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Abstract 

 

Feeling guilty when we have wronged another is a crucial aspect of prosociality, but its 

neurobiological bases are elusive. Although multivariate patterns of brain activity show 

promise for developing brain measures linked to specific emotions, it is less clear whether 

brain activity can be trained to detect more complex social emotional states such as guilt. 

Here, we identified a distributed Guilt-Related Brain Signature (GRBS) across two 

independent neuroimaging datasets that used interpersonal interactions to evoke guilt. This 

signature discriminated conditions associated with interpersonal guilt from closely matched 

control conditions in a cross-validated training sample (N = 24; Chinese population) and in an 

independent test sample (N = 19; Swiss population). However, it did not respond to observed 

or experienced pain, or recalled guilt. Moreover, the GRBS only exhibited weak spatial 

similarity with other brain signatures of social affective processes, further indicating the 

specificity of the brain state it represents. These findings provide a step towards developing 

biological markers of social emotions, which could serve as important tools to investigate 

guilt-related brain processes in both healthy and clinical populations. 

 

 

Keywords: guilt, brain signature, multivariate pattern analysis, cross-culture, fMRI 
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Introduction 

 

Guilt is an experience that arises when we violate norms or values that we consider 

important—for example, when we have wronged someone whose wellbeing we care about. 

Guilt is considered a quintessential moral emotion, as it plays a crucial role in motivating 

adherence to social norms and promoting conciliation after interpersonal conflict (Baumeister 

et al. 1994; Hoffman 2001; Tangney et al. 2007; Tooby and Cosmides 2008; Sznycer 2018). It 

is also a core feature of several important clinical conditions. On the one hand, a lack of guilt 

is a central feature of psychopathy, and is associated with antisocial behavior (Viding et al. 

2009; Blair 2013). On the other hand, depression, suicidal ideation, and other internalizing 

disorders are associated with excessive guilt (Tilghman-Osborne et al. 2012; Ratcliffe 2014). 

Understanding how the brain represents this complex moral emotion can then inform the 

development of translational applications to clinical settings (Huys et al. 2016). 

Emotion theorists have proposed that guilt arises from a particular type of cognitive 

appraisal that includes several elements: (1) the recognition that one’s actions or inaction is 

causing suffering, (2) affiliation or identification with the suffering other (e.g., a friend or 

other ingroup member), and (3) attribution of blame or responsibility to oneself (i.e., one 

could have acted differently) (Frijda 1993; Baumeister et al. 1994; Chang and Smith 2015). 

Although appraisal theory suggests that guilt arises from a unique set of appraisals with, 

potentially, a unique ‘constellation’ of brain ingredients (Moors et al. 2013), such patterns 

need not necessarily be mapped to brain features in a consistent way across instances of guilt 

and across individuals (Barrett and Satpute 2013). Thus, it remains unclear as to whether 
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there is a reliable ‘signature’ associated with this particular configuration of thoughts and 

beliefs, and whether such processes have consistent brain responses across individuals and 

tasks. Being able to identify such stable signature of guilt could inform us about how similar 

or dissimilar the neural processes related to guilt are to those underlying other affective states 

(e.g., sadness, regret, etc.). In addition, identifying stable guilt-related brain signature would 

be an important step towards understanding the function and dysfunction of the underlying 

brain circuitry in healthy and clinical populations (Woo et al. 2017). 

Two recent neuroimaging studies have manipulated guilt in interpersonal interactions by 

manipulating the two key guilt-related appraisals — (1) perception of others’ suffering, and 

(2) the knowledge that one’s actions caused that suffering (Koban et al. 2013; Yu et al. 2014). 

These studies have shown that both features are determinants of self-reported guilt (but not 

other emotions; Koban et al. 2013) and consistently found that they are associated with 

increased activation of anterior/middle cingulate cortex (ACC/aMCC) and bilateral anterior 

insula (AI). However, the univariate analyses adopted in these studies are not sufficient to 

provide a brain signature of guilt. First, the univariate approach seeks each single voxel that 

shows significant difference in activation strength across different psychological states. The 

differences in psychological states, however, may not be encoded in the activation strength of 

any single voxel; rather, it may be encoded by distinct patterns of activation across a large 

number of voxels (or the whole brain). Second, the univariate analysis is designed to test for 

nonzero correlations between psychological states and brain measures, but not to estimate 

predictive accuracy (effect size) of the identified brain correlates. For example, although both 

Yu et al. (2014) and Koban et al. (2013) reported the activation of the aMCC and anterior 
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insula in high relative to medium or low guilt conditions, the activation in each study cannot 

be used to predict experimental conditions in the other study, rendering it difficult to conclude 

whether the activations in the two studies are reliably similar.  

Here, we address these open questions and develop a neurophysiological signature of 

guilt-related cognitive appraisals. To be clear, we do not treat the signature as the necessary 

and sufficient neurophysiological conditions for guilt, namely, capturing all and only 

neurophysiological states associated with guilt. However, it is still useful as a provisional 

marker that confers information value, as well as a defined brain measure, for provisional 

inference, comparisons, and further testing and validation on the brain bases of social 

emotions (Kragel et al. 2018). Such a neural signature should satisfy three criteria: sensitivity, 

specificity and generalizability (Woo and Wager 2015; Krishnan et al. 2016; Woo et al. 2017). 

Specifically, it should: 1) detect the presence of the cognitive antecedents of guilt (i.e., 

sensitivity); 2) not respond to negative experiences elicited by other affective stimuli, such as 

physical pain and general negative affect (i.e., specificity); and 3) generalize across studies 

and samples where the cognitive antecedents (i.e., not necessarily the subjective feelings) on 

which the signature is trained are present (generalizability).  

To achieve this aim, we used a predictive modeling approach to identify a whole-brain 

pattern that is sensitive and specific to the core antecedent of guilt—being causally involved 

in harming others during interpersonal interaction (Koban and Pourtois 2014; Cui et al. 2015). 

We adopt an analytic approach (Kragel et al. 2018) that has been successfully applied to 

investigating the neural representation of various affective processes, including physical pain 

(Wager et al. 2013), vicarious pain (Krishnan et al. 2016), social rejection (Woo et al. 2014), 
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unpleasant pictures (Chang et al. 2015), basic emotions (Lindquist and Barrett 2012; Kragel 

and LaBar 2015; Wager et al. 2015; Kragel et al. 2016; Saarimäki et al. 2018), empathy 

(Ashar et al. 2017) and related social emotions (Saarimäki et al. 2018). We trained a support 

vector machine classifier to discriminate brain states elicited by social contexts that differ 

only in one’s causal role in the other’s suffering (Study 1; Yu et al. 2014). We then tested the 

model’s generalizability by applying the obtained multivariate guilt pattern to a second 

neuroimaging dataset, which employed a similar interpersonal action-monitoring paradigm in 

a different population and using a different MRI scanner (Study 2; Koban et al. 2013). 

Further convergent and discriminative validity of the pattern was assessed by examining its 

performance in predicting subjective guilt ratings and compensation behavior—participants’ 

willingness to voluntarily accept painful shocks in order to reduce further shocks 

administered to a person they believe they harmed—and testing specificity against several 

other negative affective states (e.g., physical pain, vicarious pain, emotion recall). Altogether, 

datasets from 4 independent studies (N = 86 healthy participants) were used for training and 

testing the signature.  

 

 

Materials and methods 

Participants  

For Study 1, twenty-four undergraduate and graduate students (mean age 22.0 years; 11 

female) were recruited at the Southwest University, Chongqing, China (Yu et al. 2014). 

Nineteen adults (mean age 24.3 years; 9 female) participated in Study 2, conducted in Geneva, 
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Switzerland (Koban et al. 2013). All participants in the final sample (total of N = 43) had 

normal or corrected-to-normal vision and none reported any history of psychiatric or 

neurological disorders. All participants provided informed consent before scanning and were 

paid for their participation. 

 

Procedure 

Both Study 1 and Study 2 adopted an interactive paradigm where a participant in the 

scanner and a participant outside the scanner performed a dot-estimation task that involved 

estimating the number of dots briefly presented on a screen (for similar interactive paradigms, 

see Kédia et al. 2008; Cui et al. 2015; Lepron et al. 2015). Mistakes in the dot-estimation task 

would result in the out-of-scanner participant (hereafter, “partner”) receiving mildly painful 

stimuli. Essentially, both studies manipulated participants’ responsibility for the harm to the 

partner. In Study 1 (Fig. 1A), participants underwent two fMRI scanning blocks. In the first 

block (i.e., Pain block), participants were told that the partner (confederate) would receive 

mild electric shocks if either the partner, the participant, or both made a mistake in a 

dot-estimation task. This allowed us to manipulate increasing levels of guilt, with some guilt 

expected whenever a mistake occurred (“Pain: Partner_Responsible”, “Pain: 

Both_Responsible”), and the most guilt when the participant, but not the partner, responded 

incorrectly (“Pain: Self_Responsible”). On the trials where the partner would receive electric 

shocks, the participants were given the option to intervene and bear a proportion of pain for 

the partner. In the second block (i.e., NoPain block), the participants were told that they 

would interact with the same partners in an almost identical task, with the exception that no 
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pain stimulation was delivered to either side. The NoPain block was included as a guilt-free 

control for psychological processing of correct/incorrect feedback and the process of making 

social comparisons (i.e., comparing one’s own performance with the partner’s performance).  

In Study 2 (Fig. 1B), participants played a similar dot estimation task. In alternating 

blocks, the participant in the scanner (i.e., Play block) took turns with an actual friend who 

was situated outside the scanner (i.e., Observe block) to perform the dot estimation task. Both 

friends would win points for correct responses and lose points (later converted into bonus 

money) for erroneous (incorrect) responses made by either player (Play or Observe condition). 

Crucially, the participant outside the scanner would receive additional painful heat 

stimulation on a randomly selected half of the error trials and non-painful warmth stimulation 

on the other half of the error trials, and were informed when the partner was receiving pain. 

This resulted in a 3-by-2 factorial design with three levels of Feedback (Correct, 

Error_Warmth, and Error_Pain) and two levels of Agency (Play vs. Observe). It was expected 

that the condition in which the participant inside the scanner caused pain to a friend by 

making an error (i.e., Play: Error_Pain) would lead to the highest levels of guilt. 

 

Post-scan manipulation check (emotion ratings) 

After scanning, an emotion manipulation check was employed in both studies. In Study 1, 

participants rated their feelings of guilt, fear, anger, and distress, for each of the 3 

experimental conditions, in which an incorrect response occurred. In Study 2, participants 

rated, their feelings of guilt, fear, anger, shame, and sadness, for each of the 6 experimental 

conditions.  
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Figure 1. Procedure for Study 1 and Study 2. (A) In Study 1, the participant in the scanner was 
randomly paired with an anonymous partner on each trial. The task for the participant and the partner 
was to quickly estimate the number of dots presented briefly on the screen. The feedback of their 
estimations was presented under the photo of the participant and under a blurred picture of face 
representing the partner. If at least one of them estimated wrong, the partner need receive a number of 
mildly painful electric shocks. The participant then indicated the level of pain he/she would be willing 
to take for the partner Finally, a pain stimulation of the participant’s choice was delivered to him/her 
(see ref (Yu et al. 2014) for details). (B) In Study 2, two participants took turns in either performing or 
observing the otherʼs performance in a dot estimation task. The dot estimation task required both 
participants to indicate which side of the screen contained greater number of dots. The participant 
outside the scanning room would receive either painful or nonpainful (i.e., warm) thermal stimulation 
after each trial, depending on the performance of the current player. The full 2 × 3 factorial design 
resulting from the different feedback type in the two task conditions (playing or observing) is 
displayed in the table (see ref (Koban et al. 2013) for details). 

 

Neuroimaging Data Acquisition 

For Study 1, images were acquired using a 3.0-Tesla whole-body scanner (Trio TIM, 

Siemens, Germany). T2*-weighted functional images were acquired in 36 axial slices parallel 

to the AC–PC line with no interslice gap, affording full-brain coverage. Images were acquired 

using an EPI pulse sequence, with a TR of 2200 ms, a TE of 30 ms, a flip angle of 90°, an 

FOV of 220 mm × 220 mm and 3.4 mm × 3.4 mm × 3.5 mm voxels. A high-10 resolution, 
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whole-brain structural scan (1 × 1 × 1 mm3 isotropic voxel) was acquired after functional 

imaging. For Study 2, images were acquired using another 3.0-Tesla whole-body scanner 

(Trio TIM, Siemens, Germany). T2*-weighted EPI sequence (2D-EP, repetition time = 2100 

msec, echo time = 30 msec, flip angle = 80°, 3.2 × 3.2 × 3.2 mm3 voxel size) for acquisition 

of functional images of the whole brain (36 slices). The structural image of each participant 

was recorded with a T1-weighted MPRAGE sequence (repetition time = 1900 msec, 

inversion time = 900 msec, echo time = 2.27 msec, 1 × 1 × 1 mm3 voxel size).  

 

Neuroimaging data analyses 

Preprocessing and univariate general linear model (GLM) analyses. Details of 

preprocessing are described elsewhere (Yu et al. 2014 for Study 1; Koban et al. 2013 for 

Study 2). In brief, univariate general linear model (GLM) analyses were conducted in SPM8. 

For both studies, the critical regressors were those corresponding to the feedback of the visual 

task. For Study 1, trials from the Pain block and the NoPain block were modeled in separate 

GLMs. Each model contained as critical regressors the following conditions, all modeled 

with HRF starting at the onset of the feedback of the dot-estimation task and covering the 

entire feedback phase (duration = 3 secs): the condition in which the participant alone made a 

wrong response (“Pain: Self Responsible”), the condition in which both players made a 

wrong response (“Pain: Both_Responsible”), the condition in which the partner alone made a 

wrong response (“Pain: Partner_Responsible”), and the condition in which both players made 

a correct response (“Pain: Both_Correct”). Also included were regressors of no interest: cue 

for new trial, random dot presentation, estimation responses, compensation responses and 
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pain delivery (the last two were only included for the Pain block). For Study 2, the relevant 

regressors corresponded to the feedback in the six experimental conditions: Error_Pain, 

Error_Warmth, and Correct in both the Play block and the Observe block. The contrast 

images corresponding to the main effects of these regressors versus baseline were extracted 

and used for training and test in the multivariate pattern analysis. 

 

Guilt pattern classification. We trained a linear support vector machine (SVM; slack 

parameter C = 1 was chosen a priori) to discriminate “Pain: Self_Responsible” (high guilt; 

coded as 1 in the classification) versus “Pain: Both_Responsible” (medium guilt; coded as -1 

in the classification) conditions in Study 1 with a leave-one-subject-out cross-validation 

procedure (Friedman et al. 2001; Wager et al. 2013; Woo et al. 2014). The rationale of 

training the classifier to discriminate these two conditions is to avoid as much as possible the 

classifier capturing processes that are not essential for detecting guilt. For example, a 

classifier trained to discriminate the “Pain: Self_Responsible” and the “Pain: 

Both_Responsible” conditions would not only capture the responsibility of the participant in 

causing pain, but would also capture differences in the outcome feedback of participant’s 

performance (i.e., correct vs. incorrect). In the statistical learning literature (Friedman et al. 

2001), there are many types of classification algorithms, but they generally perform very 

similarly on problems such as the one we pursued here. Support vector machine algorithms 

such as the one we used in this study are the most widely used algorithm for two-choice 

classification, and are robust and reasonably stable in the presence of noisy features. 

Exploring different algorithms could be interesting, but may lead to an open-ended, largely 
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methodological pursuit that is not expected to impact performance in a reproducible or 

systematic way in the present datasets. In addition, we wanted to avoid the trap of fitting 

multiple algorithms and picking the best one, thus overfitting the dataset. Therefore, we chose 

a widely used algorithm (whole-mask SVM) whose effectiveness has been well established in 

previous studies. 

The images used in this analysis were the whole-brain activation maps masked by an a 

priori meta-analytic map associated with the term ‘Emotion’ from Neurosynth (uniformity 

test map, thresholded at pFDR < 0.01, accessed as of September 7th 2014, see Fig. S1 for 

details; Yarkoni et al. 2011). This mask was chosen to select voxels that are presumably 

important for emotional processing in the brain. We acknowledge that emotions are likely 

emergent processes from interactions between many brain regions (Scherer 2009; Lindquist 

et al. 2012; Pessoa 2017), potentially including those outside typical ‘emotion’ brain regions 

captured by this Neurosynth mask. However, there is a trade-off between considering all 

possible features (i.e., voxels) and generalizability of the classifier across participants and 

studies, because a classifier may pick up on noisy dimensions that do not generalize well to 

new datasets. Thus, the (methodological) rationale of applying the Emotion mask prior to 

classifier training was feature selection and dimension reduction, with the aim of decreasing 

overfitting and of increasing generalizability. We assume that although Study 1 and Study 2 

induced guilt with slightly different interactive tasks, the core underlying emotional processes 

should overlap. Training and testing the classifier within the emotion mask could reduce the 

possibility of overfitting and therefore increase the generalizability of the classifier to the test 

dataset. Future research with larger sample sizes could investigate the role of other areas in 
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the brain and use nested cross-validation for optimizing feature selection and the trade-off 

with generalizability. 

The procedure trains the classifier on N-1 participants and generates a weight map that 

best classifies the sample, and tests the classification on the left-out (Nth) participant. This 

process is repeated until all participants have served as the test sample for the classification 

algorithm exactly once to obtain their respective cross-validated signature response values. 

The classifier obtained thus represents a hyperplane in the feature space that best separate the 

observations (i.e., individual brain activation maps) in the “Pain: Self_Responsible” condition 

and the “Pain: Both_Responsible” condition.  

 

Guilt pattern expression. The contrast images from the first-level analysis for each 

participant were used to obtain pattern expression values for the guilt pattern. To obtain single 

pattern expression values for each condition and each participant, we computed the dot 

product of the cross-validated weight map of the guilt pattern and the individual contrast 

images. This value reflects the distance between a given activation map and the classifier 

represented by a hyperplane represented in the feature space. These pattern expression values 

were then tested for differences between experimental conditions. We calculated the 

forced-choice classification accuracy for how well the two conditions in questions were 

correctly classified based on their pattern expression values. A sensitive and generalizable 

pattern for interpersonal guilt should be not only able to discriminate the “Pain: 

Self_Responsible” versus “Pain: Both_Responsible”, on which the classifier was trained, but 

also to separate the “Pain: Self_Responsible” and other less guilty conditions in Study 1 (i.e., 
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Pain: Partner_Responsible and Pain: Both_Correct), as well as different guilt states in Study 2. 

Additionally, the pattern expression values for the conditions in the Pain block of Study 1 

were regressed against the willingness to accept the partner’s pain in respective conditions to 

assess their ability in predicting guilt-induced compensation behavior. In the regression 

model, condition was included as a dummy variable to covariate out the variation of 

compensation as a function of conditions.  

For specificity, the predictive power of the interpersonal guilt pattern should not 

generalize to other types of negative affect. To test the specificity of the guilt pattern, we 

obtained individual activation maps for unpleasant experiences other than interpersonal guilt, 

including physical pain and vicarious pain (Study 3, N = 28; Krishnan et al. 2016), and 

emotion-recall (Study 4, N = 15; Wagner et al. 2011). Study 3 dataset contained three sets of 

maps corresponding to three levels of thermal pain (high, medium, low) applied on the volar 

surface of the left forearm and three sets of maps corresponding to viewing three levels of 

unpleasant images (high, medium, low). The emotion-recall dataset contained three sets of 

maps corresponding to participants’ recall of personal memories of past experiences of guilt, 

sadness, and shame. 

      Comparison with other brain signatures. To investigate the spatial similarity of the 

guilt signature with other patterns (masked by the same Emotion meta-analytic map as the 

GRBS), we calculated the spatial similarity (Pearson correlation coefficient) between the 

GRBS and signatures for physical pain (NPS, Wager et al. 2013), picture-induced negative 

affect (PINES, Chang, et al, 2015), social rejection (Woo et al. 2014), vicarious pain (VPS, 

Krishnan, 2016), empathic distress and empathic care (Ashar et al. 2017) and skin 
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conductance and heart rate (Eisenbarth et al. 2016) 

Further, we investigated the local pattern similarity of the GRBD and the PINES within 

the meta-analytic Emotion-mask and within three canonical emotion-related brain 

regions—ACC, insula, and amygdala. We used enhanced scatter plots (Koban et al. 2019) to 

visualize the amount of shared positive, shared negative, and unique positive and negative 

voxel weights for two signatures (z-scored to make them comparable) in those areas. As 

described in detail before (Koban et al. 2019), each voxel’s weights for the two signatures 

were plotted on the x- and y-axis respectively, and this scatter plot was then divided into eight 

sectors (octants), reflecting different directions of shared and unique weights for each pattern. 

Voxels in Octant 1 had positive weights for the GRBS, but near-zero weights for the PINES, 

voxels in Octant 2 had positive weights for both patterns (reflecting shared variance), voxels 

in Octant 3 had positive weights for the PINES but near-zero weights for the GRBS, and so 

on. To quantify number of voxels and their combined weights in each octant, we compute the 

sum of squared distances from the origin (0,0). 

 

Results 

Behavioral Results 

Table S1 summaries the behavioral results of Study 1 (see also Yu et al. 2014). 

Essentially, participants felt highest level of guilt in the Pain: Self_Responsible condition, 

less so in the Pain: Both_Responsible condition and still less in the Pain: Partner_Responsible 

condition (F (2, 46) = 33.43, p < 0.001). This pattern was also observed for the amount of 

pain stimulation the participants chose to bear for the partner (F (2, 46) = 65.09, p < 0.001), 
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and the perceived responsibility in causing the pain stimulation (F (2, 46) = 35.31, p < 0.001). 

Post-hoc tests showed that all comparisons between conditions exhibited significant 

difference for all the three measures (ps < 0.007).  

Table S2 summaries the behavioral results of Study 2 (see also Koban et al. 2013). 

Post-scan self-reported guilt, but not other emotions, was higher for the “Play: Error_Pain” 

condition than the “Observe: Error_Pain” condition (Pairwise Bonferroni-corrected 

comparisons with sign tests, Z = 2.9, p = 0.003). In particular, the emotion shame, which 

frequently co-occur and is easily confused with guilt in everyday usage (Boonin, 1983; 

Fessler, 2004), showed a dissociable pattern in response to our manipulation. Specifically, 

self-reported guilt was significantly higher than self-reported shame in the “Play: Error_Pain” 

condition (mean difference 0.90±0.40, p = 0.037, Bonferroni-corrected for multiple 

comparisons), but not in the “Observe: Error_Pain” condition (mean difference 0.05±0.05, p 

= 0.331), as supported by a significant Emotion type (guilt vs. shame) by condition (“Play: 

Error_Pain” vs. “Observe: Error_Pain”) interaction (F(1, 18) = 4.45, p = 0.049). Taken 

together, the self-reports results confirmed our hypothesis that one’s own responsibility in 

causing harm to others is a crucial cognitive process (or antecedent) underlying guilt. Further 

details regarding behavioral results can be found in Yu et al. (2014) and Koban et al. (2013). 

 

Neuroimaging results 

Testing the sensitivity and generalizability of the Guilt-related Brain Signature (GRBS). 

To determine whether there is a multivariate pattern that can distinguish between the social 

situation where the participants were solely responsible for others’ harm (i.e., high guilt state) 
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and the situation where they were less causally responsible (i.e., low guilt state), we trained a 

linear support vector machine (SVM) to discriminate the “Pain: Self_Responsible” condition 

and the “Pain: Both_Responsible” condition with a leave-one-subject-out cross-validation 

(Friedman et al. 2001). The reason of choosing these two conditions for the comparison is 

that it rules out potential contamination by the feedback of participants’ own performance 

(i.e., correct vs. incorrect guess). Figure 2A shows the unthresholded GRBS weight map 

within the ‘Emotion’ meta-analytic map. As can be seen, the anterior middle cingulate cortex 

(aMCC), dorsomedial prefrontal cortex, bilateral insula, and the midbrain (including the 

periaqueductal grey, PAG) exhibited high positive predictive weights for detecting a guilt 

state (Table 1). For illustration purpose, we show a thresholded weight map obtained from a 

bootstrap procedure (5000 iterations, z > 2; Fig. 2A inset). It should be noted that the weight 

map is a distributed pattern in which all the voxels in the Emotion mask contribute to the 

classification. Examples of unthresholded patterns within aMCC and right AI are presented in 

the insets. 

Pattern expression values reflect the distance between a given activation map and the 

classifier represented by a hyperplane represented in the feature space. To obtain single 

pattern expression values for each condition and each participant, we computed the dot 

product of the cross-validated weight map of the guilt pattern and the individual contrast 

images. These pattern expression values were then tested for differences between 

experimental conditions (Fig. 2B). We computed the forced-choice classification accuracy for 

how well the two conditions in questions were correctly classified based on their pattern 

expression values. Receiver-Operating-Characteristic (ROC) curve was created based on the 
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performance of the classification. Pattern expression of GRBS for the eight conditions in 

Study 1 showed a significant Block (Pain vs. NoPain) by Outcome (Self_Responsible, 

Both_Responsible, Partner_Responsible, and Both_Correct) interaction, F (3, 69) = 7.68, p < 

0.001. Planned comparisons showed that the pattern expression for the Pain: 

Self_Responsible was significantly higher than all the other three conditions in the Pain block 

(ps < 0.05; Fig. 2C), while the pattern expression of the other three Pain conditions did not 

differ significantly between one another. As shown by the ROC curves in Figure 2C, the 

GRBS discriminated “Pain: Self Responsible” versus “Pain: Both Responsible” with 88% (±

7%) accuracy (p < 0.001), “Pain: Self Responsible” versus “Pain: Partner Responsible” with 

71% (±10%) accuracy (p = 0.064), and “Pain: Self Responsible” versus “Pain: Both 

Correct” with 75% (±11%) accuracy (p = 0.023). For the NoPain block, the only significant 

difference in the pairwise comparison was between NoPain: Self_Responsible and NoPain: 

Both_Correct (p = 0.021). 

The majority of the participants (21 out of 24) exhibited larger pattern expression for the 

Self_Responsible than for the Both_Responsible conditions (Pain block; Fig. 2D). Moreover, 

regression analysis showed that the pattern expression values in the Pain block was predictive 

of pain sharing choice (i.e., reparation) (bpattern = 0.092±0.036, t = 2.55, p = 0.015), 

suggesting that the GRBS contains information for atonement in guilt states (Fig. 2E).  
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Figure 2. Guilt-related Brain Signature (GRBS) and its sensitivity. (A) Between-participant SVM 
weight map for guilt states (unthresholded). Bootstrap thresholded maps (5000 interations, z > 2) is 
shown in the inset. Examples of unthresholded patterns within right insula (rAI) and anterior middle 
cingulate cortex (aMCC) are also presented in the inset; small colored squares indicate voxel weights, 
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black squares indicates empty voxels located outside of the GRBS pattern, and red-outlined squares 
indicate significance at p < 0.005 uncorrected (see also Table 1); (B) Cross-validated pattern 
expression computed as the dot product of the GRBS with the activation contrast maps for each 
participant; (C) Receiver operating characteristic curves (ROC) for the two-choice forced-alternative 
accuracies for the training dataset (Study 1). Purple: “Pain: Self_Responsible” vs. “Pain: 
Both_Responsible”; Red: “Pain_Self_Responsible” vs. “Pain: Partner_Responsible”; Gold: “Pain: 
Self_Responsible” vs. “Both_Correct”. (D) Individual participants’ pattern expression values for the 
self_err and both_err conditions. (E) The pattern expression values in the three errorous conditions in 
the Pain block (i.e., Self_Responsible, Both_Responsible, and Partner_Responsible) were predictive 
of the amount of pain sitmulation the participants were willing to tolerate for the confederates.  
 

We then tested whether the predictive power of the GRBS can be generalized to Study 2, 

another fMRI dataset using a similar interpersonal transgression paradigm (Koban et al. 

2013). To this end, we computed pattern expressions of the guilt pattern applied to each 

condition of Study 2. Pattern expression of the GRBS for the six conditions showed a 

significant Feedback-by-Agency interaction, F (2, 36) = 4.59, p = 0.013 (Fig. 3A). Pairwise 

comparisons showed that the pattern expression for the Play: Error_Pain was significantly 

higher than the Play: Correct (p = 0.002), the Observe: Error_Pain (p = 0.016), and 

marginally significantly higher than the Play: Error_Warmth condition (p = 0.075). Pattern 

expression of the Observe conditions did not differ significantly between one another (Fig. 

3A). We then tested the classification accuracy based on these pattern expression values. As 

shown in Figure 3B, the GRBS discriminated “Play: Error_Pain” versus “Observe: 

Error_Pain” with 74% (±10%) accuracy (p = 0.064), “Play: Error_Pain” versus “Play: 

Error_Warmth” with 74% (±10%) accuracy (p = 0.064), “Play: Error_Pain” versus “Play: 

Correct” with 79% (±9%) accuracy (p = 0.019), and “Play: Error_Pain” versus “Observe: 

Correct” with 79% (±9%) accuracy (p = 0.019). In sum, these results show that the 

predictive power of GRBP generalizes to a novel and completely independent dataset of 

interpersonal guilt. 
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In Study 1 and Study 2, we manipulated two critical antecedents of guilt interpersonal 

harm and one’s own responsibility in causing that harm (Koban et al. 2013; Yu et al. 2014). 

The guilt signature therefore should capture their super-additive interaction. The performance 

of our guilt signature met this criterion: it did not discriminate levels of responsibility in 

causing non-harmful consequences (e.g., Study 1, NoPain: Self Responsible vs. NoPain: Both 

Responsible conditions, accuracy = 58%±10%, p = 0.54), nor did it discriminate harmful 

from non-harmful consequences for which the participants were not responsible (e.g., Study 2, 

Observe: Error_Pain vs. Observe: Error_Warmth, accuracy = 47%±12%, p = 1; Observe: 

Error_Pain vs. Observe: Correct, accuracy = 53%±12%, p = 1). However, it did respond, as 

we showed above, when participants were responsible and causing harm.  

 

 
Figure 3. Generalization of the GRBS. (A) In Study 2 dataset, the “Play: Error_Pain” condition (i.e., 
the condition associated with highest guilt) shows the highest pattern expression. In this condition, the 
participant’s action caused pain. In “Warmth” conditions, the participant’s action did not cause pain to 
the partner. In “Correct” conditions, the participant did not make an error and no punishment was 
delivered to the partner. In “Observe” conditions, the participant observed the game and pain was not 
contingent on their actions. (B) ROC curves for the two-choice forced-alternative performance for the 
validation dataset (Study 2). Blue: Play Error Pain vs. Play Error Warmth; Purple: Play Error Pain vs. 
Observe Error Pain; Red: Play Error Pain vs. Play Correct; Gold: Play Error Pain vs. Observe Correct. 
Error bars indicate s.e.m. 
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Testing the specificity of the GRBS. To assess the specificity of the classifier, we 

examined its predictive power in two other independent data sets: one using thermal (heat) 

pain and observed (vicarious) pain (Krishnan et al. 2016), the other using recall task to elicit 

basic and social emotions (Wagner et al. 2011). Univariate analyses reported in these 

previous studies have implicated the brain regions showing highest predictive weights in the 

GRBS (e.g., aMCC, rAI) in the processing of physical and vicarious pain, and in the 

processing of recalled guilt episodes. However, it is an open question whether these brain 

states are distinguishable to GRBS. The multivariate approach allows us to test whether 

shared univariate activations reflect common neural representations (Woo et al. 2014). As can 

be seen from Figure 4 (see also Table S3), GRBS performed at chance level in discriminating 

different intensity of thermal pain stimulation (High vs. Medium: accuracy = 57±11%, p = 

0.57; Medium vs. Low: accuracy = 46±9%, p = 0.85) and different degree of vicarious pain 

(High vs. Medium: accuracy = 50±9%, p > 0.99; Medium vs. Low: accuracy = 57±9%, p = 

0.57). The classifier did not significantly differentiate recalled guilt from either recalled sad 

memories (accuracy = 33±12%, p = 0.30) or recalled shame memories (accuracy = 60±

13%, p = 0.61). These findings suggest that GRBS is better at detecting transgression in 

real-time interpersonal contexts than other unpleasant experiences, including guilt-related 

memories. That is, it does not appear to be selectively activated during retrieval of 

guilt-related memories, but it does respond selectively to feedback indicating that one has 

caused harm to a partner and predicts atonement behavior.  
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Figure 4. Specificity of the GRBS. (A-C) Pattern expression and ROC curves for a thermal pain 
dataset (A), a vicarous pain dataset (B) and an emotion recall dataset (C). GRBS cannot discriminate 
different levels of physical pain, vicarous pain, or different types of emotional memories (including 
guilt-related memories), suggesting that the predictive power of GRBS was specific to detecting one’s 
transgression in the immediate social interaction context (see also Table S3). Error bars indicate s.e.m. 
 

Finally, we investigated the relationship of the GRBS to other, potentially similar brain 

signatures of social-affective processes. Spatial similarity (Pearson correlation coefficients 

across all voxels) between the GRBS and eight other brain signatures are shown in Table S4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835520doi: bioRxiv preprint 

https://doi.org/10.1101/835520
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

and Figure S2. Most patterns showed around zero correlation (r’s between -0.1 and 0.1), with 

the exception of the PINES—developed to track negative affect associated with unpleasant 

images (Chang, et al. 2015)—, which showed a weak positive correlation (r = 0.12) with 

GRBS, thus suggesting some shared variance between those two brain patterns. To examine 

this similarity more closely, we qualitatively examined whether it might be driven by shared 

positive or negative weights in ACC or insula, or other areas often activated by emotional 

events, such as the amygdala (ROIs defined based on anatomical labels and the WFU 

Pickatlas version 3.0.5b (Maldjian et al. 2003)). Figure 5A shows the joint distribution of 

normalized (z-scored) voxel weights of PINES on the x-axis and GRBS on the y-axis (cf. 

Koban et al. 2019). Differently colored octants indicate voxels of shared positive or shared 

negative (Octants 2 and 6, respectively), selectively positive weights for GRBS (Octant 1) 

and for PINES (Octant 3), selectively negative weights for GRBS (Octant 5) and for PINES 

(Octant 7), and voxels where the voxel weights of the two signatures went in opposite 

directions (Octants 4 and 8) (Fig. 5B). Overall correlations between the two patterns in the 

emotion mask (Fig. 5A) and in the three ROIs (Fig. 5C-5E) were relatively weak. Across the 

whole emotion mask, stronger weights (sum of squared distances to the origin [SSDO]) were 

actually observed in the non-shared octants (1,3,5,7). Further, the three ROIs showed distinct 

patterns of covariation between the two patterns. Many voxels in the bilateral amygdalae 

showed positive weights for PINES, but not for GRBS, as reflected by the high SSDO in 

Octant 3 (Fig. 5C). This is in line with the long-established role of the amygdala in emotional 

attention (see Vuilleumier, 2005 for a review) and in assigning affective salience to sensory 

stimuli (LeDoux, 2000). Bilateral insulae showed strongest weights in the Octants 1,2, and 7, 
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indicating many positive weights for guilt specifically (Octant1), as well as shared positive 

weights across the two signatures (Octant 2), but also some many voxels with negative 

weights in the PINES (Octants 6-8) (Fig. 5D). Finally, the ACC showed almost exclusively 

positive weights for GRBS, which were mostly near-zero or even negative for PINES 

(Octants 1 and 8) (Fig. 5E). Thus, while the insula might include some shared positive 

weights, the overall results suggest distinct activation patterns for guilt and picture-induced 

negative affect in emotion-related brain areas. 

 

 
 
Figure 5. Voxel-level spatial similarity between GRBS and PINES. (A) Scatter plots displays 
normalized voxel (within the Emotion mask) beta weights  for GRBS (y-axis) and PINES (x-axis). 
Bars on the right represent the sum of squared distances from the origin (0,0) for each octant. This 
value integrates the number of voxels and their combined weights in each octant, we compute. (B) 
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Differently colored octants indicate voxels of shared positive or shared negative (Octants 2 and 6, 
respectively), selectively positive weights for GRBS (Octant 1) and for PINES (Octant 3), selectively 
negative weights for GRBS (Octant 5) and for PINES (Octant 7), and voxels where the voxel weights 
of the two signatures went in opposite directions (Octants 4 and 8). (C) Voxel-level spatial similarity 
in bilateral amygdalae shows positive weights for PINES, but not for GRBS, as reflected by the high 
SSDO in Octant 3. (D) Voxel-level spatial similarity in bilateral insulae shows strongest weights in the 
Octants 1, 2 and 7, indicating many positive weights for guilt specifically (Octant1), as well as shared 
positive weights across the two signatures (Octant 2), but also some many voxels with negative 
weights in the PINES (Octants 6-8). (E) Voxel-level spatial similarity in ACC shows almost 
exclusively positive weights for GRBS, which were mostly near-zero or even negative for PINES 
(Octants 1 and 8). 

 

Discussion 

Characterizing how specific emotions are generated and represented in the brain is a 

central question in affective neuroscience and important for understanding emotions and their 

regulation in healthy and clinical individuals (Hamann 2012; Bijsterbosch et al. 2018). 

However, given the substantial overlap between brain correlates of different psychological 

processes, including positive and negative emotions (Kober et al. 2008; Lindquist and Barrett 

2012; Wager et al. 2015), identifying distinct brain correlates of different emotions has 

proven to be a very challenging goal, which may require multivariate approaches that go 

beyond contributions of single brain regions (Woo et al. 2014; Kragel and LaBar 2015; 

Skerry and Saxe 2015; Wager et al. 2015). The present results contribute to this undertaking 

by providing first evidence that even complex social or moral emotions such as guilt can be 

accurately identified based on a distributed multivariate brain pattern—the Guilt-related 

Brain Signature (GRBS). Developing a multivariate pattern for detecting the presence of 

guilt-related psychological states helps us understand the neural mechanism underlying guilt 

and atonement, and serves as a tool for future studies that aim at manipulating and/or 

measuring guilt in different environments and populations (Wager et al. 2013; Chang et al. 
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2015; Krishnan et al. 2016). 

Interpersonal guilt reflects the ability to detect and respond to a situation where someone 

else is harmed and in which oneself is the source of that harm (Boonin, 1983). This type of 

guilt is thought to be critical for maintaining social norms and interpersonal relationships 

(Baumeister et al. 1994). On the transgressor’s side, accurately detecting such a situation and 

reacting appropriately allows them to restore the reputation and social relationship with the 

victim (via direct reciprocity; Yu et al. 2014) and other relevant individuals in the social 

network (via indirect reciprocity and social image; Stearns and Parrott 2012). Moreover, the 

transgressor’s expression of guilt and conciliatory gestures reaffirm the abiding power of the 

violated social norms and compensate the loss of the victim (Bicchieri 2005).  

Paralleling an approach used for other social-affective processes (Woo et al. 2014; 

Krishnan et al. 2016), we used SVM on fMRI data to classify the presence versus absence of 

the core appraisal of guilt, namely, one’s responsibility in causing harm to another. The 

GRBS had good cross-validated predictive accuracy (71% – 88%) and significantly predicted 

compensation behavior, thus linking cognitive brain processes to relevant behavioral 

outcomes. Further, the GRBS showed high accuracy (74% – 79%) on a completely 

independent test set from a different laboratory and culture, demonstrating its robustness to 

variations in experimental settings and cultural context.  

This signature, while being a distributed pattern across the entire “Emotion” network 

(Yarkoni et al. 2011), exhibits its highest predictive weight in the aMCC and right anterior 

insula (Fig. 2A). Although these peak voxels parallel the previous univariate analyses (Koban 

et al. 2013; Fourie et al. 2014; Yu et al. 2014; Cui et al. 2015), they nevertheless contribute 
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independently to the understanding of the neurocognitive mechanism of detecting one’s 

transgression and reacting accordingly. The multivariate analysis derives a weight map that 

captures the core processes underlying interpersonal transgression and guilt. This abstract 

weight map can then be applied to new observations from the same or different datasets to 

assess its sensitivity, specificity, and generalization (Wager et al. 2013). Specifically, when it 

comes to the aMCC and anterior insula, extensive research, including those of our own, has 

demonstrated the lack of functional specificity in these areas using neuroimaging 

meta-analyses and multivariate pattern analysis (e.g., Lindquist et al. 2012; Wager et al. 2016; 

Yarkoni et al. 2011). We have also argued, and provided evidence, that multivariate 

pattern-related activity in such areas offers greater functional specificity than simply 

interpreting overlapping activation (Kragel et al. 2018). For example, in Kragel et al. (2018), 

we found that the aMCC contains a population-level multivariate representation (pattern) 

related to pain that generalizes across 3 types of somatic pain (tested across 6 studies), but is 

not shared by 3 kinds of negative emotion tasks or 3 kinds of cognitive control tasks. We 

argue that multivariate pattern analysis works because it picks up, to some degree, on 

differential patterns of activation across neural populations (and microvasculature) that are 

unevenly distributed across voxels (for review and discussion, see Kragel et al. 2018).  

Supporting the notion of distinct multivariate patterns for different affective processes, 

we found only weak correlations between the GRBS and other pain- and emotion-related 

brain patterns, such as the PINES. Further, even local patterns in emotion-related 

areas—including the ACC and insula—showed only limited shared variance between the 

GRBS and the PINES. Interestingly, the patterns of shared versus unique weights for the two 
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signatures were distinct across the three regions of interest. The insula showed some evidence 

of common positive weights for both GRBS and PINES, which is in line with partially shared 

processes. In contrast, amygdala and ACC voxels with positive weights for one signature 

were often near-zero or had even negative weights in the other signature, suggesting very 

distinct local contributions to the overall patterns. 

Moreover, in the current study, the signature was derived from a sample of Chinese 

participants (East Asian culture) and the predictive power of this pattern can be partially 

generalized to a sample of Caucasian participants (Western culture), suggesting that the core 

underlying neurocognitive processes may be similar even across different cultures and 

experimental settings. The GRBS was also sensitive to the levels of guilt (as manipulated via 

agency of another’s pain) in the interactive action monitoring task. Yet, the signature did not 

discriminate levels of either physical pain (i.e., receiving painful stimulation; Krishnan et al. 

2016) or vicarious pain (i.e., observing others receiving painful stimulation; Krishnan et al. 

2016; Fig. 3A-3C), which are both arousing, aversive, salient experiences. Interestingly, the 

signature did not discriminate guilt-related memories from other type of negative emotional 

memory either (Fig. 3D-3F). Memories of guilt episodes may involve recognition of one’s 

causality in other’s suffering, but likely do not involve the processes of detecting and 

responding to such components in the here-and-now social context (Redcay and Schilbach, 

2019). Taken together, our findings suggest that in an interpersonal transgression context, the 

transgressor’s brain does not only capture the distressful consequence of others per se, as in 

the case of experiencing vicarious pain, but also actively seeks the attribution of the harm and, 

when one’s own responsibility is confirmed, decides how to respond (e.g., atonement, 
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apology). This finding, together with the predictive power of the GBRS in tracking reparation 

behavior (i.e., compensation), suggests that brain activation patterns identified here may 

primarily implicate the impact of guilt-related appraisal on subsequent behavioral responses, 

in line with the notion that emotions serve to guide adaptive behaviors and generate 

corresponding action tendencies. These effects may be absent in recalled guilt, thus 

precluding a successful decoding of GBRS in this condition 

Further, we note that individual differences in GRBS responses were not predictive of 

guilt ratings in either dataset. One explanation is that the ratings of subjective feelings of guilt 

were collected after the task in the scanner and thus were simply recall in nature, whereas the 

GRBS, as our results show, is specific to detecting and responding to immediate transgression. 

Alternatively, the individual differences in GRBS response may be influenced by other 

factors such as overall signal, and our sample may be underpowered to detect small 

between-person correlations. Future studies that simultaneously record fMRI and more 

sensitive online measures of emotional feeling of guilt (e.g., eye gaze pattern, skin 

conductance; see Yu et al. 2017) may be able to explore GRBS’s roles in the temporal 

unfolding of guilt experience. Namely detecting the presence of cognitive antecedents of guilt, 

encoding guilt feelings as experienced immediately in interpersonal transgression, and 

predicting atonement following guilt (Amodio et al. 2007). More broadly, the multivariate 

approach can inform our understanding of the neural basis of social cognition by developing 

brain signatures that capture specifically defined cognitive processes and testing their 

generalizability to other social cognitive functions. This way, we would be able to restructure 

our understanding of social cognition on the basis of underlying brain representations. 
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A conceptual clarification about guilt and responsibility is worth noting. In this paper, 

“guilt” refers to a constellation of cognitive-affective processes in response to interpersonal 

transgression and harm (e.g., detecting harm and assigning responsibility), rather than simply 

the feeling/experiential component of this constellation of processes. On this 

conceptualization of guilt, recognizing one’s causal responsibility is an integral part of guilt 

(Ellsworth and Smith 1988; Tracy and Robins 2006), rather than an independent process that 

is parallel to guilt, at least in most situations. Nevertheless, we acknowledge that it is an 

interesting and important empirical question as to whether guilt feelings can arise, in certain 

populations or circumstances, without objective causal responsibility in interpersonal harm. 

For example, survivors of disasters or atrocities sometime report that they experience “guilty” 

feelings towards other victims who suffer much more than they do, despite the fact that they 

are not causally responsible for other victims’ suffering. One possible psychological 

mechanism underlying such “survivor guilt” is that survivors falsely attribute responsibility 

of others’ suffering to themselves (O’Connor et al. 2000). Similarly, “existential” guilt, 

negative feelings towards oneself as a purposeless or unworthy being experienced by people 

with certain type of depression, seems to be a result of illusory perceptions of responsibility 

(Ratcliffe, 2014). Conversely, some individuals (e.g., those high in psychopathy; Cima et al. 

2010) may have the attribution of responsibility for harm without feeling guilt. The guilt 

signature could be used as a tool to empirically test these hypotheses. Unfortunately, direct 

tests of these interesting possibilities are beyond the scope of this paper, and await further 

studies designed for this purpose. 

It may be argued that the term ‘guilt’ is not used equivalently across Chinese and Swiss 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835520doi: bioRxiv preprint 

https://doi.org/10.1101/835520
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

cultures and languages. This is related to a more profound issue as to how we could know 

whether or not people living in different cultures and speaking different languages are 

experiencing the same kind of emotion when they claim that they are feeling guilty (English), 

or schuldig (German), or coupable (French), or nei jiu (Chinese)? In this study, we adopt the 

assumption that ‘guilt’ refers to a category of emotional states, under which different variants 

of guilt are species with variant-specific defining features or differentia. The specific type of 

guilt that we investigated in this study, as we have argued, is defined by two critical features 

(Baumeister et al. 1994; Tracy and Robins, 2006): (1) recognizing a breach of moral norms, 

typically involving harm to another, and (2) attributing causal responsibility in such violation 

to oneself. These two features have been demonstrated to be reliable cognitive antecedents of 

guilt in both Western and East Asian cultures (Benedict, 1946/2005; Piers and Singer, 1971; 

Bedford and Hwang, 2003; Wong and Tsai, 2007), and have been manipulated to induce guilt, 

in both Western (Bastin et al. 2016; Cracco et al. 2015; Koban et al. 2013; Seara-Cardoso et 

al. 2016) and East Asian participants (Leng et al. 2017; Furukawa et al. 2019; Yu et al. 2014; 

Zhu et al. 2019). In line with these theoretical and empirical work, we utilized these two 

defining features of guilt in the tasks of our training and test datasets. Importantly, it is not 

required that participants from all cultures experience this type of guilt to the same degree in 

response to the same situations. Our analyses require only that it is experienced to some 

degree by participants across cultures. We showed that the guilt-related pattern we identified 

was indeed preserved cross-culturally, at least in the context of our study, thereby providing 

empirical support for common cross-cultural brain processes. This finding extends the 

commonality in the cognitive-affective processes underlying guilt to the level of (partially) 
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shared cognitive-affective processes underlying guilt and its brain correlates across cultures 

and context. It is an interesting and important empirical question for future research as to 

what extent this signature could discriminate different variants of guilt both within and across 

cultures (i.e., causing physical harm versus social harm; causing harm to a friend versus a 

stranger). 

To be sure, we are not the first to explore how emotions arise by relating appraisal theory 

with pattern recognition analyses of human neuroimaging data (for a review, see Adolphs, 

2017). For example, Skerry and Saxe (2015) show that discrete emotion categories that 

people assign to a given emotion-eliciting event can be accurately predicted by a set of 

abstract features of the events (e.g., whether the protagonist is responsible for the outcome in 

the event). This abstract feature-based model outperformances the predictions based on two 

other influential models of emotion (i.e., the basic emotion theory and the arousal-valence 

theory). Adopting a similar theoretical framework (i.e., the appraisal theory of emotion), our 

study can be seen as a case study focusing on interpersonal guilt, with responsibility for harm 

to another as its core appraisal. In fact, in Skerry and Saxe (2015)’s fine-grained feature space 

consisted of 38 appraisal dimensions, the feature “caused by self” is most consistently 

highlighted to be relevant to guilt. Future research could leverage this feature-space approach 

to formally test psychologically meaningful hypotheses concerning the distinction (or the 

lack thereof) between guilt and other related social and non-social emotions, such as shame, 

embarrassment, and non-social regret. This approach also provides an interesting, brain-based 

way to compare emotions across cultures. Although a one-to-one mapping of emotion terms 

across languages may be problematic, abstract event features may be less likely to be ‘lost in 
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translation’ and shared cross-culturally (Hurtado de Mendoza et al. 2010; Fiske, 2019).  

The generalizability of the GRBS to Study 2 seems limited. In particular, the difference 

between the pattern expression of the “Play: Error_Pain” condition and that of the “Play: 

Error_Warmth” condition was at trend level. This might be in part due to the small sample 

size of Study 2. Another conjecture is that given that the classifier was trained to discriminate 

one’s causal responsibility in interpersonal harm, it might be more sensitive in detecting 

differences in responsibility than in detecting differences in the severity of harm. This is 

supported by the fact that the signature responded more distinctively to “Play: Error_Pain” 

versus “Observe: Error_Pain”, two conditions that differ only in appraisals of responsibility 

but not in severity of harm. Therefore, we acknowledge that our goal of developing a 

sensitive, specific and generalizable brain signature of guilt has yet to be fully achieved; but 

we believe the present multivariate pattern is both useful and a critical motivating stepping 

stone to large-scale studies that would be required to perform a more definitive identification 

of cross-cultural neural representations of guilt. Future studies are needed to achieve this goal 

in larger samples and to incorporate more fine-grained manipulation of guilt (e.g., 

responsibility, severity of harm, relationship between transgressors and victims, etc.). 

Nevertheless, the utility of a provisional model such as ours might become clearer when 

compared with measures in other domains that have been only partially validated and/or have 

limited specificity. For example, face-related activity is routinely identified in fMRI in 

individuals, and in spite of little to no validation of its specificity to faces in that individual 

(and debatable specificity of the general area of the ‘fusiform face area’), it is routinely used 

to infer the persistence of face-related representations in working memory (Druzgal and 
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D’Esposito 2001; Lewis-Peacock and Postle 2008), long-term memory (Polyn et al. 2005), 

attention (Yeung et al. 2006), and others. Even relative or limited specificity is reasonable for 

use of an fMRI pattern for further testing, though the wisdom of doing so must be evaluated 

on a case by case basis. In a similar vein, there are very few biomarkers in medicine that are 

highly sensitive and specific, but even moderate diagnostic value confers information. In the 

same spirit, our guilt-related pattern confers information value, as well as a defined brain 

measure, for provisional inference, brain comparisons, and further testing and validation on 

the brain bases of social emotions. 

To conclude, we developed a neural signature, the Guilt-related Brain Signature (GRBS), 

that is sensitive and specific to the critical appraisals underlying the experience of guilt in 

social interactions, namely, recognizing one’s responsibility in causing other’s suffering 

(Frijda 1993; Baumeister et al. 1994). Showing its predictive validity for behavioral outcomes, 

the response of this signature predicts atonement decisions following transgression even after 

statistically controlling for experimentally manipulated degree of responsibility. Supporting 

its discriminative validity, the GRBS did not respond to guilt memories or memories of other 

negative emotions, neither did GRBS respond differently to increasing levels of vicarious 

pain or increasing levels of agency in non-harmful outcomes. It was also not strongly 

correlated with any other previously developed affect- or pain-related signature, ruling out the 

possibility that it reflects general negative affect or other related categories of social emotions 

like empathy for pain and perception of self-agency. This signature can be used in future 

studies for detecting guilt- and transgression-related neural processes, for example by 

manipulating other important social factors, such as intentions of transgression and 
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interpersonal relationship between transgressors and victims, by applying it to harm-based 

moral decision-making context (Yu, Siegel, Crockett, 2019), or by testing its response in 

different clinical populations such as those characterized by excessive or reduced experience 

of guilt (i.e., internalizing disorders versus psychopathy).  
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Table 1. Activations in the thresholded GRBS map 

 

Regions Hemi 
max.  

z-value 

Cluster size 

(voxels) 

MNI coordinates 

x y z 

Positive weights        

  aMCC L/R 4.52 256 0 32 20 

  Insula R 2.92 12 -30 18 -18 

  Inferior frontal (pars 

obitalis) 
R 3.02 33 44 24 -10 

       

Negative weights       

  Inferior temporal cortex R 3.09 18 58 -18 -32 

  Thalamus R 3.01 31 10 -4 8 

  Cerebellum L 3.41 16 -44 -72 -38 

Note: Clusters shown here contain more than 10 contagious voxles significant at p < 0.005 

uncorrected. aMCC = anterior middle cingulate cortex. 
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Table S1. Emotion Ratings of Study 1 (Means and SDs) 

Item 
Pain block  

Partner_Responsible Both_Responsible Self_Responsible F (2, 46) 

Pain shared 2.0 (0.6)a 2.8 (0.6)b 3.1 (0.6)c 65.09*** 

Responsibility 3.0 (1.8)a 4.6 (1.6)b 7.1 (1.6)c 35.31*** 

Guilt 1.8 (0.9)a 3.4 (1.7)b 5.3 (2.3)c 33.43*** 

Distress 2.0 (1.5)a 2.8 (2.0)a 4.0 (2.4)b 10.51*** 

Fear  2.6 (1.8) 3.3 (2.3) 2.9 (1.9) 1.47 

Anger 2.0 (1.6) 2.6 (2.3) 2.0 (1.3) 1.89 

Note: “Pain shared” is the average amount of pain the participants chose to take for the partner (1: 
“take none”; 4: “take all”). This measure was taken after each erroneous trial. “Responsibility” and 
emotions were rated on 1 – 9 scales after the MRI scanning. Standard deviations are shown in 
parentheses. Significant differences (critical α < 0.05 Bonferroni corrected) in pair-wise comparison 
within each row are denoted by different subscripts. ***P < 0.001 in repeated measures ANOVA. 
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Table S2. Emotion Ratings of Study 2 (Means and SDs) 

Item 
Play block  Observe block 

Correct Error Warmth Error Pain  Correct Error Warmth Error Pain 

Fear 1.2 (0.9) 1.1 (0.3) 1.9 (1.2)  1.2 (0.9) 1.4 (1.1) 2.2 (1.4) 

Shame 1.0 (0.0) 2.2 (1.4) 3.2 (1.4)  1.0 (0.0) 1.1 (0.5) 1.2 (0.9) 

Guilt  1.0 (0.0) 2.5 (1.4) 4.1 (1.1)  1.0 (0.0) 1.0 (0.0) 1.3 (0.9) 

Sadness 1.0 (0.0) 1.9 (1.5) 2.2 (1.5)  1.0 (0.0) 1.3 (0.7) 1.9 (1.5) 

Anger 1.0 (0.0) 2.9 (1.4) 3.3 (1.8)  1.0 (0.0) 1.1 (0.3) 1.6 (1.0) 

Note: The five different emotions were rated on 1 – 5 Likert scales, after the main experimental blocks.
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Table S3. Pattern expressions of GRBS in specificity tests 

Item High/Guilt Medium/Shame Low/Sad 

Physical pain -0.39 (0.98)* -0.26 (0.70) -0.17 (0.76) 

Vicarious pain -0.56 (0.83)** -0.43 (0.79)** -0.57 (0.80)*** 

Emotion memory 2.20 (2.73)** 1.75 (2.81)* 3.74 (2.82)*** 

Note. Standard errors are shown in parentheses. Significant differences relative to baseline (0) are 
denoted by asterisk: * p < 0.05, ** p < 0.01, *** p < 0.001. No significant difference was observed 
between conditions. 
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Table S4. Spatial similarity between GRBS and other social-affective brain signatures 

Signature Spatial similarity 

(Pearson r) 

NPS -0.05 

PINES 0.12 

Rejection -0.02 

VPS -0.04 

GSR 0.09 

HR -0.06 

Empathic Distress -0.03 

Empathic Care -0.03 

 
Note. NPS = neurologic signature of physical pain (Wager et al., 2013), PINES = picture-induced 
negative emotion signature (Chang et al., 2015), Rejection = social rejection (Woo et al., 2014), VPS 
= vicarious pain signature (Krishnan et al., 2016), GSR = social threat-induced skin conductance 
signature (Eisenbarth et al., 2016), HR = social threat-induced heart rate signature (Eisenbarth et al., 
2016), Empathic Distress = empathic distress signature (Ashar et al., 2017), Empathic Care = 
empathic care signature (Ashar et al., 2017). 
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Figure S1. “Emotion” mask used in training the Guilt-related Brain Signature (GRBS). This is the 

uniformity test map (or the “forward inference map” in previous terminology) of the term “emotion” 

on the Neurosynth website (http://neurosynth.org/analyses/terms/emotion/, accessed on September 7th 

2014). 
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Figure S2. Spatial similarity (Pearson correlation) between the GRBS and eight other brain signatures. 

NPS = neurologic signature of physical pain (Wager et al., 2013), PINES = picture-induced negative 

emotion signature (Chang et al., 2015), Rejection = social rejection (Woo et al., 2014), VPS = 

vicarious pain signature (Krishnan et al., 2016), GSR = social threat-induced skin conductance 

signature (Eisenbarth et al., 2016), HR = social threat-induced heart rate signature (Eisenbarth et al., 

2016), Empathic Distress = empathic distress signature (Ashar et al., 2017), Empathic Care = 

empathic care signature (Ashar et al., 2017).  
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