S), phosphothreonine-432 (T), and doubly phosphorylated (D) states. The measurement resolves the137

kinetics of all four KaiC phosphoforms.138

Our strategy is to fit these data with a model of the KaiC catalytic cycle with a minimum of simplifying139

assumptions. To this end, we formulate a model based on mass action kinetics. We explicitly keep track140

of three properties of the CII domain of each KaiC subunit: its phosphorylation status (right superscripts141

in Figure 1C), nucleotide-bound state (right subscript), and whether or not KaiA is bound (left superscript).142

We do not consider CI or the hexameric nature of KaiC explicitly (see SI for further discussion). There are143

thus 16 possible KaiC states, 8 of which are shown in Figure 1C, along with the phosphotransfer, nucleotide144

exchange, KaiA (un)binding, and hydrolysis reactions that connect the states (see Figure S1A for the full145

model structure). We also hypothesized that nucleotides might interact directly with KaiA, which could146

allow KaiA’s activity to directly depend on nucleotides in solution. However, we did not detect any direct147

interaction between KaiA and ATP or ADP using NMR spectroscopy, so we do not allow for this scenario in148

the model (Figure S2). Below, we step through the four classes of reactions that we include; further details149

can be found in Materials and Methods.150

Phosphotransfer KaiC is a bidirectional phosphotransferase (Egli et al., 2012; Nishiwaki and Kondo, 2012),151

whichmeans that it can transfer a γ-phosphate group from a bound ATP to a phosphorylation site, but unlike152

a typical phosphatase, it regenerates ATP from ADP during dephosphorylation, i.e.,153

C
X

TP

kp−*)−
kd
C
Y

DP
(1)

where (X, Y) ∈ {(U, T); (U, S); (T,D); (S, D)}. This mechanism implies that the nucleotide-bound state of KaiC154

has a significant impact on the direction of its phosphotransferase activity: an ATP-bound KaiC presumably155

cannot dephosphorylate, and an ADP-bound KaiC cannot phosphorylate.156

Nucleotide exchange KaiA binding to the CII domain (Kim et al., 2008; Pattanayek and Egli, 2015) stim-157

ulates KaiC autophosphorylation (Iwasaki et al., 2002; Williams et al., 2002; Kageyama et al., 2006). Recent158

work has shown that KaiA can bind to KaiC and act as a nucleotide-exchange factor (Nishiwaki-Ohkawa159

et al., 2014) by facilitating conformational changes at the subunit interface that promote solvent exposure160

of the nucleotide-binding pocket (Hong et al., 2018). It is currently unclear whether this nucleotide exchange161

activity is responsible for all of KaiA’s effect on KaiC or whether it alters the KaiC catalytic cycle in other ways162

(see SI for further analysis of this issue). The reversible binding of KaiA163

C
ka[A]−−−*)−−−
kb

A
C (2)

contributes two classes of rate constants, ka and kb.164
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Figure 1: Phosphorylation data are fit by a mechanistically agnostic kinetic model. A) An outline of the data-driven
Bayesian model fitting approach employed in this work. B) To constrain the model, measurements of KaiC phosphory-

lation kinetics were collected at six [KaiA] and three %ATP conditions. The curves represent the best fit model prediction.

C) A schematic of the mass action kinetics model. The model elaborates on the autophosphorylation reactions of KaiC

by explicitly keeping track of the time evolution of the KaiC phosphoforms, nucleotide-bound states, and KaiA bind-

ing mediated by phosphotransfer, nucleotide exchange, and ATP hydrolysis. Note that the KaiA binding reactions are

second-order, but KaiA concentration ([A]) is written as part of the effective first-order rate constant. See the main

text for a discussion of the state and rate constant nomenclature and Figure S1A for a schematic of the full model.
D) The posterior distributions for log KaiA dissociation constants (base 10). The horizontal axis represents the affinity

for ADP-bound KaiC, and the vertical axis represents the affinity for ATP-bound KaiC; the four colors correspond to the

KaiC phosphoforms, as in panel C. The asterisks represent the best fit, and the contour lines represent the 95% and

68% highest posterior density regions (HDR). The dashed line represents the KTPd = KDPd line, so that densities above

the line indicate higher affinity for the ADP-bound species and densities below the line indicate higher affinity for the

ATP-bound species.
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Because the CII domain of KaiC releases its bound nucleotide very slowly in the absence of KaiA (Nishiwaki-165

Ohkawa et al., 2014), we ignore the possibility of KaiA-independent nucleotide exchange in the model. Un-166

der the assumptions that i) the apo state is in a quasi-steady state, ii) the ADP and ATP on-rates are identical,167

and iii) ATP release is slow, nucleotide exchange can be modeled as a one-step reaction168

ATP+ A
CDP

kA
TP−−→ A

CTP + ADP (3)

where169

kA
TP

= kDP
r

[ATP]

[ATP] + [ADP]
(4)

and kDP
r
is the ADP dissociation rate constant. Nucleotide exchange thus contributes one class of rate170

constant, kDP
r
. See Materials and Methods for the derivation of (4).171

ATP hydrolysis Finally, we allow for irreversible ATP hydrolysis in the CII domain172

CTP
kh−→ CDP + Pi (5)

which contributes one class of rate constants, kh. Because each KaiC molecule consumes relatively little ATP173

on the timescale of a day (Terauchi et al., 2007), we assume the solution ATP and ADP concentrations are174

constant.175

Species-dependent rates Given the six classes of rate constants, kp, kd, ka, kb, k
DP

r
, and kh, we make the176

model maximally general, or mechanistically agnostic, by allowing each rate constant to potentially depend177

on the specific molecular state involved in the reaction. For example, the KaiA dissociation rate constant is178

allowed to vary depending on the nucleotide-bound state and phosphoform background of KaiC, and thus179

the dissociation rate constants for the ADP-bound U (kU,DP
b
) and ATP-bound T phosphoforms (kT,TP

b
) are two180

independent model parameters. In this way, the parameter fitting andmodel comparison procedures auto-181

matically test specific biochemical hypotheses about the functions of KaiA and KaiC. For example, allowing182

the KaiA off-rates to depend on the nucleotide-bound states is equivalent to the hypothesis that KaiA has183

different dwell times for ATP- versus ADP-bound states of KaiC. In fact, because each reaction has an inde-184

pendent rate constant, except for the thermodynamic constraints of detailed balance, the fitting procedure185

effectively allows for simultaneous testing of all possible two-way interactions of the three categories of186

KaiC properties, without a priori preference for any particular mechanism.187

The data constrain the parameters to widely varying degrees188

We estimate the model parameters through a Bayesian framework. In this framework, we maximize the189

posterior probability, which is proportional to the product of the prior distribution and the likelihood func-190

tion. Here, we interpret the prior as representing subjective beliefs on the model parameters before exper-191

imental inputs, while the likelihood function quantifies the goodness of fit. Bayesian parameter estimation192

reduces to least-squares fitting under the assumption of normally distributed residuals and uniform pri-193

ors. In practice, we find that direct numerical optimization of the posterior usually results in fits that are194

trapped in low probability local maxima (Figure S3B). Thus we instead draw parameters from the prior195

distribution and then use a heuristic combination of Markov chain Monte Carlo (MCMC) sampling and op-196

timization (Powell’s algorithm) to explore the parameter space. The MCMC method that we use (Goodman197

and Weare, 2010; Foreman-Mackey et al., 2013) efficiently searches the parameter space by simulating an198

ensemble of parameter sets in parallel; the spread of the ensemble reflects the geometry of the posterior199

distribution and is used to guide the directions of Monte Carlo moves. See Materials and Methods for a200

more mathematical treatment of the fitting procedure and comparison of different numerical optimization201

and sampling methods.202
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We use this approach to fit the phosphorylation data (Figure 1B) together with previously published203

data on dephosphorylation (Rust et al., 2011), ATP hydrolysis rate (Terauchi et al., 2007), and the KaiA dwell204

time for each KaiC phosphoform (Kageyama et al., 2006; Mori et al., 2018) (see Materials and Methods).205

Overall, the model achieves excellent agreement with the training data (Figure 1B and Figure S4A–C). In206

the following analyses, we refer to model predictions using the best fit parameter values, and quantify207

the uncertainties using the posterior distribution (see SI for further discussion on the convergence of the208

simulation).209

We find that certain parameters, such as the hydrolysis rates in the U and T phosphoforms and the210

KaiA off-rates from the U phosphoform, are tightly constrained, while many others, mainly involving S and211

D phosphoforms, are less constrained, in the sense that their posterior distributions span multiple or-212

ders of magnitude, exhibit multimodality, or cannot be reproduced over multiple independent runs (Figure213 S1B). Some parameters are highly correlated and certain combinations of the parameters are much better214

constrained than the individual parameters. For example, the posterior distributions for the KaiA binding215

affinities (Figure 1D) appear better constrained than the on/off rates (Figure S5B).216

Taken together, these results are consistent with the notion that collective fits of multiparameter mod-217

els are generally “sloppy,” meaning that the sensitivities of different combinations of parameters can range218

over orders of magnitude with no obvious gaps in the spectrum (Brown and Sethna, 2003; Gutenkunst et al.,219

2007). As we will see, we can nonetheless make useful predictions using the ensemble of model parame-220

ters, because the model behavior is constrained along the stiffest directions of the posterior distribution.221

By contrast, direct parameter measurements need to be both complete and precise to achieve similar pre-222

dictive validity (Gutenkunst et al., 2007). We further characterize the structure of the parameter space in SI223

and Figure S5.224

KaiC (de)phosphorylation goes through transient kinetic intermediates225

Given the model, we can interpret the underlying molecular events in KaiC phosphorylation. Here we con-226

sider the phosphorylation kinetics at the standard reaction condition (3.5 μM KaiC, 1.5 μM KaiA, 100% ATP;227 Figure 2A and B, solid curves); we examine the effect of varying [KaiA] and %ATP in the following sections.228

At the beginning of the phosphorylation reaction, KaiC molecules are predominantly in the ADP-bound U229

state (C
U

DP
), the end product of the dephosphorylation pathway in the absence of KaiA (Figure 2A). With the230

addition of KaiA, the C
U

DP
state becomes rapidly depleted within the first 10 minutes of the reaction and231

enters the C
U

TP
state. Consistent with the kinetic ordering observed in the full oscillator, the C

U

TP
population232

is primarily converted into the T phosphoform over the S phosphoform. The exact pathway underlying the233

preference for the T phosphoform is not well constrained by the data, but it appears to be the result of234

more than just a difference in the relative U→T and U→S phosphorylation rates; there is an interplay be-235

tween KaiC phosphorylation and KaiA (un)binding kinetics (see SI and Figure S6). The ADP- and KaiA-bound236

T phosphoform species are unstable kinetic intermediates, and the population accumulates at the C
T

TP
bot-237

tleneck for the first 4 hours. As phosphorylation reaches completion, the T phosphoform is converted first238

into
A
C
D

TP
through the unstable ADP-bound intermediates, and then to the C

D

TP
state; the populations of the239

A
C
D

TP
and C

D

TP
states are comparable at steady state. We note here, however, that previous measurements240

indicate that approximately 30% of CII nucleotide-binding pockets should be ADP-bound in the presence241

of KaiA at steady state (Nishiwaki-Ohkawa et al., 2014), which suggests that the stability of the ADP-bound242

species is systematically underestimated by the model fit.243

During the phosphorylation reaction, the amount of free KaiA is initially transiently depleted due to244

association with the ADP-bound U phosphoform (Figure 2B). Afterwards, KaiA primarily associates with245

the ATP-bound S and D phosphoforms as they appear, but does not bind to the T phosphoform strongly.246

Therefore, despite the lack of KaiB in the model, not all KaiA is free during the phosphorylation phase, and247

the amount of free KaiA depends on both the affinities of the nucleotide-bound states and the mixture of248

KaiC phosphorylation states (Figure 1D).249
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Figure 2: The model captures the kinetics of KaiC phosphorylation. A) The time evolution of all 16 KaiC species in a
phosphorylation reaction with 100% ATP and either 1.5 μM (solid curves) or 0.2 μM (dashed curves) KaiA. The corre-

sponding KaiA kinetics, broken down according to the phosphoform of the bound KaiC, is shown in B). The gray regions

represent the 95% posterior interval. Refer to Figure S1A for the KaiC state nomenclature. C) KaiA concentration can
tune the sensitivity of the KaiC phosphorylation level to %ATP. The points represent the measured total percentage

phosphorylation levels at t = 12:25 h (see Figure Figure 1B for the full kinetics), and the curves represent the model
prediction at the same time point. D) KaiA concentration can tune the sensitivity of the clock period to %ATP. The period

of the full KaiABC oscillator is calculated from fluorescence polarization measurement (see Figure S7A–C for further
analysis).

We were surprised to see that the model fit predicts that the KaiA binding affinity for the ATP-bound T250

phosphoform is lower than those for the S and D phosphoforms. This is apparently in contradiction with251

experimental results that show that S-phosphomimetic mutants reduce A-loop exposure and weaken KaiA252

binding, while T-phosphomimetic mutants have opposite effects (Tseng et al., 2014; Chang et al., 2011).253

However, there is some ambiguity in the experimental literature, with various results employing differ-254

ent experimental methods and using proteins from different organisms, that has yet to be resolved. Our255

model stresses the importance of the nucleotide-bound state, especially that of the U phosphoform. KaiC256

nucleotide-bound state has generally not been measured in KaiA interaction studies and may be different257

in phosphomimetic mutants (see also Kageyama et al., 2006; Qin et al., 2010a; Murakami et al., 2016).258

The dephosphorylation pathway is simpler because KaiA is not involved. In the model, KaiC by itself259

has no nucleotide exchange activity, and thus phosphorylated KaiC molecules in the absence of KaiA enter260

a cycle of dephosphorylation by the transfer of phosphoryl groups from the phosphorylation sites back261

to bound ADP molecules, followed by ATP hydrolysis and removal of inorganic phosphate, until the pro-262

tein reaches the C
U

DP
state (Figure S4D). The ADP-bound forms of the T, S, and D phosphoforms are only263

transiently populated, suggesting that the dephosphorylation bottlenecks are the ATP hydrolysis reactions,264

which make bound ADP available as a cofactor for dephosphorylation, rather than the phosphotransfer265

reaction itself. The kinetic preference for the D→S dephosphorylation pathway is the direct result of faster266

dephosphorylation via the D→S compared to the D→T reaction (Figure S1B; compare the posterior distri-267

bution of kDS
d
with that of kDT

d
). During this process, KaiC can occasionally autophosphorylate, but it is driven268

irreversibly towards the dephosphorylated state by ATP hydrolysis. We note here that the independence of269

the dephosphorylation reaction from solution ADP (Rust et al., 2011) is a built-in feature of the model, since270
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solution %ATP only affects the nucleotide exchange rate, which is assumed in the model to be zero in the271

absence of KaiA.272

KaiA concentration tunes clock sensitivity to %ATP273

The model further allows us to summarize and interpret the effect of %ATP and KaiA on KaiC phosphoryla-274

tion observed in the training dataset (Figure 2C). Consistent with previous measurements (Rust et al., 2011;275

Phong et al., 2013), these results indicate that the near-steady-state (t = 12 h) total phosphorylation level276

of KaiC (%CP = %CT + %CS + %CD) is lower in the presence of ADP. Since we simultaneously vary %ATP and277

[KaiA], the data reveal that this inhibitory effect can be tuned by [KaiA]. In particular, the system is most278

insensitive to %ATP at either very low or very high [KaiA], while the %ATP sensitivity is the highest around279

[KaiA] = 0.75 μM.280

Interestingly, the %ATP sensitivity of the system cannot be fully abolished even at saturating KaiA con-281

centrations (Figure 2C). This effect can be interpreted qualitatively in terms of the structure of the model.282

When there is more KaiA in solution, more KaiC goes through intermediate states that are in complex with283

KaiA, by Le Châtelier’s principle. This shifts a larger fraction of the KaiC population through states that allow284

for exchange of bound ADP for ATP, which promotes phosphorylation. On the other hand, as the %ATP285

decreases, the ATP to ADP exchange rate decreases according to (4). When nucleotide exchange becomes286

less efficient, more KaiC stays in ADP-bound states, which are prone to dephosphorylation. In summary,287

[KaiA] and %ATP both act on the phosphorylation kinetics via the nucleotide exchange step, where %ATP288

directly regulates the exchange rate constant and sets its upper bound, while [KaiA] controls the popula-289

tion of exchange-competent KaiC and thus the effective exchange rate. Therefore, the effects of KaiA and290

increasing solution %ATP are not equivalent; because the effective exchange rate cannot exceed the limit291

set by %ATP, even a saturating amount of KaiA cannot fully compensate for low %ATP.292

Given that the metabolic sensitivity of the KaiA-KaiC subsystem can be tuned by KaiA concentration, we293

asked whether metabolic sensitivity of the full oscillator period may also be tuned by KaiA. To address this294

question, we characterized the dependence of the period of the in vitro KaiABC oscillator on [KaiA] and295

%ATP using an optical assay (Leypunskiy et al., 2017; Heisler et al., 2019) that allows automated, parallelized296

monitoring of the fluorescence polarization of labeled KaiB (Figure 2D and Figure S7A–C). Consistent with297

the hypothesis, we found that low KaiA concentration enhances the period sensitivity to %ATP compared to298

the standard condition (1.5 μM KaiA). These results suggest that the KaiA activity, and how it is controlled,299

plays a critical role in determining the clock period stability.300

KaiC phosphorylation exhibits ultrasensitive dependence on KaiA levels301

In addition to inferring kinetics of states not easily accessible to experiments, the model allows us to inter-302

polate between the training data points and study the relation between KaiC phosphorylation, [KaiA], and303

%ATP at a much finer resolution. This analysis shows an ultrasensitive dependence of the steady-state %C
P

304

on KaiA concentration (Figure 3A and D left). Specifically, we see a threshold-hyperbolic stimulus-response305

relation (Gomez-Uribe et al., 2007; Ferrell and Ha, 2014a), where KaiC phosphorylation is highly suppressed306

near the sub-micromolar [KaiA] regime, but then follows a right-shifted hyperbolic stimulus-response func-307

tion once [KaiA] exceeds a threshold. Importantly, the threshold depends on%ATP. Themodel makes similar308

predictions for the steady-state T, S, and D phoshoforms as well (Figure S8A). However, because of the T→D309

and S→D phosphotransfer reactions, the stimulus-response relations of T and S are not monotonic func-310

tions of [KaiA] because high [KaiA] and high %ATP conditions stabilize the D phosphoform at the expense311

of the T and S phosphoforms.312

Previous studies of KaiA-KaiC interactions examined the response of KaiC at relatively high KaiA con-313

centrations (≥ 1.2 μM), comparable to the total amount of KaiA used in an oscillating reaction. Ma and314
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Figure 3: Substrate competition explains KaiC phosphorylation ultrasensitivity. A) The predicted stimulus-response rela-
tion of the total steady-state KaiC phosphorylation level as a function of %ATP and [KaiA]. B) Experimentally-determined

stimulus-response function of KaiC at three %ATP conditions; the curves are based on refitting the best fit of the full

model to the steady-state measurements. C) Similar to B) but for KaiC S431A, which has only one phosphorylation site;

the curves are based on independent fits to a simple phenomenological substrate competitionmodel. D) Cross sections

of the stimulus-response relation at three %ATP, computed using the full model (left) and model –n (right). E) Posterior

distributions for the shapes of the stimulus-response functions at 25% ATP predicted by the full model and model –

n. The contours represent the 68% and 95% HDRs, and the gray stars represent the model best fits. The shape of the

stimulus-response functions are quantified using twometrics: EC10, which quantifies threshold-like behavior, and EC90

– EC10, which quantifies switch-like behavior. The shape of the experimentally-determined stimulus-response function

at 25% ATP is shown as the yellow star. The dashed line represents (EC10; EC90− EC10) = (K=9; 80K=9), which charac-
terizes the shape of a hyperbolic stimulus-response function [A]=(K+[A]) that has no switching or thresholding. F) The
stimulus-response functions of KaiC S431A at 100% ATP in the presence of KaiC S431A/T432A (AA; left) and S431E/T432E

(EE; right) phosphomimetic mutants to probe the effect of kinetic competition on KaiC phosphorylation. G) The rela-

tions between EC50 (the midpoint of a stimulus-response function) and KaiC AA/EE concentrations, quantified using the

curves shown in F).

Ranganathan (2012) investigated the steady-state stimulus-response relation, but did not consider the ef-315

fect of %ATP or fully characterize the low [KaiA] regime. Previous reports of initial phosphorylation rates316
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Table 1: Effects of differential KaiA (un)binding kinetics

Model
Log likelihood

Bayes factor
∗

Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 –0.8 1

–n
†

249.2 275.4 –0.3 10.4

–p
‡

392.4 303.2 –2.4 2.2

–n,–p 204.4 266.4 –2.6 19.7

∗
We define the Bayes factor as the ratio of the marginal likelihood function of

the full model over that of the simplified models. We adopt the convention

that a Bayes factor larger than 3.2 is substantial evidence against the model

(Vyshemirsky and Girolami, 2008).
†
–n: on/off rates decoupled from nucleotide-bound state.
‡
–p: on/off rates decoupled from phosphorylation state.

suggest that they exhibit a hyperbolic dependence on [KaiA] (Rust et al., 2007; Lin et al., 2014), similar to317

simple Michaelis-Menten enzyme-substrate systems. However, this does not imply that the steady-state318

stimulus-response relation is hyperbolic as well.319

To assess the robustness of the model prediction across the ensemble, we use two metrics proposed320

by Gunawardena (2005) to quantify the shape of the predicted stimulus-response curves for %C
P
at any321

fixed %ATP: we use EC10 to measure the extent to which the curve acts as a threshold and EC90 – EC10322

to measure the extent to which the curve acts as a switch. Here, ECx is the KaiA concentration required to323

reach x% of the steady-state phosphorylation level at saturation. Figure 3E shows the distribution of these324

quantities in the ensemble at 25% ATP. Overall these statistics are tightly constrained by the training data325

set, and are clearly distinct from those from hyperbolic stimulus-response relations (Figure 3E, dashed gray326

line).327

Given the robustness of the prediction, we sought to experimentally verify the shape of the stimulus-328

response function. We measured KaiC phosphorylation at t = 24 h at various concentrations of [KaiA] at329

three %ATP conditions (Figure 3B and Figure S8B). Consistent with model prediction, the experimentally-330

derived stimulus-response relations are ultrasensitive with an %ATP-dependent phosphorylation threshold,331

and the stimulus-response relation of the S phosphoform at 100% ATP is non-monotonic. We then quan-332

tified the shape of the stimulus-response curve for %C
P
at 25% ATP using the same two metrics defined333

above (Figure 3E, yellow star). At 25% ATP, the shape of the experimentally-derived stimulus-response334

curve is close to that of the model prediction, but the model fit is systematically less threshold-like (i.e.,335

smaller EC10) and less switch-like (i.e., larger EC90 – EC10). This inconsistency is likely due to a combination336

of training data under-determining the shape of the curve at the sub-micromolar range (compare Figure337 2C with Figure 3B) and the fitting method under-estimating uncertainties (see SI).338

Lastly, the saturation phosphorylation levels in the steady-state measurements appear systematically339

lower than those implied by the training data set (compare Figure 3B with D left). This may be a result340

of batch-to-batch variations in protein and nucleotide quantification. This difference can be corrected by341

refitting the full model to the steady-state measurement (Figure 3B and Figure S8C). The refit results sug-342

gest that errors in protein and nucleotide concentrations primarily affect the kinetic properties of the S343

phosphoform in the model (Figure S8D), but the refit does not change the qualitative conclusions.344
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A substrate competitionmechanism underlies ultrasensitivity in KaiC phosphoryla-345 tion346

What is the mechanism of ultrasensitivity in KaiC phosphorylation? Given that each KaiC subunit has two347

phosphorylation sites, a plausible explanation is multisite phosphorylation, whereby the concentration of348

the maximally phosphorylated species exhibits an ultrasensitive dependence on the kinase concentration349

(Gunawardena, 2005) (or in this case, the nucleotide-exchange factor concentration), even if each consec-350

utive phosphorylation step follows mass action kinetics. To examine this possibility, we measured the351

stimulus-response relation of the KaiC S431A mutant, which has only one phosphorylation site, and the352

results show ultrasensitivity comparable to that of the WT protein (Figure 3C). Furthermore, because KaiC353

is its own phosphatase, it violates the assumption of distributivity (i.e., at most one modification takes place354

before the dissociation of the enzyme and substrate) (Gunawardena, 2005). Multisite phosphorylation thus355

cannot explain the observed ultrasensitivity.356

In the ensemble of parameter sets, the KaiA dissociation constant of the ADP-bound (but not ATP-bound)357

U phosphoform (C
U

DP
) is in or below the nanomolar range, much smaller than that of any other species of358

KaiC (Figure 1D). This is consistent with recent single molecule observations suggesting that the unphos-359

phorylated form of KaiC can bind very tightly to KaiA (Mori et al., 2018) and native mass spectrometry360

measurements suggesting that KaiA binding to KaiC is enhanced by ATP hydrolysis, which would be needed361

to produce ADP-bound KaiC (Yunoki et al., 2019). Here, we argue that the key to understanding the origin of362

ultrasensitivity in the model lies in the differential binding affinity of KaiA to the ADP- and ATP-bound states363

of KaiC. We note here that since the model does not consider the hexameric structure of KaiC, we cannot364

rule out possible hexameric cooperative effects that may contribute to ultrasensitivity.365

In the model, the differential KaiA binding affinity leads to the following dynamics: KaiA promotes phos-366

phorylation by catalyzing the exchange of the bound ADP for ATP, but this process is in a kinetic competition367

with ATP hydrolysis, which returns KaiC to the ADP-bound state. At the beginning of the phosphorylation368

reaction, almost all the KaiA is bound to C
U

DP
(Figure 2A and B) due to its high abundance and high affinity369

for KaiA (Figure 1D). When [KaiA] is low, the competition between nucleotide exchange and hydrolysis in the370

U phosphoform reaches a steady-state where [CU
DP

] stays above [KaiA] (Figure 2A, dashed curves). There-371

fore, KaiA stays trapped by C
U

DP
and the phosphorylation products (mostly T) cannot undergo nucleotide372

exchange. In the absence of KaiA, the autophosphatase activity of KaiC dominates, and the phosphoryla-373

tion products revert back to the U phosphoform.374

When [KaiA] is high, however, the competition between nucleotide exchange and hydrolysis in the U375

phosphoform pushes C
U

DP
below [KaiA] (Figure 2A, solid curves), which frees KaiA to catalyze the nucleotide376

exchange reactions of the phosphorylation products. Once the flux of phosphorylation, KaiA binding, and377

nucleotide exchange outweighs that of hydrolysis, dephosphorylation, and KaiA unbinding, the phosphory-378

lation products stay phosphorylated at steady state. Furthermore, the formation of phosphorylation prod-379

uct positively feeds back to deplete C
U

DP
, further removing a KaiC state that traps KaiA and leading to rapid380

saturation of phosphorylation past the [KaiA] threshold. The [KaiA] threshold for phosphorylation depends381

on %ATP (Figure 3A), because when %ATP is low, more KaiA is needed to counteract the reduced ADP-to-ATP382

exchange rate.383

This mechanism is a form of substrate competition (Ferrell and Ha, 2014b; Buchler and Louis, 2008),384

where the kinetic competition of multiple substrates for enzyme binding leads to ultrasensitivity. Here,385

KaiA acts as the enzyme, while the ADP-bound U phosphoform and the T (as well as S and D to a lesser386

extent due to phosphorylation ordering) phosphoform are the substrates that compete for KaiA binding.387

However, the fact that the phosphorylated and unphosphorylated forms of KaiC can interconvert through388

phosphotransfer reactions distinguishes the Kai system from a typical substrate competition scheme, where389

the substrates cannot interconvert.390

The model suggests that the U phosphoform plays a special role in generating ultrasensitivity due to391

the significant difference in the affinity of KaiA for the ATP- vs. ADP-bound states of KaiC (Figure 1D). This392
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observation leads to two testable predictions. First, the amount of KaiA required to activate phosphoryla-393

tion should be higher when more U phosphoform is present. We tested this prediction experimentally by394

measuring the stimulus-response relation of KaiC S431A in the presence of KaiC S431A/T432A (AA), which395

mimics the U phosphoform, or KaiC S431E/T432E (EE), which mimics the D phosphoform. The KaiC AA and396

EE mutants act as competitors for the KaiA-KaiC interaction (Figure 3F). Consistent with the hypothesis, the397

EC50 (i.e., the midpoint of the ultrasensitive switch) is positively correlated with the concentration of KaiC398

AA, while varying KaiC EE has little effect (Figure 3G).399

Second, the substrate competition mechanism suggests that the model should exhibit weaker nonlin-400

earity if KaiA has the same affinity to ATP- vs. ADP-bound states of a given KaiC phosphoform. To test401

this prediction, we constructed simplified models where KaiA on/off rates are set to be independent of the402

nucleotide-bound state (model –n) or phosphorylation state (model –p) and fit the new models to the ex-403

perimental data ab initio. Consistent with the prediction, decoupling KaiA on/off rates from the nucleotide-404

bound states results in a significant loss of ultrasensitivity (Figure 3D right and Figure S9A). Model –p by405

contrast behaves similarly to the full model (Figure S9C); consistent with the substrate competition mech-406

anism, the ADP-bound states of KaiC in model –p have higher affinity to KaiA than the ATP-bound states,407

regardless of the phosphorylation state (Figure S9C). We quantify the effects of such model reductions by408

computing the Bayes factor, which is a metric for systematic model comparison that favors goodness of409

fit but penalizes model complexity and parameter fine tuning (MacKay and Kay, 2003); it is similar to the410

Bayesian information criterion (Schwarz, 1978), but makes no asymptotic assumptions. The analysis shows411

that the loss of ultrasensitivity in model –n degrades the fit quality significantly, while model –p is only412

marginally worse than the full model (Table 1). Interestingly, a model where the KaiA on/off rates are com-413

pletely independent of the state of KaiC (model –n,–p; Figure S9D and E) is much worse than either model414

–n or model –p (Table 1). We conclude that the nucleotide-bound state of KaiC plays a key role in regulating415

its interaction with KaiA and thus in determining phosphorylation kinetics.416

Substrate competition underlies metabolic compensation417

Finally, we consider the implications of the ultrasensitivity for the full oscillator. For the sake of clarity, we418

make a distinction in this section among three subpopulations of KaiA: the sequestered KaiA, which refers419

to inactive KaiA in a KaiABC complex; the active KaiA, which refers to (free or bound) KaiA not sequestered420

by KaiB; and the free KaiA, which is not associated with either KaiB or KaiC.421

We first consider the role ultrasensitivity plays in regulating KaiA activity. It is well-established that KaiB422

plays an essential role in regulating KaiA during nighttime. At dusk, the buildup of KaiC D and S phospho-423

forms triggers the binding of KaiB to CI (Rust et al., 2007; Chang et al., 2012; Mutoh et al., 2013; Phong et al.,424

2013; Lin et al., 2014; Tseng et al., 2017; Snijder et al., 2017; Mukaiyama et al., 2018) and subsequently the425

sequestration of KaiA by CI-bound KaiB (Kageyama et al., 2006; Qin et al., 2010a). In the absence of active426

KaiA, the CII domain autodephosphorylates, and the KaiABC ternary complex disassembles (Snijder et al.,427

2017) at dawn as KaiC reaches its dephosphorylated state (Tomita et al., 2005), freeing KaiA and readying428

the clock for the next cycle.429

This understanding of the negative feedback loop implies that the sequestration of KaiA by KaiB is a430

source of nonlinearity in the system that is critical for generating oscillation. Indeed, in many models of431

the Kai oscillator, the complete sequestration of KaiA during dephosphorylation is either a built-in or re-432

quired feature for stable oscillation (e.g., Yoda et al., 2007; van Zon et al., 2007; Phong et al., 2013; Paij-433

mans et al., 2017b). Our observation that phosphorylation is suppressed nonlinearly at low [KaiA] suggests434

that complete sequestration of KaiA by KaiB is not necessary to prevent phosphorylation. Indeed, there435

is mounting evidence that KaiB sequestration by itself is insufficient to completely inactivate KaiA during436

dephosphorylation. Specifically, measurements using native mass spectrometry, co-immunoprecipitation437

(co-IP), and native PAGE suggest that there is a significant amount of KaiA2C6 complex (Kageyama et al.,438

2006; Brettschneider et al., 2010) and free KaiA (Qin et al., 2010a) throughout the entire phosphorylation439

cycle.440
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To confirm that KaiA is not fully sequestered by KaiBC complexes, we used co-IP of FLAG-tagged KaiB to441

monitor the amount of uncomplexed KaiA in supernatant, which we interpret to be ameasure of active KaiA442

concentration (Figure 4A and Figure S7D). The experiment shows that there is indeed a sizable amount of443

active KaiA in solution in the first half of the dephosphorylation stage, although the experiment does not444

allow us to assign absolute concentrations. Taken together, these results suggest that either the binding of445

KaiA to KaiBC is more labile or has lower affinity than previously assumed, or that the sequestration kinetics446

are slow compared to the length of the dephosphorylation stage. In either case, substantial amounts of447

KaiA appear to remain free of KaiABC complexes during oscillation.448

The fact that the phosphorylation threshold scales with %ATP suggests that ultrasensitivity may also449

lead to insensitivity of the period of the Kai oscillator to %ATP (Phong et al., 2013), a phenomenon termed450

“metabolic compensation” (Johnson and Egli, 2014). We examine this issue using a simple model of the Kai451

oscillator proposed by Phong et al. (2013), which we hereafter refer to as the Phong model. The Phong452

model explicitly keeps track of the monomer phosphorylation cycle and uses KaiB binding to the S phos-453

phoform to generate negative feedback (Figure 4B). In the Phong model, the KaiA sequestration affinity is454

effectively infinite. In light of the co-IP experiment, we modify the model by assuming that the KaiA seques-455

tration reaction is in a quasi-equilibrium with a dissociation constant for KaiA binding to the KaiBC complex,456

KD (Figure 4C; see SI for mathematical details). When KD is small (i.e., < 10−3 μM), the modified model457

exhibits the same robust oscillations as the original model over a large range of %ATP, but the range of %ATP458

that allows for stable oscillation shrinks as KD increases (Figure 4E top), and the model is unstable when459

KD is in the micromolar range regardless of %ATP.460

In the original Phongmodel, the dependence of KaiC phosphorylation on KaiA is described by aMichaelis-461

Menten-like function with no ultrasensitivity. In this scenario, a small increase in active KaiA leads to a462

proportional increase in phosphorylation, making the dephosphorylation phase of the clock strongly de-463

pendent on the strength of KaiB-mediated KaiA sequestration. To test if ultrasensitivity can increase the464

robustness of oscillations in the model, we introduce a phenomenological patch to the model in the form of465

an ultrasensitive KaiA threshold to the phosphorylation rate function, which varies as a function of %ATP and466

U phosphoform concentration (Figure 4D; see SI for mathematical details). Given that the ultrasensitivity is467

a result of substrate competition, this modification effectively introduces an inhibitory interaction between468

the U phosphoform and KaiA (Figure 4B, dashed arrow). This modification amounts to the assumption469

that the EC50 measured at steady state (Figure 3A) in the absence of KaiB corresponds to the active KaiA470

concentration required to re-enter the phosphorylation phase at the trough of the circadian oscillation. Re-471

markably, the resulting model can generate stable oscillations over a larger range of both %ATP and KD472

conditions (Figure 4E bottom). This observation suggests that ultrasensitivity in KaiC phosphorylation plays473

a role in clock stability that complements the function of KaiB-dependent KaiA sequestration.474

Why does ultrasensitivity in KaiC phosphorylation allow for metabolic compensation? The binding of475

KaiB to KaiC, and thus the sequestration and inactivation of KaiA, depends on S431 phosphorylation of476

KaiC (i.e., the S and D phosphoforms). At low %ATP, the maximal S and D concentrations, [CS+D
max

], are lower477

(Figure 4F). Thus the maximal amount of KaiA sequestered by the KaiBC complex is smaller. This is prob-478

lematic for the stability of the clock at low %ATP, since the active KaiA can promote premature KaiC U→T479

phosphorylation of some molecules, which can lead to phase decoherence, manifest as decaying oscilla-480

tion (Figure S7E). The ultrasensitive stimulus-response that we report here implies that a finite amount of481

KaiA must be liberated from KaiB before there is a noticeable impact on KaiC phosphorylation. In other482

words, the inhibitory effect of ultrasensitivity is a synchronization mechanism. Importantly, the EC50 of the483

stimulus-response function scales with %ATP, such that the capacity of phosphorylation suppression by C
U

484

is enhanced at low %ATP, which compensates for weaker KaiA sequestration (Figure 4F). This relation likely485

also contributes to the scaling of the phosphorylation limit cycle size with %ATP (Figure 4G). At higher %ATP,486

the EC50 is smaller and thus more KaiA needs to be sequestered to trigger dephosphorylation, which im-487

plies that higher concentrations of the S and D phosphoforms need to accumulate to enable KaiB binding.488

Since KaiC phosphorylation is ordered, this means that the T phosphoform concentration scales with %ATP489

as well.490
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Figure 4: Ultrasensitivity enables metabolic compensation. A) The time series of the total input KaiC phosphoryla-
tion level (purple, left scale) and residual KaiA concentration not precipitated with KaiB-FLAG (gray, right scale). B) A

schematic of the oscillator model by Phong et al. (2013). Here,
B
C
S
and

B
C
D
represent the KaiB-bound S and D phospho-

forms, respectively, which can sequester KaiA. The dashed line represents the effect of introducing ultrasensitivity to

the model. C) A cartoon representation of introducing a KaiA sequestration affinity,KD , into the Phong model. The orig-

inal model has an effectively infinite sequestration affinity (dashed curve). D) A cartoon representation of introducing

a KaiA threshold to the Michaelis-Menten-type phosphorylation rate constant in the Phong model. E) The period of the

oscillator model as a function of %ATP and KD , a measure of KaiA sequestration affinity, without (top) or with (bottom)

a phosphorylation threshold. All model simulations were done with 3.5 μM of KaiC and 1.5 μM of KaiA. White regions

indicate unstable or no oscillation. F) The extent to which KaiA can be sequestered by KaiB depends on the maximal

S and D phosphoform concentration, [CS+Dmax], achieved over the phosphorylation cycle. The scaling of the EC50 of the
phosphorylation stimulus-response function, which is a measure of the capacity of the U phosphoform to suppress

KaiA activity, compensates for the scaling of [CS+Dmax] with %ATP. G) The scaling of EC50 and [C
S+D

max] contribute to the scaling
of the phosphorylation cycle size with %ATP. As %ATP increases, EC50 decreases and thus higher concentrations of the

S and D phosphoforms are required to sequester active KaiA and trigger dephosphorylation. These dynamics enable

increased accumulation of the T phosphoform at higher %ATP.
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Discussion491

In this work we undertook a data-driven kinetic modeling approach to understand the metabolic sensi-492

tivity of the KaiA-KaiC subsystem, part of the S. elongatus circadian oscillator. We constructed a detailed493

yet mechanistically agnostic kinetic model, which was fit to extensive experimental measurements of KaiC494

phosphorylation kinetics within a Bayesian parameter estimation framework. Approaches that are similar495

in spirit have been pursued in eukaryotic systems (e.g., Forger and Peskin, 2003; Locke et al., 2005; Mirsky496

et al., 2009; Relógio et al., 2011; Kim and Forger, 2012). However, owing to the greater complexity of eu-497

karyotic clocks, these studies combined direct experimental measurements, cost function optimization, and498

hand tuning of selected parameters to account for unknown or unconstrained biochemical processes. Be-499

cause the Kai system can be studied as a well-defined mixture of purified components, the participating500

molecular species are known, and all the parameters in the model can be treated in a consistent manner to501

enable objective comparison of mechanisms underlying collective oscillations.502

This data-driven approach is to be contrasted with the more common hypothesis-driven, forward mod-503

eling approach, whereby a model is built to examine how features of the oscillator arise from proposed504

mechanisms. This hypothesis-driven approach has been employed extensively in the study of the cyanobac-505

terial clock. These studies have revealed insights into specific aspects of the oscillator function, such as en-506

trainment (Brettschneider et al., 2010; Leypunskiy et al., 2017), synchronization (Yoda et al., 2007; van Zon507

et al., 2007; Sasai, 2019), irreversibility (Cao et al., 2015), and robustness against variations in temperature508

(Hatakeyama and Kaneko, 2012; François et al., 2012; Kidd et al., 2015; Murayama et al., 2017), ATP/ADP509

concentration (Phong et al., 2013; Paijmans et al., 2017a; del Junco and Vaikuntanathan, 2019), protein copy510

numbers (Brettschneider et al., 2010; Lin et al., 2014; Chew et al., 2018), and environmental noise in general511

(Pittayakanchit et al., 2018; Monti et al., 2018). This hypothesis-driven approach is pedagogically powerful512

but gives little indication of the range of the parameter space consistent with a proposedmechanism, which513

makes it difficult to quantify the uncertainties of model predictions and validate them experimentally.514

Not all parameters in our model were fully constrained by the data, as expected given the complexity of515

themodel (Gutenkunst et al., 2007). Nevertheless, the ensemble of parameter sets still led to consistent pre-516

dictions. In particular, the model revealed unexpected ultrasensitivity in KaiC phosphorylation as a function517

of KaiA, which we confirmed experimentally. The source of ultrasensitivity in the model is a substrate com-518

petition mechanism that arises from the differential affinity of ADP- and ATP-bound KaiC for KaiA. Previous519

studies have considered the importance of the differential affinity of KaiA for KaiC states but have focused520

on phosphorylation (Paijmans et al., 2017b; Mori et al., 2018). We note here that the ultrasensitivity in KaiC521

phosphorylation that we discovered acts to regulate KaiA activity at a different phase of the cycle than the522

ultrasensitivity in KaiB-dependent KaiA sequestration that arises from opposing S and T phosphorylations523

within hexamers (Lin et al., 2014). Presumably, the presence of nonlinearities and delayed feedback at mul-524

tiple steps in a molecular oscillator allows the system to achieve greater robustness (Kim and Forger, 2012;525

Jolley et al., 2012; Dovzhenok et al., 2015; Pett et al., 2016).526

We hypothesized that ultrasensitivity in KaiC phosphorylation plays a role in stabilizing the oscillator at527

low %ATP conditions by suppressing premature phosphorylation during the dephosphorylation stage and528

thus promoting phase coherence. Currently, the Kai oscillator model most robust against yet tunable by529

metabolic conditions appears to be that of Paijmans et al. (2017a,b). In the Paijmans model, metabolic530

compensation is achieved both at the hexamer and ensemble level. At the hexamer level, the onset of de-531

phosphorylation is primarily controlled by the antagonistic effects of the T and S phosphoforms. Since fewer532

subunits in the T phosphoform accumulate at low %ATP, fewer subunits in the S phosphoform are needed533

to trigger dephosphorylation; therefore, the reduced amplitude of oscillation counteracts the slower phos-534

phorylation rate at low %ATP. At the ensemble level, low %ATP limits the fraction of hexamers that are able535

to trigger dephosphorylation before the onset of KaiB-mediated delayed inhibition; this makes the dephos-536

phorylation phase shorter, which compensates for the longer phosphorylation phase. It is worth noting537

that the Paijmans model is not oscillatory when %ATP reaches below 50% partly due to phase decoherence538

during dephosphorylation, an issue that can potentially be addressed with ultrasensitivity in KaiC phos-539

phorylation. In our model the coupling between KaiA binding affinity and KaiC nucleotide-bound states is540
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critical in generating ultrasensitivity, a feature that is missing in the Paijmans model. It remains an open541

question whether a hexameric model with no such coupling can nevertheless produce ultrasensitivity in542

KaiC phosphorylation (see SI for further comparison between this work and the Paijmans model).543

In S. elongatus, the Kai oscillator is embedded in a transcription-translation feedback loop (Kitayama544

et al., 2008; Zwicker et al., 2010; Qin et al., 2010b). However, with the exception of peroxiredoxin oxida-545

tion cycles (O’Neill et al., 2011; Edgar et al., 2012), cell-autonomous circadian rhythms in eukaryotes are546

thought to be generated by interlocked transcription-translation feedback loops (Novák and Tyson, 2008);547

the cooperative autoregulation of transcription is a key source of nonlinearity and robustness in the circuit548

(e.g., Leloup et al., 1999; Gonze et al., 2002; Leloup and Goldbeter, 2003; Locke et al., 2005; Brown et al.,549

2012). Our results raise the possibility that post-translational protein modifications and protein-protein in-550

teractions may also contribute to robustness by introducing ultrasensitivity, even if these processes do not551

generate self-sustaining rhythms that can be decoupled from transcription. In general, it is clear that post-552

translational steps such as (de)phosphorylation (Gallego and Virshup, 2007; Reischl and Kramer, 2011; Zhou553

et al., 2015; Fustin et al., 2018), protein degradation (Gallego and Virshup, 2007; Reischl et al., 2007), and554

complex formation (Kim and Forger, 2012) play an important role in eukaryotic circadian oscillators, but555

to our knowledge there is currently no complete experimental characterization of the stimulus-response556

relations of these processes.557
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Materials and Methods558

Computational methods559

Treatment of nucleotide exchange Here we derive (4) in Results. The nucleotide exchange process is in560

principle a two-step reaction that includes an apo intermediate state of KaiC, i.e.,561

A
CTP

kTP
r−−*)−−
kTPon

A
C

kDP
on−−*)−−
kDPr

A
CDP (6)

where we have omitted the free ATP and ADP from the chemical equation. Here, kTP
r
and kDP

r
are the562

dissociation rate constants and kTP
on
and kDP

on
are the binding rate constants for ATP and ADP, respectively.563

Since KaiC requires nucleotides for hexamerization (Hayashi et al., 2003, 2006; Mutoh et al., 2013), the apo564

state of KaiC is presumably both thermodynamically and kinetically unstable in the presence of saturating565

amount of nucleotide (5 mM in our experiments). Therefore, under the assumption that the KaiC apo state566

is in a quasi-steady state throughout the reactions, we can eliminate the apo state and model nucleotide567

exchange as a one-step reaction568

A
CTP

kA
DP−−*)−−
kA
TP

A
CDP (7)

where

kA
TP

= kDP
r

[ATP]

[ATP] +Kon[ADP]
(8)

kA
DP

= kTP
r

„
1− [ATP]

[ATP] +Kon[ADP]

«
(9)

and Kon = kDP
on
=kTP
on
is a ratio of the two nucleotide binding rate constants.569

We make two further simplifying assumptions. First, we assume the on rates are completely diffusion570

controlled and are thus the same for ATP and ADP, which allows us to set Kon = 1. Second, based on571

fit results (Figure S4F) showing that the posterior for kTP
r
has a long tail to negative infinity in log space,572

we follow the approach proposed by Transtrum and Qiu (2014) and set kTP
r

= 0; i.e., the dwell time of573

ATP-bound states are sufficiently long such that a bound ATP cannot be released without first giving up its574

γ-phosphate group. This assumption implies that the only ways for KaiC to enter an ADP-bound state are575

through hydrolysis and phosphorylation, and solution ADP has no effect on the system except to slow down576

the ADP to ATP exchange process. With these two assumptions, we eliminate (9) and (8) reduces to (4).577

Model parameterization In Results, we introduced a model parameterization scheme in which rate con-578

stants for phosphotransfer, nucleotide exchange, KaiA (un)binding, and ATP hydrolysis reactions depend on579

the participating molecular species. Although we use this independent-rate scheme to interpret the model,580

including computing the sensitivity ODEs, during the fitting itself we represent species-dependent effects581

by modifying each of the six basic rate constants (kp, kd, ka, kb, k
DP

r
, and kh) by multiplicative∆k factors. For582

example, the KaiA dissociation rate kT,TP
b

= kb∆kT,TP
b
is represented by the product between a base rate kb583

and a modifier ∆kT,TP
b
(compare Figure S1 and Figure S10). The multiplicative-factor scheme introduces 38584

∆k parameters. Because of the requirement for detailed balance (see below), only 34 of these parameters585

are free; these free parameters are listed on Table 2. The advantage of the multiplicative parameterization586

scheme is that it facilitates ‘1 regularization, discussed below.587

Detailed balance All elementary reactions, except ATP hydrolysis and nucleotide exchange, are assumed588

to occur in equilibrium, and thus the free energy change over each reversible cycle must be equal to zero.589
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Table 2: Full model parameters and their priors

Category
Species-dependent

effect
Parameters Prior Unit

Basic N/A kh; kp; kd; ka; kb; k
DP

r
10N (—;3) †

s
−1 §

Nucleotide exchange KaiA & phos.
∗ ∆kA,T

TP
;∆kA,S

TP
;∆kA,D

TP

10Laplace(—;1) † N/A

Hydrolysis
phos. ∆kT

h
;∆kS

h
;∆kD

h

KaiA & phos. ∆kA,U
h
;∆kA,T

h
;∆kA,S

h
;∆kA,D

h

KaiA on nuc.
∗
& phos. ∆kU,DP

a
;∆kD,DP

a
;∆kD,TP

a

KaiA off nuc. & phos.

∆kU,DP
b

;∆kT,DP
b

;∆kS,DP
b

;

∆kD,DP
b

;∆kT,TP
b
;∆kS,TP

b
;

∆kD,TP
b

(De)phosphorylation

phos.

∆kUS
p
;∆kSU

d
;

∆kTD
p
;∆kDT

d
;

∆kSD
p
;∆kDS

d

KaiA & phos.

∆kA,UT
p

;∆kA,TU
d

;∆kA,TD
p

;

∆kA,DT
d

;∆kA,SD
p

;∆kA,DS
d

;

∆kA,US
p

;∆kA,SU
d

Global error N/A ff2
Inv-Gamma

(1, 0.01)
μM

2

Initial conditions N/A
[CU
TP

]0; [C
U

DP
]0; [C

T

TP
]0; [C

T

DP
]0;

[CS
TP

]0; [C
S

DP
]0; [C

D

TP
]0; [C

D

DP
]0

Dirichlet(a)‡ μM

∗
phos., phosphoform; nuc., nucleotide-bound state
†
The mean of the priors, —, is zero unless specified by Table 5.
§
or s

−1·μM−1 for the second-order rate constant ka.
‡ a = (20; 100; 1; 1; 1; 1; 1; 1); points drawn from the distribution are scaled by the total KaiC con-
centration. The support of the Dirichlet distribution implies that only seven of the eight initial

conditions are free fitting parameters.

In practice, this means that the product of all rate constants in the forward direction of each cycle listed on590 Table 3must be equal to that in the reverse direction (see also Figure S10A). This introduces an additional591

algebraic constraint for each such cycle, which is used to eliminate one free∆k parameter. In total, one can592

eliminate four such arbitrarily chosen parameters.593

Fitting data set To constrain the model parameters, we collected experimental measurements that char-594

acterized different aspects of the KaiA-KaiC subsystem, which are summarized in Table 4.595

The dephosphorylation reaction taken from Rust et al. (2011) constrains the dephosphorylation rates596

and the ATP hydrolysis rates of KaiC in the absence of KaiA, because the model structure dictates that597
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Table 3: Detailed balance conditions
Cycle Detailed balance condition

{CS
TP
, C
D

DP
,
A
C
D

DP
,
A
C
S

TP
} ‹kS,TP

a
= ∆kS,TP

b

∆kA,DS
d

∆kA,SDp

∆kD,DP
a

∆kD,DP
b

{CT
TP
, C
D

DP
,
A
C
D

DP
,
A
C
T

TP
} ‹kT,TP

a
= ∆kT,TP

b

∆kA,DT
d

∆kA,TDp

∆kD,DP
a

∆kD,DP
b

{CU
TP
, C
T

DP
,
A
C
T

DP
,
A
C
U

TP
} ‹kT,DP

a
= ∆kT,DP

b

∆kA,UT
p

∆kA,TU
d

{CU
TP
, C
S

DP
,
A
C
S

DP
,
A
C
U

TP
} ‹kS,DP

a
= ∆kS,DP

b

∆kA,US
p

∆kA,SU
d

dephosphorylation requires alternating phosphotransfer and hydrolysis reactions. There is currently no598

direct measurement of CII hydrolysis rate in the presence of KaiA. However, the maximum ADP production599

rate of KaiC in the presence of 1.2 μM of KaiA was reported to be 29.8 ± 5.1 KaiC-1·day-1 (Terauchi et al.,600

2007), which we take as an upper bound on the average CII hydrolysis rate in phosphorylation reactions for601

all [KaiA] = 0.375, 0.75, and 1.50 μM conditions.602

Because the phosphorylation reactions were measured in the presence of varying %ATP and higher603

[ADP] inhibits phosphorylation by slowing down nucleotide exchange (see equation 4), they provide indirect604

constraints on the nucleotide exchange rate. Similarly, because the reactions were measured in the pres-605

ence of varying [KaiA] conditions, they provide direct constraint on the phosphorylation rates of KaiC with606

and without KaiA, as well as the KaiA binding affinity, i.e., the ratio of KaiA on/off rates. Although there are607

direct experimental measures of KaiA binding and dissociation (Kageyama et al., 2006; Mori et al., 2018),608

these results cannot be directly mapped onto model rate constants. This is primarily because the KaiC609

nucleotide-bound fractions are not reported in these experiments, or, in the case of phosphomimetic mu-610

tants, it is unclear if the mutations affect nucleotide binding affinities. As a consequence, the experimental611

constraints on KaiA on/off rates enter through the priors rather than the likelihood function, in contrast to612

the other data (see below).613

Initial conditions For each phosphorylation reaction in Table 4, we solve the ODE model with the corre-614

sponding [KaiA] and%ATP condition. The predicted phosphoform composition, as well as the ATP hydrolysis615

rate when appropriate, is compared to the experimental measurements in the Bayesian parameter estima-616

tion formalism described below. However, since the experimental data do not resolve the initial conditions617

for all 16 KaiC species in the model, we have chosen to directly estimate the initial concentrations as free618

model parameters. We take t = 0 to be the time point at which KaiA is mixed with KaiC, and thus all eight619

KaiA-bound KaiC states are assumed to have zero concentration at the onset of the experiment. Because620

total KaiC concentration is conserved, this introduces seven additional free parameters (see Table 2).621

For the dephosphorylation reaction, we do not estimate the initial conditions. To mimic the way the ex-622

periment was done, the dephosphorylation reaction is simulated in two stages. In the first stage, we assume623

that 3.4 μM of dephosphorylated KaiC is phosphorylated in the presence of 1.3 μM KaiA and 100% ATP for624

20 h. Since the protein is initially dephosphorylated, we assume that [CU
TP

]0 = 3:4 μM while the concentra-625

tions of all other KaiC species are set to zero. In the second stage, we simulate the autodephosphorylation626

reaction after KaiA pull-down, which corresponds to eliminating all free KaiA as well as KaiA-bound KaiC627

species from the simulation. The amount of KaiC lost in the pull-down experiment was not reported in the628

original experiment (Rust et al., 2011). We therefore make the assumption that the amount of KaiC lost in629

the pull-down experiment in the simulation is exactly equal to that in the experiment for the purpose of630
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Table 4: Fitting data set

Measurement

(source)

Temperature

(
◦
C)

[KaiA]
∗

(μM)
%ATP

Time

points
Phosphoform

Phosphorylation

(this work)
30

0.375, 0.75, 1.50,

3.00, 4.50, 6.00
10, 25, 100 8 U, T, D

†

Dephosphorylation

(Rust et al., 2011)
30 1.4 100 21

ADP production

(Terauchi et al., 2007)
30 1.2 100 1 N/A

KaiA on/off rates

(Kageyama et al., 2006)
25 Variable 100 N/A Likely U

KaiA dwell time

(Mori et al., 2018)
25–28 1.0 N/A N/A T, S, D

‡

∗
We report here on the KaiA monomer concentration. However, since KaiA functions as a dimer,

all KaiA concentration is divided by two in the models.
†
The conservation of mass constraint implies that one of the four phosphoforms is not a free state

variable. We have chosen the S phophoform to be the constrained state variable.
‡
Phosphomimetic mutants

computing the likelihood function.631

Bayesian parameter estimation We directly fit numerically integrated ODEs to experimental data in the632

Bayesian parameter estimation framework (Wasserman, 2000). The best fit model parameters, „̂, are ob-633

tained from the maximum a posteriori estimator:634

„̂ = arg max
„

p(„|D); (10)

where p(„|D) is the posterior distribution of the parameters „, conditioned on the training data setD. Using635

Bayes’ theorem, the posterior distribution can be written as636

p(„|D) =
L(D|„)p(„)

p(D)
: (11)

Here, p(„) is the prior distribution, which represents subjective belief in the model parameters „ prior to637

experimental input; L(D|„) is the likelihood function, which represents a probabilistic model of the exper-638

imental data set D given a particular modelM (implicit in the formulas) that depends on the parameters639

„; p(D) is the evidence, which is analogous to the partition function in statistical mechanics. Note that the640

evidence p(D) does not depend on the parameter choice, and is thus an irrelevant constant for the purpose641

of parameter estimation. The specific choices for the functional forms of the likelihood function and priors642

are discussed further below.643

Model priors The priors for all model parameters used in Bayesian parameter estimation are given in644 Table 2. Here, the choice of the prior distributions is primarily motivated by the need for regularization645

(see below). In addition, as discussed above, the experimental measurements on KaiA binding kinetics are646
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Table 5: Priors incorporating KaiA on/off constraints
Parameter Prior mean (—) Experimental measurements Source

ka log ka,exp ka,exp = 0:0279 s−1 · μM−1
Kageyama et al. (2006)

kb log kb,exp kb,exp = 0:0663 s−1

∆kT,DP
b
,∆kT,TP

b
− log fiT

b,exp
kb,exp fiT

b,exp
= 1:0 s

Mori et al. (2018)∆kS,DP
b
,∆kS,TP

b
− log fiS

b,exp
kb,exp fiS

b,exp
= 0:43 s

∆kD,DP
b
,∆kD,TP

b
− log fiD

b,exp
kb,exp fiD

b,exp
= 0:26 s

incorporated into the priors rather than the likelihood function (Table 5). Note that all the rate constants647

and their multiplicative factors are estimated in the log space (base 10). This ensures that all rate constants648

are positive.649

‘1 regularization As model complexity grows, the constraint of experimental data on the underlying650

mechanism weakens. To address this problem, we impose sparsity on the species-dependent effects (i.e.,651

the ∆k factors) using ‘1 regularization (Tibshirani, 1996). This is accomplished in the Bayesian parameter652

estimation framework by using a Laplace prior centered at zero in the log parameter space (or one in the653

real space). Intuitively, the Laplace prior imposes sparsity by forcing the (marginalized) posterior distribu-654

tion for each log ∆k to peak at zero unless there is experimental evidence in the fitting data set to suggest655

otherwise. Since the ∆ks are multiplicative factors modifying the six basic rate constants, log ∆k = 0 im-656

plies that the species-dependent rate is identical to that of the base rate. This method is directly analogous657

to the use of the lasso estimator in the context of linear least squares models. To see this, consider the658

Laplace distribution659

p(„; b) =
1

2b
e−‖„‖1=b (12)

where ‖„‖1 is the ‘1-norm of „. Then from (11) the negative log-posterior distribution becomes660

− ln p(„|D) = − lnL(D|„) + –‖„‖1 + const. (13)

where – = 1=b. In a linear model Y = X˛ + › where Y is the response vector, X is the design matrix, ˛ is661

the parameter vector, and › is the error vector, the negative log-likelihood function reduces to the sum of662

squares ‖Y − X˛‖22=N, where N is the number of dependent variables. Thus, maximizing the posterior is663

equivalent to minimizing the sum of squares with an ‘1 penalty, which is the lasso estimator.664

Likelihood function To determine the functional form of the likelihood function, consider a kinetic exper-665

iment where measurements on some observables y are made at a set of time points {ti} with uncertainties666

{ffi}. If we assume that the experimental errors ffi are independent and normally distributed, then the667

likelihood function is given by668

L(D|„) =
Y
i

1√
2ıffi

e−[yexp(ti )−ymodel(ti ;„)]
2=2ff2

i (14)

In other words, the likelihood function gives the probability for observing a given data set provided that669

the model prediction is true. In practice, all posterior evaluations are done in the log space (base e) for670

numerical stability. Thus, taken together, (11) can be rewritten as,671

ln p(„|D) = −
X
i

ˆ
yexp(ti )− ymodel(ti ; „)

˜2
2ff2i

+ ln p(„) + const. (15)
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For the sake of simplicity, we assume that there is a single global error, ff, for all (de)phosphorylation mea-672

surements, which is then estimated during fitting as a hyperparameter (see Table 2).673

The choice of the Gaussian likelihood function applies to all (de)phosphorylation data sets, but not the674

hydrolysis constraint, which only provides an upper bound on the average hydrolysis rate per day (Terauchi675

et al., 2007). Therefore, for the hydrolysis data a “half harmonic” is used as the log-likelihood function:676

lnL(D|„) =

8><>:−
`
[ADP]model(„)− [ADP]exp

´2
2ff2
h

; [ADP]exp ≤ [ADP]model

0; 0 ≤ [ADP]model < [ADP]exp
(16)

The total amount of ADP produced by the model during a phosphorylation reaction over 12 h, [ADP]model, is677

given by the sum of all Pi production over time plus all ADP-bound KaiC species at t = 12 h.678

The log-likelihood values from the appropriate phosphorylation, dephosphorylation, and hydrolysis re-679

actions are added together to determine the log-likelihood of the data set for each given model parameter680

choice. Since the phosphorylation data set is much larger than the dephosphorylation data set, the fitting681

procedure tends to favor fitting the phosphorylation data set at the expense of fitting the dephosphoryla-682

tion data set. To overcome this problem, the log-likelihood function for the dephosphorylation reaction is683

multiplied by a factor of 4 to increase the weight of the dephosphorylation data points.684

Model fitting procedure To determine the posterior mode and the uncertainties associated with the685

estimate, we employ a heuristic combination of ensemble MCMC sampling and numerical optimization686

methods (Figure S3A). This fitting procedure can be divided into four steps that are analogous to those in a687

genetic algorithm:688

1. Initialization. An ensemble MCMC method evolves a set of random walkers (i.e., parameter sets) si-689

multaneously; we thus begin by drawing 224 walkers from the prior distribution p(„) and use these690

walkers for simulated annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984). In annealing, instead of691

sampling p(„|D) ∝ L(D|„)p(„) (in the log space), a flattened distribution L(D|„)˛p(„) is sampled with692

an annealing schedule of ˛ = 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9, 1:0. Note that instead of letting ˛ → ∞,693

the simulation ends with the target distribution at ˛ = 1:0. Each temperature is sampled over 20,000694

steps.695

2. Selection. The fitnesses of the walkers are determined by their log-posterior values (equation 15). 10696

walkers from the best 300 parameter sets sampled in the previous step are chosen and subjected to697

numerical optimization to find the nearby local maximums, which are then used to seed a sampling698

run in the next step. In the spirit of elitist selection, the best walker is always included for the next699

generation.700

3. Recombination and mutation. The initial walkers for the sampling run are generated by adding a701

Gaussian noise N (0; 0:001) to the 10 optimized walkers, and the number of initial walkers centered702

around each optimized walker „j is given by703

224
p(„j |D)˛P
k p(„k |D)˛

: (17)

That is, the proportion of the initial walkers generated from each optimized walker is weighted by its704

posterior value with a temperature factor of ˛ = 0:6; the temperature factor is chosen to allocate705

more walkers to optimized walkers with lower posterior values. The sampling run consists of 50,000706

steps. Note that the purpose of the Gaussian noise is to ensure that the proposal distribution is707

valid for any pair of walkers for the ensemble MCMC method (see below), rather than to control the708

mutation strength, as is done in evolution strategy (Beyer and Schwefel, 2002).709
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4. Termination. The best walkers from the sampling run are compared to the optimized walkers. If the710

best walkers do not escape to new local maximum(s) with higher posterior value(s), then the proce-711

dure is terminated after an additional 50,000 sampling steps. If, however, new local maximum(s) are712

discovered during sampling, the algorithm loops back to the selection step. This process is repeated713

until no better local maximum is discovered at the end of sampling. Unless otherwise specified, only714

the last 30,000 sampling steps (downsampled every 100 steps) are used for post-analysis.715

In general, the number of walkers in ensemble MCMC needs to be larger than the number of free pa-716

rameters; here the number 224 is chosen to optimize parallel performance on a local computer cluster (8717

nodes × 28 CPU cores/node).718

We found that this procedure outperformed either ensemble MCMC or numerical optimization by itself719

(compare Figure S3A and B). For the full model we ran this procedure three times to assess the reproducibil-720

ity of the fit (see SI for further discussion).721

Markov chain Monte Carlo One major challenge in efficient MCMC sampling in systems biology is that722

the target distributions are often poorly scaled. In the context of ODE kinetic modeling, this means that723

different reaction rates and their associated uncertainties can be separated by several orders of magni-724

tude. This is almost certainly true for the KaiA-KaiC subsystem because, among other things, the experi-725

mentally measured rates of KaiA binding and dissociation are much faster than the ATP hydrolysis rate of726

KaiC. Without a priori knowledge of the natural time scales, conventional MCMC schemes are inefficient in727

such sampling problems, because only very small displacements are accepted at appreciable rates. In this728

work we employ an ensemble MCMC method developed by Goodman and Weare (2010). The advantage729

of the Goodman-Weare algorithm is that it is affine invariant, which means that it performs equally well730

for isotropic and poorly scaled measures, providing that the two can be related by a linear transformation731

of the coordinate system. This appears to be the case for the present problem since the Goodman-Weare732

algorithm vastly outperforms a standardMetropolis-Hastings schemewith a (preconditioned) Gaussian pro-733

posal distribution (Figure S3B).734

In brief, the Goodman-Weare algorithm evolves an ensemble of walkers, rather than a single one. At735

each step, individual walker positions are updated sequentially. For a given walker „k at step fi , a walker „j736

is drawn randomly from the rest of the ensemble and a new position, ”, on the line connecting „k and „j is737

proposed by a “stretch move”738

” = „j + z [„k(fi)− „j ] (18)

where z is a random number drawn from the distribution739

Z ∼ g(z ;¸) =

(
1=
√
z; z ∈ [1=¸; ¸]

0; otherwise
(19)

The “stretch factor” ¸ is a tunable parameter that controls the step size. In an N-dimensional parameter740

space, the new walker ” is accepted with the probability741

q = min

„
1; zN−1

p(”|D)

p(„k(fi)|D)

«
(20)

which guarantees that the scheme obeys detailed balance and thus converges to the target distribution742

p(„|D) as fi →∞. Note that no derivative of the posterior distribution is required to draw from the proposal743

distribution. In this work we use ¸ = 1:1, which gives an average acceptance rate of 47% in steps 3 and 4 of744

the fitting procedure.745

Numerical optimization The numerical optimization method used in this work is a modified version of746

Powell’s method (Powell, 1964; Press et al., 2007). Briefly, given an initial guess and direction set, which747
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is usually the Cartesian coordinate set, Powell’s method performs a line search to minimize the objective748

function, here − ln p(„|D), sequentially along each vector in the direction set. The direction set is then749

updated by replacing the direction of largest decrease in the objective function in the current iteration750

with the displacement vector from the estimated minimum at the beginning to that at the end of the line751

minimizations, provided that certain technical conditions aremet to avoid the build-up of linear dependence752

in the direction set. This process is repeated until a convergence threshold is met. Note that unlike the753

original method, the modified Powell’s method does not guarantee that the vectors in the direction set are754

mutually conjugate.755

Similar to the Goodman-Weare algorithm, Powell’s method is derivative-free. For the current system756

Powell’s method converges faster than the Nelder-Mead method (Nelder and Mead, 1965), another com-757

monly used derivative-free method, although the Nelder-Mead method appears less prone to becoming758

trapped in local metastable states (Figure S3C).759

Software implementation The fitting procedure is implemented in an in-house Python (Oliphant, 2015)760

script that interfaces with several existing Python modules: numerical integration of the model ODEs is761

done using the odespy package (Langtangen and Wang, 2015) with the BDF method; the Goodman-Weare762

algorithm is implemented in emcee (version 2.2.1) (Foreman-Mackey et al., 2013); Powell’s method and763

the Nelder-Mead method are implemented in scipy (version 1.2.1) (Eric Jones et al., 2001). The derivative764

evaluation step in ODE integration is accelerated using numba (Lam et al., 2015), and the script is parallelized765

using mpi4py 2.0.0 (Dalcín et al., 2005, 2008; Dalcin et al., 2011).766

The most computationally expensive step in the fitting procedure is the MCMC sampling, because each767

move requires multiple ODE evaluations to compute the posterior function. With 224 walkers and 8 nodes768

(each with 28 Intel E5-2680v4 2.4GHz cores), the speed of MCMC sampling is 46,000 steps/hour.769

Model comparison In the preceding sections all definitions of probability distributions implicitly assume770

that there is a modelM with a well-defined functional form, whose parameters „ need to be determined.771

For the sake of model comparison, we make this assumption explicit and rewrite (11) as772

p(„|D;M) =
L(D|„;M)p(„|M)

p(D|M)
: (21)

To compare twomodelsMi andMj , we need to compare the posterior probabilities for eachmodel, usually773

in the form of their ratios774

p(Mi |D)

p(Mj |D)
=
p(D|Mi )

p(D|Mj)

p(Mi )

p(Mj)
: (22)

Assuming that we have no prior preference for any model, the ratio becomes the Bayes factor775

Bi j =
p(D|Mi )

p(D|Mj)
; (23)

which we adopt as the metric for model comparison.776

The primary difficulty in computing the Bayes factor is thus estimating the evidence, or the marginal777

likelihood function, for eachMi . There are several methods for computing the evidence (Vyshemirsky and778

Girolami, 2008). Here we derive a formula compatible with the ensemble MCMC scheme that is directly779

analogous to free energy perturbation (Zwanzig, 1954). For the sake of simplicity, we drop the model index780

i from this point on. First, note that for a given modelM,781

p(D|M) =

Z
L(D|„;M)p(„|M) d„ = 〈L(D|„;M)〉p(„|M) (24)

where the first equality follows from the law of total probability and the second equality assumes that the782

prior p(„|M) is normalized (as a probability density function of „). Equation (24) suggests that the marginal783
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likelihood function can be computed by estimating the average of the likelihood function L(D|„;M) against784

the prior. Using MCMC to estimate this integral is inefficient since there is very little overlap between the785

likelihood function and the prior for the models of interest. Instead, we define786

q–(„) = L(D|„;M)–p(„|M) and Z– =

Z
q–(„) d„

for 0 ≤ – ≤ 1 and then note that (24) can be recast as787

p(D|M) =
Z1

Z0
=

„
Z–0

Z–1

Z–1

Z–2

· · ·
Z–N−1

Z–N

«−1
(25)

for 0 = –0 < –1 < · · · < –N = 1, and the –s are chosen to allow for sufficient overlap between successive788

q–(„)s. Each fraction in (25) is given by789

Z–n−1

Z–n
=

R
L(D|„;M)–n−1−–nq–n(„) d„R

q–n(„) d„
=
˙
L(D|„;M)–n−1−–n

¸
q–n

(26)

Therefore,790

p(D|M) =
NY
n=1

˙
L(D|„;M)–n−1−–n

¸−1
q–n

=
NY
n=1

D
e ln q–n−1

(„)−ln q–n („)
E−1
q–n

(27)

where the averages 〈·〉q–n can be approximated with MCMC. Equation (27) is a version of the free energy791

perturbation formula. Note that (27) requires that the likelihood functionL(D|„;M) be properly normalized792

(as a probability density function of D), but does not require the prior p(„|M) to be normalized, as any793

missing normalization constant cancels out in each term of the product.794

For each simplified model in Table 1 and Table S1, the ensemble of walkers from the last time step of795

the model fitting procedure is used to initialize an MCMC sampling run with – = 1:00. The lambda value is796

reduced by 0.01 at each subsequent stage until – reaches 0.01. Each stage is sampled for 2,000 time steps797

using the Goodman-Weare ensemble sampler Goodman and Weare (2010). Only the last 1,000 time steps798

from each stage is used to compute the ensemble average in (27). The Bayes factors are then computed as799

the ratios of the evidence for the full model to each simplified model.800

Refitting The steady-state KaiC phosphorylation measurements (Figure 3B and Figure S8B) are fit to the801

full model using Powell’s method, starting from the best fit based on the training data set. The priors on the802

kinetic parameters (Table 2) are centered on the best fit values, so that the refit model can be interpreted803

as the “minimal” perturbation to the best fit that enables agreement with the steady-state measurement.804

Curve fitting The experimentally determined stimulus-response relations for KaiC S431A (Figure 3C and805

F) are fit to the simple inhibitor ultrasensitivity scheme described in Box 5 of Ferrell and Ha (2014b). Using806

their notation, the amount of phosphorylated protein substrate (%XP ) as a function of kinase concentration807

([K]) is given by808

%XP ([K]) = Pmax
K1[I] +K1K2 −K1[K] + 2K2[K]−K1

p
[I]2 + 2(K2 − [K])[I] + (K2 + [K])2

2K1[I]− 2(K1 −K2)(K1 + [K])
+ b (28)

Here, Pmax, [I], K1, K2, and b are free model parameters. Unlike the Hill function, EC50 is not an explicit809

parameter of (28) and thus needs to be determined numerically. Note that (28) can be reduced to a right-810

shifted hyperbolic function as K2 → 0:811

%XP ([K]) = Pmax
[I]− [K]− |[I]− [K]|

2[I]− 2(K1 + [K])
+ b; (29)
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which is equivalent to a threshold-hyperbolic stimulus-response function,812

%XP ([K]) =
Pmax([K]− [I])

K1 + ([K]− [I])
H([K]− [I]) + b; (30)

where H is the unit step function.813

Stimulus-response relations are fit using the NonlinearModelFit function in Mathematica 12.0. We stress814

here that the curve fits are purely phenomenological and are thus not intended to be interpreted in terms815

of the biochemical assumptions underlying the model.816

Experimental methods817

Protein expression and purification KaiA, KaiB, KaiB-FLAG, and KaiC were expressed and purified as818

previously described (Phong et al., 2013) with two modifications to the protocol: anion exchange chro-819

matography was performed using HiTrap Q columns (GE Healthcare), and KaiC was purified using Ni-NTA820

affinity chromatography followed by size-exclusion chromotography, omitting the anion exchange step. The821

expression, purification, and 6-iodoacetofluorescein (6-IAF) labeling of KaiB K25C mutant as a fluorescence822

reporter in the plate reader assay is described in Leypunskiy et al. (2017). All mutants of KaiC were con-823

structed using QuikChange II XL Site-Directed Mutagenesis Kit (Aligent). For the KaiC AA and EE mutants,824

the His-tags were not cleaved during purification; this ensures that these mutant proteins have shifted825

mobility in SDS-PAGE, allowing their bands to separate from those of KaiC S431A.826

The U-[
15
N] labeled N-terminal (residues 1–135) and C-terminal (residues 181–284) domains of KaiA827

were expressed were expressed in BL21(DE3) E. coli (Novagen) in minimal (M9) media supplemented with828
15
N-enriched NH4Cl. For expression of C-terminal domain, M9media enriched with

15
N-NH4Cl was prepared829

using 98% deuterated water (D2O). The proteins were purified by Ni-NTA affinity chromatography followed830

by size-exclusion chromatography using Superdex 75 1660 prep grade column, as described previously831

(Chang et al., 2011, 2012; Tseng et al., 2014). N-terminal KaiA eluted as ∼15 kDa monomer (Vakonakis et al.,832

2001), while C-terminal KaiA eluted as ∼23 kDa homodimer (Vakonakis and LiWang, 2004).833

GFP was expressed as N-terminal 6xHis-tag fusion from the pET28a plasmid in the BL21 (DE3) strain of834 E. coli. Harvested cells were sonicated for lysis and clarified lysate was loaded onto a HisTrap FF column835

(GE Healthcare). The His tag was cleaved by overnight incubation at 4
◦
C with SUMO protease (Invitrogen),836

after which the sample was loaded again onto a HisTrap FF column to recover the cleaved products. The837

cleaved proteins were further purified on a 5 mL HiTrap Q HP column (GE Healthcare) and then a Superdex838

200 10/300 GL size-exclusion column. The eluted fractions were concentrated in a sample buffer (20 mM839

HEPES [pH 7.4], 150 mM KCl, 2.5 mM MgCl2, 2 mM DTT), aliquoted, and snap frozen in liquid nitrogen for840

storage in –80 dC.841

In vitro clock reactions All in vitro clock reactions were done in the standard reaction buffer (20 mM842

Tris-HCl [pH 8], 150 mM NaCl, 5 mM MgCl2, 0.5 mM EDTA , 10% glycerol, 50 μg/mL Kanamycin). KaiC con-843

centration was 3.5 μM in all experiments unless otherwise specified; KaiB concentration was 3.5 μM for all844

oscillatory reactions, and 6-IAF-labeled KaiB K25C concentration was 0.2 μM for plate reader assays. KaiA845

concentration and %ATP were determined by each individual experiment, while the total nucleotide concen-846

tration (i.e., [ATP] + [ADP]) was held constant at 5 μM. Phosphorylation kinetics was resolved using SDS-PAGE847

on 10% acrylamide gels (37.5:1 acrylamide:bis-acrylamide) run for 4.5 h at 30 mA constant current at 12
◦
C;848

the gels were stained in SimplyBlue SafeStain (Invitrogen) and then imaged using Bio-Rad ChemiDoc Im-849

ager. The oscillatory reactions (Figure 2D) were also monitored using the plate reader assay described in850

Leypunskiy et al. (2017).851
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NMR spectroscopy A Bruker 600 MHz AVANCE III spectrometer equipped with a TCI cryoprobe was used852

for all of the NMR experiments of the N- and C-terminal domains of KaiA (Figure S2). Chemical shifts were853

referenced to internal 2,2-dimethyl-2-silapentane-5-sulfonate (10 μM). Data were processed using NMRPipe854

and visualized using NMRDraw (Delaglio et al., 1995). NMR samples were prepared with 100 μM monomer855

concentration of protein in 20 mM Tris-HCl [pH 8], 150 mM NaCl, 5 mM MgCl2, and 5% D2O buffer. All856

experiments were performed at 30
◦
C. Samples were incubated with 1mM ATP or ADP, when needed, for 30857

minutes before spectral measurement.858

Immunoprecipitation Immunoprecipitation of KaiB-FLAG and associated protein complexes in a clock859

reaction (Figure 4A) was done as previously described (Phong et al., 2013). The supernatant was analyzed by860

SDS-PAGE on 4–20% Criterion TGX Stain-Free Precast Gels (BioRad) and stained with SYPRO Ruby (BioRad).861

1.5 μM GFP was added to the reaction mixture at the beginning of the time course and serve as an internal862

standard to correct for changes in protein concentration due to handling. The relative supernatant KaiA863

concentration was determined as a ratio of KaiA band intensity in each lane to the GFP band intensity and864

is normalized as percentage of the largest ratio in the time course (Figure S7D).865
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Supplementary Information876

Additional biochemistry of the KaiC (de)phosphorylation reactions877

In this work we construct a general model of the KaiA-KaiC subsystem based on a set of assumptions of878

basic clock biochemistry; that is, KaiC is an ATPase and a reversible phosphotransferase with two phospho-879

rylation sites at S431 and T432, while KaiA is a nucleotide-exchange factor that promotes the exchange of880

bound ADP for ATP in CII nucleotide-binding pockets. Through model fitting, we demonstrate that this set881

of assumptions is sufficient to explain the (de)phosphorylation kinetics of KaiC and its dependence on %ATP882

and [KaiA]. Our results, however, do not imply that the model is biochemically exhaustive; in this section883

and the next we briefly discuss aspects of KaiC enzymology that we do not consider in the model.884

First, the current model does not account for the CI domain. The CI domain of KaiC is required for885

the hexamerization of S. elongatus KaiC (Hayashi et al., 2004b, 2006) and its ATPase activity is necessary886

for the allosteric transition into the dephosphorylation phase of the circadian cycle (Phong et al., 2013;887

Tseng et al., 2017). However, the hydrolysis state of the CI domain has no significant effect on the CII888

(de)phosphorylation reactions (Phong et al., 2013), and in the current study we are not concerned with889

KaiB-dependent processes. Therefore the current model does not keep track of the CI hydrolysis state or890

the allosteric coupling between the CI and CII domains.891

Second, the model does not explicitly consider the function of Mg
2+
. The presence of Mg

2+
is required892

for the assembly of the KaiC hexamer (Hayashi et al., 2006; Mutoh et al., 2013), and computational analyses893

indicate that release of Mg
2+
independent of the bound nucleotide is highly energetically unfavorable (Hong894

et al., 2018). Given these results, we assume that Mg
2+
and nucleotide cannot act independently of each895

other, and the model implicitly assumes that each bound nucleotide is always in complex with a Mg
2+
ion.896

A recent study, however, shows that the absence of Mg
2+
, especially in buffers with no EDTA, promotes KaiC897

autophosphorylation (Jeong et al., 2019). Moreover, some structures of KaiC have modeled two Mg
2+
ions898

in the nucleotide-binding pocket, which has been interpreted to mean that KaiC kinase activity relies on a899

two-metal-ion phosphotransfer mechanism (Pattanayek et al., 2009). Currently, the functions of Mg
2+
have900

not been characterized kinetically or mechanistically at a level necessary to constrain a molecularly detailed901

model such as ours.902

The hexameric structure of KaiC903

The current model does not consider any hexameric effect. There is evidence to suggest that intersubunit904

interaction regulates KaiC autokinase activity (Kitayama et al., 2013) as well as the ultrasensitive dependence905

of KaiBC complex formation on the KaiC hexamer phosphoform composition (Lin et al., 2014). However,906

explicitly accounting for the hexameric nature of KaiC, as in Li et al. (2009) or Lin et al. (2014), would lead to907

a significant increase in the number of model parameters, which likely cannot be constrained by available908

data and makes interpretation of the model difficult. Therefore, we only keep track of monomeric KaiC909

species, and the rate constants should be considered averages over hexameric background configurations,910

weighted by their nonequilibrium state populations.911

This leads to two simplifications concerning the KaiA-KaiC interactions. The first issue relates to the912

stoichiometry of KaiAC complexes. During phosphorylation, KaiA dimers bind to KaiC hexamers with either913

a 1:1 or 2:1 stoichiometry (Hayashi et al., 2004a; Yunoki et al., 2019). Because the model does not consider914

the hexameric structure of KaiC explicitly, this stoichiometry is not enforced, and each KaiC monomer can915

bind independently to KaiA.916

The second issue relates to the effect of the hexameric phosphorylation state on KaiA (un)binding kinet-917

ics. KaiA and KaiB compete with each other for KaiC binding (Lin et al., 2014), even though their binding918
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sites are on opposing sides of KaiC. This has been interpreted as a result of cooperative allosteric transition919

between a kinase mode of KaiC, stabilized by KaiA binding and the T phosphoform, and a phosphotase920

mode of KaiC, stabilized by KaiB binding and the S phosphoform (Lin et al., 2014). An implication of this921

proposed mechanism is that KaiC hexamers in the phosphatase mode have uniformly diminished affinity922

for KaiA at the CII interface, regardless of the phosphorylation state of the subunits. Given that the cur-923

rent model is trained using primarily the phosphorylation data set, the predicted KaiA dwell time (Figure924 S4B) and dissociation constant (Figure 1D) likely reflect the property of KaiC subunits in the kinase mode,925

whereas experiments with phosphomimetic mutants mimicking the S and D phosphorylation states pre-926

sumably probe the system kinetics in the phosphatase mode. Indeed, in the KaiC EE titration experiment927

(Figure 3F right), the presence of KaiC EE has virtually no effect on the KaiC S431A stimulus-response curve,928

which may be partly due to the fact that the KaiC EE hexamers are in the phosphotase mode, a condition929

not considered in our model.930

Correlation structure in the posterior distribution931

As discussed in the literature Gutenkunst et al. (2007), often ratios of parameters are better constrained932

than the parameters themselves. The parameter pairs that have a correlation coefficient larger than 0.9 in933

log space are shown in Figure S5A–C. Such correlations typically reflect that thermodynamic, rather than ki-934

netic, properties of the system are constrained. These include the free energy of phosphotransfer between935

the S and D phosphoforms (Figure S5A) and the free energy for KaiA binding to the ATP-bound states of936

KaiC (Figure S5B; compare with Figure 1D). Interestingly, there is a linear relation among kA,T
TP
, kA,TU
d
, and937

kT, DP
b

(Figure S5C); this implies that the data constrain the flux out of the ACT
DP
state, but the exact pathway938

is underdetermined.939

More generally, we characterize the extent to which the model parameters, or linear combinations940

thereof, are constrained by the data using the principal components of the posterior distribution; that is, the941

eigenvectors of the covariance matrix fromMCMC sampling. The eigenvalues of the covariance matrix span942

multiple orders of magnitude with no obvious gap (Figure S5D left), except for the stiffest direction (Figure943 S5G), which is almost entirely aligned with ff2, the global error hyperparameter. In addition, the directions944

of the principal components are in general not aligned with the directions of the bare coordinates (Figure945 S5D right), and there is no obvious interpretation for the directions of most of the principal components946

(Figure S5G). These features of the ensemble indicate that the model is “sloppy” (Gutenkunst et al., 2007),947

and many model parameters are poorly constrained by the data. Nevertheless, as we demonstrate in Re-948

sults, the model can still be used to make consistent predictions because the variabilities in the ensemble949

of parameter sets obtained fromMCMC sampling align with the softest degrees of freedom of the posterior950

distribution.951

Convergence of the model fit952

We assessed the quality of the fit in three ways. First, we repeated the full procedure three times to assess953

reproducibility of the fitting procedure (Figure S1B). The three independent runs yielded marginalized pos-954

terior distributions that are remarkably consistent and tightly constrained for some parameters but diverge955

over several orders of magnitude for others. The best fits from the three runs have log posterior values of956

720, 714, and 705, respectively. Unless otherwise specified, in this work we base our analyses on the run957

that produced the best fit with the highest posterior value. The ruggedness of the posterior distribution958

demonstrates that given the model and training data set, the parameter estimation problem is far from the959

asymptotic (i.e., large sample) regime. Moreover, in our fitting procedure the vast majority of the walkers960

from the annealing step is discarded for the sake of improving the MCMC sampling efficiency (the accep-961

tance rate is≤ 7% without pruning). Given the presence of multiple local maxima, this choice likely resulted962

in an underestimation of the uncertainties in parameter values.963
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Table S1: Effects of KaiA on KaiC function

Model
∗ Log likelihood

Bayes factor

Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 –0.8 1

–P
†

390.0 338.6 –0.8 1.4

–H
‡

355.5 308.8 –0.9 2.5

–P,–H 278.2 283.6 –0.2 7.7

∗
We do not consider a model where KaiA binding does not promote nucleotide

exchange, because such models are incapable of autophosphorylation by con-

struction.
†
–P: KaiA binding decoupled from (de)phosphorylation rates.
‡
–H: KaiA binding decoupled from KaiC hydrolysis rates.

Second, we compared the model predictions with a test data set that probed the phosphorylation reac-964

tion at two non-standard KaiC concentrations (Figure S4E). The fit quality on the test data set is somewhat965

worse compared to the training set (compare with Figure 1B). In particular, the model overestimates the966

D phosphoform concentration at 1.75 μM KaiC and underestimates the T and D phosphoform concentra-967

tions at 7 μM KaiC. This result suggests some degree of overfitting. This, however, is not a significant issue968

because we base our conclusions on the ensemble of walkers rather than the behavior of the best fit.969

Lastly, we assessed the convergence of the MCMC simulations using the integrated autocorrelation970

times for the 48 principal components of the posterior distribution (Figure S5E). The autocorrelation times971

for the largest and smallest principal components are 8,500 and 3,300 steps, respectively, which gives rough972

estimates of the times between independent samples for the slowest and fastest degrees of freedom. These973

estimates are far shorter than the length of the final MCMC runs in the fitting procedure (100,000 steps). We974

also checked the autocorrelation time for the KaiA binding affinities (Figure S5F), which is within the bound975

given by the principal components.976

KaiA function cannot be solely explained in terms of nucleotide exchange977

Because of the generality of themodel, the function of KaiA is not restricted to that of a nucleotide-exchange978

factor. In particular, the phosphotransfer and ATP hydrolysis rates are allowed to depend on KaiA binding.979

There is some experimental evidence to support such effects—KaiA binding inhibits dephosphorylation (Xu980

et al., 2003) and the addition of KaiA increases the ATPase activity of KaiC (Terauchi et al., 2007; Murakami981

et al., 2008). However, the biochemical mechanisms underlying these effects are not clear from the exper-982

iments; for example, does KaiA increase KaiC ATPase activity by reconfiguring the KaiC active site, or does983

KaiA binding indirectly promote ATP hydrolysis by shifting the KaiC population towards phosphoforms that984

have high ATPase activity?985

To test whether KaiA binding has a direct effect on KaiC catalytic activities, we construct simplified mod-986

els where hydrolysis and/or phosphotransfer is independent of KaiA binding and compare the resulting987

models to the full model using the Bayes factor (Table S1). We find that decoupling either phosphotransfer988

(model –P) or hydrolysis (model –H) from KaiA binding decreases the evidence for the simplifiedmodels, but989

the effects are weak, especially in comparison to a model where both classes of reactions are decoupled990

from KaiA binding (model –P,–H). These results indicate that the function of KaiA cannot be solely explained991

by nucleotide exchange, but we cannot conclusively distinguish between models –P and –H.992
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The experimental data admit two S phosphorylation pathways993

We analyzed a random selection of 500 walkers to understand the implications of their variations for the994

mechanisms of ordered phosphorylation. To simplify the analysis, we converted each walker to two single-995

site models in which either T431 or S432 was available for phosphorylation but not both. We asked how996

important each reaction rate constant is to the overall T and S phosphoform concentrations in the single-site997

models using the relative first-order sensitivities computed at the standard reaction condition (i.e., 100%998

ATP with 1.5 μM KaiA). We focus on the initial phosphorylation rates because the steady-state rates are999

determined by balances of many contributing processes, making them harder to interpret. The parameter1000

sensitivities at t = 1 h are used as proxies for the sensitivities of the initial phosphorylation rates.1001

Because each single-site model has 18 parameters, there are 36 sensitivities for the two phosphoforms.1002

To characterize this high-dimensional space, we used spectral clustering (Figure S6A). Overall, the param-1003

eter sensitivities are much more constrained by the data for the T phosphoform than the S phosphoform,1004

which is unsurprising given the relatively low concentrations of the S phosphoform under all experimen-1005

tal conditions in the training dataset. The clustering furthermore indicates that there are two plausible1006

kinetic ordering mechanisms, which differ primarily in terms of the phosphorylation pathways taken by the1007

S phosphoform (Figure S6A and B). In both clusters, the U→ T transition is most sensitive to kUT
p
(i.e., the1008

phosphorylation rate in the absence of KaiA).1009

In the first cluster (319 parameter sets), the U→ S transition is most sensitive to kA,US
p

in the presence of1010

KaiA. This is primarily because kUS
p
is very small in this cluster relative to kA,US

p
(Figure S6C); however, since,1011

in this cluster, the U → S transition is dominated by the KaiA-bound states, the S phosphoform has negative1012

sensitivity to the KaiA dissociation rate constant kU,TP
b
. This suggests that in the first cluster, KaiA (un)binding1013

to the U phosphoform is important in determining the initial phosphorylation rate of S. The best fit belongs1014

to this first cluster.1015

The phosphorylation pathway suggested by the second cluster (181 parameter sets) is more complex. In1016

this cluster, the U→S transition is mostly independent of KaiA, similar to the U→T reaction. However, the S1017

phosphoform is limited by the dephosphorylation reaction kSU
d
, which ismuch faster than the corresponding1018

phosphorylation rate (Figure S6C). In addition, the S phosphoform is sensitive to the rate constant for KaiA1019

binding, kS,DP
a
, which is important for facilitating nucleotide exchange for the ADP-bound S phosphoform,1020

but tends to be slower in the second cluster (Figure S6C). Therefore, faster dephosphorylation and slower1021

KaiA binding is important for determining the initial S phosphorylation rate in the second cluster.1022

A comparison of Figure S6C with Figure S1B (blue distributions) shows that the two clusters correspond1023

to the bimodal posterior distributions for the rate constants kUS
p
, kA,US
p
, kSU
d
, and kS,DP

a
. The two clusters,1024

however, do not cleanly separate along the two modes of kS,TP
a

and kS,TP
b
; the kinetic significance of this1025

bimodal distribution is unclear.1026

As discussed above, the posterior distribution is fairly rugged and thus the fitting procedure is not fully1027

reproducible over independent runs. As a result, there are likely multiple potential kinetic ordering mecha-1028

nisms that remain unexplored through this analysis. Regardless, the analysis suggests that kinetic ordering1029

is likely a result of an interplay between (de)phosphorylation and KaiA (un)binding kinetics, rather than1030

purely the product of equilibrium free energies of phosphotransfer.1031

Comparison to the Paijmans model1032

Among all the computational work on the Kai oscillator, the model most similar to the current work in1033

terms of the treatment of the KaiA-KaiC subsystem is that by Paijmans et al. (2017b), although the latter is1034

a full oscillator model including KaiB, the CI domain, and the allosteric transition between the active (i.e.,1035

phopshorylation phase) and inactive (dephosphorylation phase) KaiC conformations. The Paijmans model1036
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and the full model in this work are both molecularly detailed, and describe how phosphotransfer, ATP1037

hydrolysis, KaiA (un)binding, and nucleotide exchange reactions control the phosphoform and nucleotide-1038

bound states of KaiC. However, there are some significant differences between these twomodels, which we1039

examine below.1040

The Paijmans model is more general than this work in two ways. First, the Paijmans model explicitly1041

considers the hexameric nature of KaiC. There is no intersubunit coordination of phosphotransfer in the1042

Paijmans model, but it explicitly considers the binding of one KaiA dimer to a KaiC hexamer, which is as-1043

sumed to uniformly accelerate nucleotide exchange in all six subunits. In this work, however, we do not1044

consider the hexameric states of KaiC, and each KaiC monomer is allowed to bind to a KaiA dimer indepen-1045

dently. In this way the affinities and kinetics of KaiA binding in this work may not be directly comparable1046

to those in the Paijmans model. Second, the Paijmans model allows for the exchange of bound ATP for1047

ADP, such that KaiA accelerates the exchange rates of both ATP and ADP while leaving the binding affinity1048

unchanged. In our model, however, we assume that there is no exchange of bound ATP for ADP, effectively1049

assuming that the affinity of ATP is infinite (i.e., KCII
ATP/ADP

= 0 in the Paijmans model terminology). The treat-1050

ment of nucleotide exchange in both models are otherwise similar, in that both assume that the ATP/ADP1051

on rates are identical, that the apo state is in a quasi-steady state, and that there is no KaiA-independent1052

nucleotide exchange.1053

The current work goes beyond the Paijmans model in the following ways. First, we determine the rate1054

constants under the framework of Bayesian parameter estimation, which enables more rigorous uncer-1055

tainty quantification, while the parameters in the Paijmans model were hand-tuned to reproduce selected1056

experimental observations. Second, for simplicity the Paijmans model does not consider any possible cou-1057

pling between ATP hydrolysis and KaiC phosphorylation states, between nucleotide exchange and KaiC1058

phosphorylation states, between ATP hydrolysis and KaiA binding, or between KaiC nucleotide-bound states1059

and KaiA binding. Although many of the species-dependent effects are not fully constrained by data in this1060

work, as we describe in Results, the ultrasensitivity in KaiC phosphorylation depends critically on the cou-1061

pling between KaiC nucleotide-bound states and KaiA binding. It is an open question whether a model that1062

lacks such effects but explicitly accounts for the hexameric nature of KaiC can generate ultrasensitivity.1063

The difference in the treatment of KaiA binding affinity implies that some detailed balance conditions

are incompatible between the two models. In the Paijmans model, the binding affinity of KaiA to KaiC

hexamers during the phosphorylation phase depends on the phosphoform composition of the subunits,

and each subunit i in the phosphoform Xi other than U contributes an additive factor of ‹g
CII·KaiA
bind

(Xi ) to
the changes in KaiA binding free energy, ∆GCII·KaiA

bind
. Due to detailed balance, the fact that KaiA binds to

different KaiC phosphoforms with differential affinities implies that KaiA binding changes the free energy

of phosphotransfer [see eq. 8 in Paijmans et al. (2017b)]. This condition is also present in our model,

but is complicated by the nucleotide-bound states of KaiC. Using the multiplicative-factor parametrization

scheme (see Materials and Methods), the detailed balance conditions in this work can be related to those

in the Paijmans model by

‹gCII·KaiA
bind

(T)− ‹gCII·KaiA
bind

(U) = −kT ln
∆kT,DP

b

‹kT,DPa

(31)

‹gCII·KaiA
bind

(S)− ‹gCII·KaiA
bind

(U) = −kT ln
∆kS,DP

b

‹kS,DPa

(32)

‹gCII·KaiA
bind

(D)− ‹gCII·KaiA
bind

(T) = −kT ln
∆kD,DP

b

∆kD,DPa

‹kT,TP
a

∆kT,TP
b

(33)

‹gCII·KaiA
bind

(D)− ‹gCII·KaiA
bind

(S) = −kT ln
∆kD,DP

b

∆kD,DPa

‹kS,TP
a

∆kS,TP
b

(34)

In general, this set of equations are inconsistent. That is, one cannot express the ‹gCII·KaiA
bind

(X)s in the Pai-1064

jmans model in terms of the ∆ks in our model. The only condition under which these equations can be1065
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made consistent is when1066

∆kT,DP
b

‹kT,DPa

=
∆kT,TP

b

‹kT,TPa

and
∆kS,DP

b

‹kS,DPa

=
∆kS,TP

b

‹kS,TPa

that is, when the nucleotide-bound states have no effect on KaiA binding affinities to the T and S phospho-1067

forms.1068

Phenomenological modifications to the Phong model1069

In the model by Phong et al. (2013), KaiA sequestration is determined by the equation1070

[A]active = max(0; [A]total −m[BCS]− n[BCD]): (35)

Here, [A]total is the total KaiA concentration; [
B
C
S
] and [

B
C
D
] are the concentrations of the S and D phospho-1071

forms in complex with KaiB, respectively;m and n are model parameters describing the binding stoichiome-1072

tries between KaiA and the KaiBC complex. In this way, the KaiA binding affinity to the inhibitory complex1073

is effectively infinite, with no KaiA dissociation until [
B
C
S
] and [

B
C
D
] drop below a threshold. To make the1074

representation of KaiA sequestration more realistic, we introduce a KaiA dissociation constant KD (Figure1075 4C). Assuming that the KaiA sequestration reaction is in a quasi-equilibrium, we replace (35) with1076

[A]active =
1

2

“
[A]total − SD−KD +

p
4[A]totalKD + ([A]total − SD−KD)2

”
(36)

where we have defined SD = m[BCS] + n[BCD].1077

To introduce ultrasensitivity to the Phong model, we first note that the four phosphorylation rate con-1078

stants for the U→T, U→S, T→D, and S→D transitions are given by Michaelis-Menten kinetics with ADP serv-1079

ing as a competitive inhibitor,1080

kphos =
kA
phos

[A]active

K1=2 + [A]active

1

1 +KI [ADP]=[ATP]
(37)

where kA
phos

varies with the specific phosphorylation reaction. To introduce ultrasensitivity, we add a thresh-1081

old term T (Figure 4D),1082

kphos =
kA
phos

([A]active − T )

K1=2 + ([A]active − T )

1

1 +KI [ADP]=[ATP]
H([A]active − T ) (38)

where1083

T = (0:3 + 1:5e−5%ATP=100%)(1 + 0:08[CU]=—M):

and H is the Heaviside function. The first part of the expression for the phosphorylation threshold, 0:3 +1084

1:5e−5%ATP=100%, describes how the threshold changes as a function of %ATP; the constants are determined1085

by approximating the [KaiA] threshold in Figure 3A as an exponential function. The second part of the1086

expression, 1 + 0:08[CU]=—M, describes how the threshold changes as a function of CU concentration. This1087

formula is defined by1088

a=—M+ b([CU]=—M− 3:5)

a=—M+ b(−3:5)

where parameters a and b are determined by taking a linear fit, a+b[AA], of the data from Figure 3G (yellow1089

line); that is, 1 + 0:08[CU]=—M gives the fractional changes to the phosphorylation threshold as a result of1090

any U phosphoform (in the form of AA phosphomimetic mutant) additional to the 3.5 μM KaiC S431A in the1091

experiment.1092

We use the original Phongmodel parameters in all analyses of the model with one exception. In the final1093

model with both a KD and a phosphorylation threshold (Figure 4E bottom), the period is systematically1094

longer than 24 h due to a slow down in phosphorylation. To fix this problem, we change kAds and k
0
ds , the1095

two rate constants controlling the D→S transition, to 0.94 kAds and 1.1 k0ds .1096
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Figure S1: Overview of the model. A) A schematic of the full mass action kinetic model. Here, each arrow represents a
reaction, and the associated rate constant is represented using the notation introduced in the main text. The thickness

of the arrows is proportional to the best fit rate on a log scale (base 10) at 100% ATP and 1.5 μM KaiA. B) The posterior

distributions for all rate constants, initial conditions, and the global error hyperparameter. The rate constants have the

unit s
-1
(·μM-1) and the horizontal axis has a log scale (base 10). The three distributions represent the results from three

independent runs; the log posterior values for the best fits from the three runs are listed. The red lines represent the

best fit from the best run (i.e., the blue distributions). See Materials and Methods and Figure S10 for further details on
the model parameterization method.
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Figure S2: No evidence of direct nucleotide-KaiA interaction. 1H-15N HSQC spectroscopy of the N-terminal fragment
(residues 1–135) of KaiA in the presence and absence of ATP (A) or ADP (B) show no significant differences in chemical

shifts, while spectra of the C-terminal fragment (residues 181–284) show subtle line broadening in the presence of ATP

(C) and ADP (D), suggesting weak, if any, interaction between the nucleotide and the C-terminal fragment. Given these

results, we do not include any direct KaiA-nucleotide interaction in the model.
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Figure S3: Performance of the fitting procedure. A) The time evolution of the log posterior values over the four steps of
the fitting procedure (see Materials and Methods). For step 1 and 3, the individual Markov chains that do not produce

walkers used in the next step are shown in beige. B) A comparison of the performance of Powell’s method, a derivative-

free numerical optimizationmethod, Goodman-Weare (GM), an ensembleMCMCmethod, and conventional Metropolis-

Hastings (MH) algorithm with a Gaussian trial distribution. For the Metropolis-Hastings algorithm the covariance matrix

of the trial distribution is given by the global covariance of the fit (i.e., the last step in panel A), scaled by a factor of

0.005 to give an average acceptance rate of 19.8%. A set of 224 walkers drawn from the prior distribution are used

to initialize the simulations for all three methods; the 224 walkers are evolved independently for Powell’s method and

Metropolis-Hastings, and in an ensemble for Goodman-Weare. Chains that do not reach log posterior above 450 are

shown in beige. C) A comparison of the performance of Powell’s method with Nelder-Mead, a simplex-based numerical

optimization method. The simulations are initialized using the same walkers as in step 2 of A).
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Figure S4: Behavior of the model. A) Model fit to the dephosphorylation dataset. B) The best fit KaiA dwell time as a
function of KaiC phosphoform and nucleotide-bound state. The error bars represent the 95% posterior interval, and

the dashed lines represent the experimental measurements, which did not resolve the nucleotide-bound states. C)

Inorganic phosphate production per KaiC monomer over the course of a phosphorylation reaction. The gray region

represents the experimental bounds on the KaiC hydrolysis rate with 1.2 μM KaiA and no KaiA. See Materials and

Methods for the source of the experimental data in A–C. D) The kinetics of the dephosphorylation reaction in the

absence of KaiA, broken down into the eight individual KaiC species. The gray region represents the 95% posterior

interval. Refer to Figure S1A for the KaiC state names. E) The predicted phosphorylation kinetics at 7 and 1.75 μM
KaiC, both at 100% ATP and 1.5 μM KaiA, compared to experimental measurements. Note that these two time series

are not part of the training set. F) The posterior distributions for kTPr and k
DP

r , the dissociation rates for ATP and ADP,

respectively, in an early iteration of the model. The rate constants have a unit of s
-1
and the horizontal axis has a log

scale (base 10). The long tail to the left of the posterior distribution for kTPr suggests that the model can be simplified by
setting the rate to zero.
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Figure S5: Correlation structure in the MCMC ensemble. A), B), and C) show parameters with a correlation coefficients
larger than 0.9. In B), “X” represents the KaiC phosphoforms. In C), the projections of the 3D scatter plot onto pair-

wise correlations are shown in gray. D) The principal component/eigenvalue spectrum of the covariance matrix (left),

and the alignment of the principal components with the coordinates (right). Here, I denotes the intersection of the
principal component ellipoid with the coordinates and P denotes the projection of the principal components onto the
corresponding coordinates (Gutenkunst et al., 2007). E) The integrated autocorrelation time for the 48 principal compo-

nents (PC); the principal components are indexed from the largest to the smallest. The integrated autocorrelation time

is calculated using an automated windowing procedure (Madras and Sokal, 1988) from the autocorrelation function

averaged over the ensemble. F) The integrated autocorrelation time for the KaiA dissociation constants as a function of

KaiC phosphoform and nucleotide-bound states. G) The ten largest vector components, ordered by absolute value, for

the first and last three principal components.
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Figure S6: The mechanism of kinetic ordering is not well-constrained. A) Spectral clustering on the relative sensitivity of
the T and S phosphoform concentrations at t = 1 h to rate constants in the T- and S-site models, respectively. Only the
parameters with significant (> 0:2) relative sensitivities in either cluster are shown in the plot. “X” stands for either the
T (horizontal axis) or S (vertical axis) phosphoform. The sensitivities are calculated using 500 sampled parameter sets

chosen randomly from the ensemble. The clustering analysis was done using the FindClusters function in Mathematica

12.0. B) Model diagrams that highlight the reactions that have the highest relative sensitivities in the first (left) and

second (right) clusters; the D phosphoform is not shown. C) Selected model parameter values in the two clusters. A

comparison with blue distributions in Figure S1B indicates that the clustering based on sensitivity can be mapped onto
the modes of the posterior distribution.

48

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/835280doi: bioRxiv preprint 

https://doi.org/10.1101/835280
http://creativecommons.org/licenses/by/4.0/


Figure S7: The metabolic compensation property of the Kai oscillator. The fluorescence polarization measurement of
the oscillatory reactions are fit to a curve FP(t) = A cos(2ıT−1t + ffi) + bt + c to extract A) the period (T ) and B) the
normalized amplitude (100A=c ; dimensionless) of the oscillator as a function of [KaiA] and %ATP. Reactions with an
amplitude A < 0:5 are considered to be non-oscillatory. C) Representative traces demonstrating the effect of %ATP
at 1.25 μM KaiA; The polarization data are shifted vertically to avoid overlaps and horizontally to align the first peaks.

D) SDS-PAGE gel image of the supernatant from the KaiB-FLAG immunoprecipitation experiment. E) A Comparison of

the metabolic compensation property of the Phong model without (left) or with (right) a phosphorylation threshold at

KD = 10−3
μM. The model exhibits phase decoherence at low %ATP without a phosphorylation threshold.
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Figure S8: KaiC stimulus-response relations. A) The steady-state stimulus-response relations for T, S, and D phospho-
forms predicted by the model. B) The experimentally determined stimulus-response functions of the T, S, and D phos-

phoforms at three %ATP conditions; the curves are based on refitting the best fit to the steady-state measurements.

C) The model-predicted stimulus-response relation of the total steady-state KaiC phosphorylation level as a function of

%ATP and [KaiA] after refitting to the steady-state measurements. D) The differences in the log parameter values (base

10) of the best fit before and after refit. The differences are ordered by magnitude and only the 10 parameters (in the

multiplicative-factor scheme) with the largest changes are shown.
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Figure S9: KaiA binding affinities of simplified models. A) The posterior distributions for the KaiA dissociation constants
as a function of KaiC phosphoform in model –n, where the KaiA on/off rates are decoupled from the nucleotide-bound

states of KaiC. The dashed lines represent the best fit. B) The posterior distributions for the KaiA dissociation constants

as a function of KaiC phosphoform in model –p, where the KaiA on/off rates are decoupled from the KaiC phosphoform;

the dashed lines represent the best fit. C) Cross sections of the stimulus-response relation at three %ATP, computed

using model –p. The inset represents posterior distribution for the shapes of the stimulus-response function at 25%

ATP. The contours represent the 68% and 95% HDRs, and the gray star represents the model best fit. The shape of the

stimulus-response function is quantified using two metrics: EC10, which quantifies threshold-like behavior, and EC90 –

EC10, which quantifies switch-like behavior. The shape of the experimentally-determined stimulus-response function

at 25% ATP is shown as the yellow star. The dashed line represents (EC10; EC90 − EC10) = (K=9; 80K=9), which
characterizes the shape of a hyperbolic stimulus-response function [A]=(K+ [A]) that has no switching or thresholding.
D) Similar to B), but for model –n,–p, where there is a single KaiA on/off rate in the model. E) Similar to C), but for model

–n,–p.
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Figure S10: Overview of the model with the multiplicative-factor parameterization scheme. Panels A) and B) are analo-
gous to those in Figure S1, but the rate constants are represented as products of the factors that are actually optimized
in the MCMC simulations. In B), the ‹k parameters are fixed parameters determined by detailed balance conditions.
The parentheses denote species-dependent effects; A: KaiA-bound state, P: phosphoform, N: nucleotide-bound state.

See Materials and Methods for further description of the detailed balance conditions and the model parameterization

method.
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