Prominent members of the human gut microbiota express endo-acting 0 glycanases to initiate mucin breakdown

Lucy I. Crouch ${ }^{1 *}$, Marcelo V. Liberato², Paulina A. Urbanowicz ${ }^{3}$, Arnaud Baslé ${ }^{1}$, Christopher
A. Lamb ${ }^{6}$, Christopher J. Stewart ${ }^{4}$, Katie Cooke ${ }^{4}$, Mary Doona ${ }^{6}$, Stephanie Needham ${ }^{7}$, Richard R. Brady ${ }^{6}$, Janet E. Berrington ${ }^{8}$, Katarina Madunic ${ }^{9}$, Manfred Wuhrer ${ }^{9}$, Peter Chater ${ }^{1}$, Jeffery P. Pearson ${ }^{1}$, Robert Glowacki ${ }^{10}$, Eric C. Martens ${ }^{10}$, Fuming Zhang ${ }^{11}$, Robert J. Linhardt ${ }^{11}$, Daniel I. R. Spencer ${ }^{3}$ and David N. Bolam ${ }^{1 *}$
${ }^{1}$ Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
${ }^{2}$ Universidade de Sorocaba, Programa de Processos Tecnológicos e Ambientais, Sorocaba, SP, Brasil.
${ }^{3}$ Ludger Ltd, Culham Science Centre, Abingdon, UK.
${ }^{4}$ Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
${ }^{5}$ Department of Colorectal Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
${ }^{6}$ Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
${ }^{7}$ Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
${ }^{8}$ Newcastle Neonatal Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
${ }^{9}$ Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands.
${ }^{10}$ Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
${ }^{11}$ Department of Chemistry and Chemical Biology, Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
*To whom correspondence should, be addressed: david.bolam@ncl.ac.uk or lucy.crouch@ncl.ac.uk.

Supplementary Information

Mucin substrates and structures

Commercially available PGM substrates dissolved in pure water were too opaque to monitor growth through optical density. However, centrifugation to remove precipitate produced a substrate that could be used in for growth experiments. 70 and 80% of the original dry mass remained in the soluble portion of PGM type II and III, respectively. Incubations of an Oglycan active enzyme against the precipitate and soluble fractions showed that the majority of accessible substrate was in the soluble fractions (Supplementary Fig. 20). The soluble fraction and precipitate were also incubated with polysaccharide lyases previously characterised or predicted to have activity against HS, CS and HA^{1-3}. The results indicate that these polysaccharides also remain in the soluble fraction (Supplementary Fig. 20)

The mucous surface of the colon is composed of two layers. The dense inner mucus layer of the colon is an abiotic environment formed by MUC2 still attached to the luminal epithelial cells to protect them from any contact with the HGM. The upper layer is formed from MUC2 released from the inner layer and is niche to some species of the HGM that can access host glycans as a food source ${ }^{4}$. The upper layer is renewed from the inner layer every 1-2 hours ${ }^{5,6}$ and there is a close association between this process and commensal microbes, which has been demonstrated in germ-free mice where the mucin was observed to remain attached to the goblet cell rather than being released ${ }^{7}$. This indicates that the HGM promotes the production of healthy mucus barrier and highlights the mutualistic relationship between host and HGM^{8}.

Previous characterisation of the O-glycans of MUC2 from human sigmoid colon samples showed over 100 different structures, but general trends included mono- to tri-sialyation, predominantly core 3 structures, sulfation predominantly on galactose, fucose predominantly on GlcNAc (both Lewis a and x structures, decorating the chains and not capping), low occurrence of blood group sugars and elongation of up to three LacNAcs ${ }^{9}$. Blood group epitopes have been found to be more common in other mucins, such as salivary, respiratory and cervical ${ }^{10-12}$. This means that the variability would be relatively low between individuals and allow for selection of particular mutualists. The stomach mucin is predominantly Muc5AC and Muc6 and both are characterised as having a capping a1,4-GIcNAc ${ }^{13}$, but only Muc5AC has Lewis b structures ${ }^{14}$. A large diversity in chain length and composition of gastric O-glycans has also been noted, with many structures seemingly specific to an individual ${ }^{15}$.

Gene upregulation and protein expression data sets used in the literature

Two gene upregulation data sets were used for B. thetaiotamicron from two different points of growth (early and late phase) on mucin O-glycans from PGM type III relative to glucose (Supplementary Fig. 1) ${ }^{3}$. Single gene upregulation data sets were included for B. fragilis and B. caccae also grown on mucin O-glycans from PGM III relative to glucose ${ }^{16,17}$ (Supplementary Fig. 2). Five different datasets were used to look at upregulated genes from A. muciniphila (Supplementary Fig. 3). The different reports containing the datasets state that either strain ATCC BAA835 or DSM22959 were used but these are the same strains from different banks. There were two data sets originated from the same report, one recorded gene fold upregulation between A. muciniphila growth on GlcNAc and purified mucin O-glycans from PGM III and also the gene fold upregulation in A. muciniphila between a fibre-rich diet and a fibre-free diet in mice ${ }^{17}$. Two data sets used purified PGM III, but with the O-glycans still attached to the protein (one against glucose and one GlcNAc) ${ }^{18,19}$. The final two data sets were proteomics of cells grown on PGM III versus glucose grown cells and the proteomics of the outer-membrane of these cells ${ }^{20}$.

Genomic context of mucin upregulated GH16 family members

The upregulated GH16 family member from $B t$ is in a PUL with two SusCD pairs, two predicted SGBPs and a GH from family 18 (Supplementary Fig. 5). The two mucin upregulated GH16 family members from B. fragilis (BF4058 ${ }^{\mathrm{GH} 16}$ and BF4060 ${ }^{\mathrm{GH} 16}$) are in a PUL that included a SusCD pair and two more predicted CAZymes, BF4059 and BF4061, belonging to the GH20 and GH35 families, respectively. There are three GH16 family members upregulated on O-glycans from B. caccae and two of these (BACCAC_02679GH16 and Baccac_02680 ${ }^{G H 16}$) are adjacent to each other and are close homologues to those found in B. fragilis. Baccac_03717 ${ }^{\mathrm{GH} 16}$ is the third mucin upregulated GH16 from B. caccac. All B. caccae GH16 family members are in PULs that contain SusCD pairs. In the A. muciniphila genome the glycan degrading apparatus is not organised in to PULs and none of the three GH16 genes upregulated during growth on mucin (Amuc_0724 ${ }^{\text {GH16 }}$, Amuc_0875 ${ }^{\mathrm{GH} 16}$ and Amuc2108 ${ }^{\mathrm{GH} 16}$) are near other predicted CAZyme genes ${ }^{17,18,20}$.

Sequence identity and molecular architecture of the GH16 enzymes

The sequence identity between the mucin upregulated GH16 family members was relatively low with values of between 24-34 \% (Supplementary Table 1). The exceptions to this were two pairs of B. fragilis and B. caccae enzymes in homologous PULs: BF4058 ${ }^{\mathrm{GH} 16}$ and BC02679GH16 and BF4060 ${ }^{\mathrm{GH} 16}$ and BC2680 ${ }^{\mathrm{GH16}}$ with 87 and 79% identity, respectively. All enzymes were predicted to be composed of a single catalytic module only, with the exception of BT2824 ${ }^{\text {GH16 }}$, which also possesses an N-terminal module of uncharacterised
function (DUF4971; Supplementary Fig. 5). Signal peptide predictions using SignaIP 5.0 revealed that most of the Bacteroides spp. GH16 family members were predicted to have a Type II signal peptide (SP), suggesting surface localisation, except for the closely related BF4060 ${ }^{\text {GH16 }}$ and Baccac_02680 ${ }^{\text {GH16 }}$, which had Type I SP predictions and are thus likely periplasmic. All three A. muciniphila GH16 enzymes are predicted to have a Type I SP, suggesting they are periplasmic, although intriguingly Amuc_2108 ${ }^{\text {GH16 }}$ also has a C-terminal hydrophobic region followed by a highly positively charged sequence after this, indicative of a potential TM anchor. Notably, a previous proteomics study has shown that Amuc_2108 ${ }^{\text {GH16 }}$ is present in the outer membrane in cells grown on mucin, supporting the TM anchor prediction ${ }^{20}$. It is possible that SignalP 5.0 is not a very accurate tool for A. muciniphila proteins yet (Supplementary Table 2).

Growth of human gut bacteria on O-glycan substrates

Human gut Bacteroides spp. and A. muciniphila were tested for their ability to grow on mucin as the sole carbon source (Supplementary Fig. 21). Of the 8 Bacteroides spp. tested, all could grow to some extent on PGM types II and III. A. muciniphila consistently grew to a higher OD than the Bacteroides spp. indicating that the former can access a greater proportion of the substrate. Growth of the Bacteroides spp. on PGM type III was commonly biphasic, indicating that the species utilises more than one substrate during a single growth curve in order of preference. Mucin preparations are likely contaminated with other host polysaccharides from glycocalyx sources that are difficult to completely remove, including chondroitin sulfate (CS), heparan sulfate (HS) and hyaluronic acid (HA). Incubation of the polysaccharide lyases from the B. thetaiotaomicron PULs known to degrade these host glycans ${ }^{1,2}$ with both types of PGM show these polysaccharides are present (Supplementary Fig. 20). However, growth on PGM with a B. thetaiotaomicron strain where the PULs required for the degradation of these other host glycans have been knocked out shows little difference relative to the wild-type strain. There is slightly less initial growth, but the biphasic trend remains, suggesting the mucin is responsible for this. Furthermore, some species show very little growth on CS, HS or HA, but do grow on PGM (e.g. B. fragilis and B. vulgatus). Showing priority for utilisation of other host glycans over O-glycans has been observed previously in B. thetaiotaomicron ${ }^{3}$.

Phylogenetic analysis

Phylogenetic analysis was carried out to explore the relationship between these nine mucin upregulated GH16 family members and those previously characterised (Supplementary Fig. 6). The data show that the newly identified mucin upregulated GH16 family members stem out of β-glucanase enzymes and not with any of the GH16 family members with activities on
β-galactans, xyloglucan or chitin $\beta 1,6$ gluconatransferases. There was significant clustering of the GH16 family members active on O-glycans.

Further phylogenetic analysis was carried out with GH16 family sequences from a number of Bacteroides spp. alongside the O-glycanase GH16 enzymes described in this report (Supplementary Fig. 7). In this tree, the O-glycanase enzymes cluster away from GH16 family characterised to have agarase, porphyranase, glucanase and glucosidase activities, however, they do not all cluster together. This likely represents an example of convergent evolution in the O-glycanase activity evolving multiple times from different sources. From the tree, however, the enzymes used by other species to degrade O-glycans can start to be predicted. Notably, Amuc_0875 ${ }^{\text {GH16 }}$ clusters closely with GH16 sequences characterised as endo- $\beta 1,3$-galactosidases shown to degrade arabinogalactan ${ }^{21}$ and also has comparable activity to one of these enzymes on $\beta 1,3$-galactan (Supplementary Fig. 16 m). This raises the question of whether Amuc_0875 ${ }^{\mathrm{GH} 16}$ is a true O-glycanase, as is has relatively poor activity, however, the gene is consistently upregulated in the numerous data sets available and A. muciniphila also cannot grow on arabinogalactan ${ }^{17}$. We consider this activity to be coincidental and it much more likely that the true target for this enzyme may be a type of Oglycan structure not able to be tested in the set of assays reported here.

Interestingly, the genomic contexts of these genes are highly variable in terms of the PUL structures and adjacent genes. The GH16 family members that might be predicted to be Oglycanases are often just with a SusCD pair, with proteases or orphan genes (Supplementary Fig. 5). Furthermore, there are other GH16 enzymes in B. thetaiotaomicron, B. fragilis and B. caccae that have quite high sequence homology to the O-glycanases that are not upregulated with growth on O-glycans. This could be due to them being obsolete or alternatively they could have a different substrate. GH16 family members from pathogenic bacteria also from the Bacteroidetes phylum were included also in the analysis and they cluster quite well with the O-glycan active GH16 enzymes found in mutualists. A GH16 from Tannerella forsythia clusters well with BACCAC_03717 ${ }^{\mathrm{GH1} 16}$, for example (Supplementary Fig. 7).

Assays against classic GH16 substrates

Recombinant forms of these GH16 family members were tested for activity against a range of β-glucan and β-galactan polysaccharides that have previously been shown to be substrates for GH16 family members. The data revealed little activity for most of the enzymes, except Amuc_0724 ${ }^{\text {GH16 }}$, which displayed endo-like activity against marine laminarin and weak activity against barley β-glucan and lichenan (Supplementary Fig. 16).

The reason for this is discussed in the Main and Supplementary Discussions on the structures of these enzymes. BF4060 ${ }^{\mathrm{GH} 16}$, Baccac_02680 ${ }^{\mathrm{GH} 16}$ and Baccac_03717 ${ }^{\mathrm{GH} 16}$ also displayed some very weak activity against laminarin, but not any of the other plant polysaccharides tested. We also tested other host polysaccharides that are likely usually present in the gut in the mucus layer, including CS, HS and HA. No products were observed for CS and HA by TLC, but for HS there was a single product observed for BT2824 ${ }^{\text {GH16 }}$, BF4060 ${ }^{\mathrm{GH} 16}$, Baccac_03717 ${ }^{\mathrm{GH} 16}$, Amuc_0724 ${ }^{\mathrm{GH} 16}$ and Amuc_2108 ${ }^{\mathrm{GH} 16}$, and two different products for Amuc_0875 ${ }^{\text {GH16 }}$. The linker between heparan sulfate polysaccharides and protein is GlcA $1,3 \mathrm{Gal} \beta 1,3 \mathrm{GaI} \beta 1,4 \mathrm{Xyl}$, which has a potential GH 16 cut site. We explored the potential for the O-glycan active enzymes to cleave this linker, but no activity was observed against human syndecan (Supplementary Fig. 16q).

Substrate specificity of the GH16 family members

A variety of defined O-glycan and human milk-derived oligosaccharides were used to assess the specificity of the GH16 substrates further (Supplementary Figs. 12-15 and Supplementary Table 4). These data indicate that the enzymes are endo $\beta 1,4-$ galactosidases with a requirement for a $\beta 1,3$-linked sugar at the -2 position. Notably, none of the GH16 enzymes require sulfation or fucosylation decorations for activity. The Amuc_0875 ${ }^{\text {GH16 }}$ enzyme could not completely degrade TriLacNAc overnight. Most of the GH16 enzymes hydrolysed the TriLacNAc rapidly under the conditions tested (Supplementary Fig. 13), however, BF4058 ${ }^{\mathrm{GH} 16}$ and Baccac_02679 ${ }^{\mathrm{GH} 16}$ displayed significantly lower activity against the hexasaccharide and degradation of triLacNAc by Amuc_0875 ${ }^{\mathrm{GH} 16}$ was only detectable after overnight incubation.

All enzymes, bar Amuc_0875 ${ }^{\text {GH16 }}$, could also degrade Lacto-N-neotetraose (LNnT) and Lacto-N-tetraose (LNT) overnight, suggesting plasticity in the positive subsites of these GH16 family members (Supplementary Fig. 14). However, substrate depletion assays indicate differences between the GH16 enzymes in terms of the importance of these subsites for activity (Supplementary Fig. 13). The activity against LNnT and LNT is comparable to TriLacNAc in the case of Baccac_03717, for example, but is much lower for BF4060 ${ }^{\mathrm{GH} 16}$. BT2824 ${ }^{\mathrm{GH} 16}$, Baccac_02680 ${ }^{\mathrm{GH} 16}$, Amuc_0724 ${ }^{\mathrm{GH} 16}$ and Amuc_2108 ${ }^{\mathrm{GH} 16}$, but not dramatic. Furthermore, three of the enzymes showed preferences between the two milk oligosaccharides. Baccac_02680 ${ }^{\mathrm{GH} 16}$ degrades LNT preferentially, whereas BT2824 and Amuc0724 prefer LNnT. This may indicate a difference in preference for a $\beta 1,3$ and a $\beta 1,4$ linkages between the -2 and -3 subsites. Interestingly, when these GH16 family members were tested against a form of LNT where the GlcNAc is replaced with a GaINAc no activity was detected apart from trace activity for Amuc_0875 ${ }^{\mathrm{GH} 16}$. The difference between these
sugars is the position of the hydroxyl at C4 being equatorial and axial in GIcNAc and GalNAc, respectively. An axial bond at this position means the $\beta 1,4$-linked Gal at this position would be at an angle relative to the rest of the oligosaccharide and no longer forming a linear chain. The lack of activity suggests that the axial hydroxyl in a GalNAc would generate a significant steric clash with the protein enough for it not to be accommodated. Sensitivity to the sugar in the -2 subsite has been documented previously ${ }^{22,23}$. There is also evidence to suggest that a sugar in the -2 subsite is required for activity for most of the GH16 enzymes tested here. For example, the Gal $\beta 1,4 \mathrm{GIcNAc} \beta 1,4 \mathrm{Gal}$ product that remains after TriLacNAc and LNnT degradation is not further degraded, although BT2824 ${ }^{\mathrm{GH} 16}$ and Baccac_03717 ${ }^{\mathrm{GH} 16}$ do appear to have trace activity against this (Supplementary Fig. 14).

Activity against blood group hexasaccharides type II was then used to probe the flexibility the enzymes have in the negative subsites (Supplementary Fig. 13 \& 14). These glycans have a LNnT core with an a1,2-fucose and a $1,3-$ GalNAc or galactose (blood group A and B, respectively) on the galactose at the non-reducing end. Again different enzymes showed different preferences, but the activity of most of the enzymes were affected by these decorations relative to LNnT , with Amuc_0724 ${ }^{\text {GH16 }}$ being the exception. Only BT2824 ${ }^{\mathrm{GH} 16}$ seemed to show a preference for the hydrolysis of blood group B over A. Blood group H was also tested to look at the effect of the 11,3 -GalNAc or galactose on activity. BF4060 ${ }^{\mathrm{GH} 16}$, Baccac_02680 ${ }^{\mathrm{GH} 16}$, Baccac_03717 ${ }^{\mathrm{GH} 16}$ and Amuc0725 showed an increase in activity with blood group H relative to A and B, suggesting the $\alpha 1,3$ decorations are not well accommodated by these enzymes. In contrast, BT2824 ${ }^{\mathrm{GH} 16}$, BF4058 ${ }^{\mathrm{GH} 16}$ and Amuc_2108 ${ }^{\mathrm{GH} 16}$ activities were unaffected with the removal of the $\alpha 1,3$-GalNAc or galactose, which suggests that the a1,2-fucose is predominantly causing the reduced activity relative to LNnT. During prolonged incubation most of the enzymes had some activity against the blood group milk oligosaccharides and, furthermore, the products from porcine small intestinal mucin included those where the $\alpha 1,3-$ GalNAc would be in the -4 position plus a variety of fucose and sulfate decoration (Fig. 2b, glycans 9, 11, 13 and 16).

All nine GH16 family members were tested against a series of disaccharides, but no activity could be observed (Supplementary Fig. 15). This is to be expected with endo-acting enzymes, as more than two subsites to be occupied to provide the binding energy for catalysis. Activity was possible for most enzymes against Lacto-N-triose, reiterating the requirement for a sugar in the -2 position (Supplementary Fig. 15g). A number substrates were tested that had an α-linked sugar at this position, but no activity was seen
(Supplementary Fig. 15). This is most likely due to the α-linkage causing a more kinked chain that cannot be accommodated by the enzyme similar to when a GaINAc is in the -2 .

Reports of O-glycan degradation by members of the GH16 family

Although most of the GH16 family members have been characterised to have activity against terrestrial or marine plant polysaccharides, there have been two previous reports of GH16 enzymes with activity against host glycans. One of these was the activity of a GH16 family member from Sphingobacterium multivorum against keratan sulfate ${ }^{24,25}$. This is usually an environmental bacterial species, but can cause human infections, usually in immunocompromised patients ${ }^{26}$. Phylogenetic analysis of this GH16 shows the S. multivorum sequence clusters with the Bacteroides spp. sequences investigated in this study (Supplemental Fig. 6). This enzyme was determined to hydrolyse the Gal $\beta 1,4 \mathrm{GIcNAc}$ bond to release predominantly 6-O-sulfo-GIcNAc $\beta 1,3 \mathrm{Gal}$ and GIcNAc $\beta 1,3 \mathrm{Gal}$ products from a variety of keratan sulfate sources. Interestingly, the S. multivorum enzyme was found to also cleave milk oligosaccharides capped with sialic acid, which is different from what we observe in the O-glycan GH16 enzymes characterised here.

The second example of a GH16 with activity against O-glycans is from Clostridium perfringens and capable of removing the GlcNAca1,4Gal disaccharide at the non-reducing end of the O-glycan ${ }^{27,28}$, which is an epitope associated only with stomach mucin ${ }^{29,30}$. The crystal structure revealed a unique binding site to other GH16 family members with a pocket in the negative subsite area tailored to fit the disaccharide substrate ${ }^{31}$ (Supplementary Fig. 18b).

Keratanases

Keratan sulfate chains are anchored to the protein through N -linkages, O -linkages and O mannosylation are termed KS-I, KS-II and KS-III, respectively ${ }^{32}$ (Supplementary Fig. 4). Examples of areas of the body enriched in KS-I, KS-II and KS-III include the cornea, skeletal and brain, respectively. There are three classes of enzymes that have endo-activity against keratan - the β-galactosidases described above and keratanases type I and II. Type I enzymes are also β-galactosidases, but require sulfation for activity and cannot hydrolyse unsulfated glycans ${ }^{25}$. Type II enzymes are endo- β - N -acetylglucosaminidases, so hydrolyse a different linkage, and releases disaccharides and tetrasacchairdes with varying amounts of sulfation and also tolerate fucose ${ }^{33,34}$. There have been other reports of endo- β galactosidases active on keratan sulfate and milk oligosaccharides from Citrobacter freundii, Coccobacillus spp. and B. fragilis, but insufficient information in the literature prevents us from confirming if these are from the GH16 family ${ }^{25,35-37}$.

The GH16 enzymes reported here produced products from egg and bovine corneal keratan sulfate visible by TLC and were analysed in the same way as O-glycan products with procainamide labelling and LC-FLD-ESI-MS (Supplementary Fig. 11). The results indicate some sulfate groups can be tolerated by the GH16 family members, but heavily sulfated Oglycan fragments could not be degraded further (for example, glycans 13-15). This activity is distinct from Keratanase type I and II activities.

Further discussion on the crystal structures of the O-glycan active GH16 family members

The characteristics of the ligand in complexed O-glycan active GH16 structures
The non-reducing end Gal and GIcNAc modelled in the most stable ${ }^{4} \mathrm{C}_{1}$ chair conformation, whereas the reducing end Gal, occupying the -1 subsite, presented a ${ }^{1} S_{3}$ skew boat conformation. The occurrence of a less stable conformation at this position has been described previously as a structural adaptation during hydrolysis in a GH16 1,3-1,4- β glucanase ${ }^{38}$. The resolution of the ligand in the BF4060 ${ }^{\mathrm{GH16}}$ structure was insufficient to define the conformation of the monosaccharides, so the ligand was modelled based on the trisaccharide from the Baccac_02680 ${ }^{\mathrm{GH} 16 E 143 \mathrm{Q}}$ structure.

Accommodation of a glucose or galactose at the -1 subsite

At the - 1 subsite, the selection of glucose or galactose is very significant as the C 4 points in towards the binding cleft. Analysis of the different GH16 structures available, however, reveals no strict rule for how space is created for the equatorial glucose hydroxyl or tightened up for the axial galactose hydroxyl. However, the residues on finger 1 always play a key role in controlling this space. In the Bacteroides structures described in this study, a tryptophan from finger 1 blocks off the possibility of an equatorial positioning in this area to produce a galactose-tailored pocket (Fig. 3b and Supplementary Fig. 19a). In contrast, a surface representation of the Amuc_0724 ${ }^{\mathrm{GH} 16}$ structure shows a relatively open space around the C 4 and C 6 formed by finger 1 being further away, with an arginine replacing the tryptophan and relatively small residues lining the β-strands in this area (Supplementary Fig. 19a). This is a possible structural explanation for the activity of this enzyme towards glucose polymers.

A closer look at this region in Amuc_0724 ${ }^{\text {GH16 }}$ structure, shows that this open space is actually a short tunnel and possibly accommodates decoration of the galactose (Fig. 2c). Pockets and tunnels above the -1 subsite have previously been observed in a number of

GH16 structures, for example, the ZgLamC GH16-E142s structure from Zobellia galactanivorans (Supplementary Fig. 19b). This enzyme is active on laminarin (predominantly $\beta 1,3$-glucan with occasional $\beta 1,6$-branching), but also mixed-linked glucan. It was crystallised with a glycerol inside the -1 subsite pocket and it was suggested that it may be able to accommodate a branching $\beta 1,6$ monosaccharide ${ }^{39}$. To test this idea out for the O-glycan active GH16 family members, especially Amuc_0724 ${ }^{\text {GH16 }}$, we took lacto-N-hexaose and enzymatically removed the capping galactose to leave a lactose with two GIcNAc linked to the galactose through $\beta 1,3$ and $\beta 1,6$ bonds. Most of the enzymes were active on the same structure with just the $\beta 1,3$-linked GlcNAc (Supplementary Fig. 15g), however, no significant activity could be seen against the branched substrate. This pocket, therefore, most likely cannot accommodate a $\beta 1,6-\mathrm{GlcNAc}$ branch.

GH16 family members that have to accommodate galactose at this position include the agarases, porphyranases and pectic galactanases. In the agarase structures currently available that are complexed with substrate or product, a glutamic acid from the β-sheet of the cleft coordinates with and fills the space around the C 4 hydroxyl. A proline from finger 1 sits adjacent to this (Supplementary Fig. 18c) ${ }^{40}$. In the porphyranase structures, there is a glutamic acid in approximately the same position, but an arginine from finger 1 also coordinates with C 4 and fills this space (Supplementary Fig. 18c) ${ }^{22}$. From these observations about the -1 subsite in all GH16 structures, we can conclude that selection of glucose of galactose at the -1 position is achieved in multiple ways by GH16 family members. There are currently no pectic $\beta 1,4$-galactanase structures to allow comparison.

Specificity for a 1,3-linkage between the -1 and -2 sugars

The linkage between the monosaccharides in the -1 and -2 subsites is a 1,3 for some GH16 family members, but this is not the case for xyloglucan hydrolases, xyloglucan endo transferases, pectic galactosidases and chitin $\beta 1,6 \mathrm{gluconatransferases}$. commonly selected for in β-glucanases through the geometry of the two hydrophobic platforms that the monosaccharides at these positions sit on, which are at 90° relative to each other ${ }^{41}$. In the structures available for β-glucan-active enzymes, where a glucose would be in the -2 position, an aromatic residue from finger 3 or the local β-strand acts as a platform for the α-face of this sugar to stack parallel to. The endo-mucinase GH16 structures presented in this study also have this aromatic platform, so are most comparable to glucanases in this respect (Fig. 3b). This structural observation corresponds with the biochemical characterisation of the O-glycan active GH16 family members described above as requiring a $\beta 1,3$-linked GlcNAc in the -2 subsite for activity.

Interactions with the β-face of this sugar is usually through residues coming from finger 1 and from the β-sheet in the cleft, but these are variable even within enzymes with the same activities. The structures available for the enzymes degrading marine polysaccharides have to deal with an alpha linkage at the -2 position, an anhydrogalactose in the case of agarases and carrageenanases, and sulfation at C6 for porphyranases. This does not involve aromatic stacking but coordination through polar interactions and non-parallel m-stacking with aromatic residues (Supplementary Fig. 18c).

The N-acetyl coming off the C 2 of the GlcNAc for the O-glycanases points out into solution away from the cleft, so accommodating this in a specific cleft pocket is not an issue for the enzymes reported here. The cleft of the GH16 does have to be fairly open to allow the N acetyl and would be too bulky for GH16 enzymes with more closed clefts, so this is likely one criterion for O-glycan active GH16 enzymes. The C6 of the GlcNAc in the -2 subsite of the O-glycanases is bonded to a methionine in Baccac_02680 ${ }^{\mathrm{GH} 16}$ and BF4060 ${ }^{\text {GH16 }}$ and likely a leucine in Amuc0724 ${ }^{\mathrm{GH} 16}$ and Baccac_03717 ${ }^{\mathrm{GH} 16}$ (Fig. 3b and Supplementary Fig. 19a).

In addition to β-glucanases, those GH16 family members accommodating glucose-type sugars at the -1 include the xyloglucan hydrolases, xyloglucan endo transferases and chitin $\beta 1$,6gluconatransferases. These are repeating $\beta 1,4$-linkages, so require an open structure around the C 4 allowed by the absence of a Finger 1 . These enzymes also therefore do not have the characteristic of a 1,3 linkage between the -1 and -2 subsites. Structures of the xyloglucan active enzymes show a significantly different cleft to accommodate the $\beta 1,4$-linkages (Supplementary Fig. 18a). There are currently no structures available of chitin $\beta 1,6$ gluconatransferases for comparison.

The -3 subsite and beyond

The area around the -3 subsite galactose is fairly open in the Baccac_02680 ${ }^{\mathrm{GH} 16 \mathrm{E} 143 \mathrm{Q}}$ and BF4060 ${ }^{\text {GH16 }}$ structures and the same is true when the product is overlaid into Baccac_03717 ${ }^{\mathrm{GH} 16}$. The extended Finger 2 in the Amuc $0724^{\mathrm{GH} 16}$ structure, however, could theoretically interact with a longer substrate. An extensive loop structure reaching down to the binding cleft has been seen before in other GH16 structures, such as the к-
Carrageenases from Zobellia galactanivorans and Pseudoalteromonas carrageenovora (Supplementary Fig. 18d), which possess a similar Finger 2 and it interacts with the -4 sugar in the case of the P. carrageenovora structure ${ }^{42}$.

In the O-glycan structures presented here, there is space at the -3 for a $\beta 1,4$-linked galactose, but it is easy to see that if the sugar in the -3 did not continue the chain in a linear
fashion then that may not be accommodated. We were able to see this when we tested for activity of the nine O-glycan active GH16 enzymes against Galß1,4GalNAcß1,3Gal $\beta 1,4 \mathrm{Glc}$ and saw negative results, except in the case of Amuc_0875 ${ }^{\text {GH16 }}$ that had trace activity. The axial position of the hydroxyl at C4 in a GalNAc would mean the galactose in the -3 would now be kinked, therefore showing specificity for a GIcNAc at the -2 position. Agarases, carrageenases and porphyranases (galactans) have fairly linear glycans due to alpha bonds when a 1,3 -linkage is used, which alternates with the $\beta 1,4$ linkage (Fig. 3e).

The positive subsites

The positive subsites of retaining GH enzyme structures are rarely occupied with product due to the low binding affinity of the positive subsites to facilitate rapid leaving of the product after the initial glycosylation step ${ }^{43,44}$. However, structures of a GH16 from Phanerochaete chrysosporium with different glucan products bound allow us to hypothesise about how the positive subsite sugars would be accommodated in the O-glycan-active GH16 enzymes. Orientation of the glucose in the +1 subsite of three structures (PDB codes 2W52, 2WLQ and 2 WN) has the β-face fronting a tryptophan from finger 6 . The O-glycan active enzymes have an aromatic that overlays well with this tryptophan. Analysis of the positive subsites of GH16 structures show that the majority of them have an aromatic in this area and it could straddle both the +1 and +2 subsites or just one depending on the structure in question. Aromatic residues are sometimes not present in the +1 subsite of GH16 enzymes active on marine polysaccharides. The position of the +1 sugar in the P. chrysosporium GH16 suggests the hydrolysis of a $\beta 1,3$ bond. For the O-glycan active GH16 enzymes, however, this would be a $\beta 1,4$ bond and rotation of the sugar to reflect this would place the C6 pointing into the cleft of the enzyme. Overlay of the +1 glucose from $2 W L Q$ indicate that this would be spatially difficult to accommodate, but it is possible the sugar sits slightly further away from the cleft than seen in glucanases (Fig. 3d).

The importance of the positive subsite residues was analysed by comparing the rates against triLacNAc versus milk oligosaccharides LNnT and LNT (Supplementary Fig. 13). The activity of BF4060 ${ }^{\text {GH16 }}$ on the milk oligosaccharides was significantly decreased compared to triLacNAc, but this was not the case for Baccac_03717 ${ }^{\mathrm{GH} 16}$. The structures of Baccac_03717 ${ }^{\mathrm{GH} 16}$ is much more open at this position, whereas BF4060 ${ }^{\mathrm{GH} 16}$ has a much more closed slot for the +1 sugar to sit in and a serine (S174) coming from Finger 5 could potentially interact with the N -acetyl and pincher it against Finger 6 (Fig. 3d). Therefore, BF4060 ${ }^{\text {GH16 }}$ could be showing specificity for GlcNAc in the +1 , but it is also possible that the enzymes are sensitive to the number of positive subsites that are filled.

For the Amuc_0724 ${ }^{\text {GH16 }}$ structure, the tryptophan at this position (W279) had dual occupancy so could be modelled to sit in the cleft or flipped out of this position away from the cleft. The flipped out position of the tyrosines from the two molecules in the unit cell may be an artefact of crystallographic dimer rather than biologically relevant (Supplementary Fig. 19c). A dynamic tyrosine has also been seen in the positive subsites of a GH16 from B. ovatus with β-glucanase activity ${ }^{45}$ (Supplementary Fig. 17d).

Accommodating sulfate, fucose and blood group decorations along the polyLacNAc chain by O-glycan active GH16 family members

O-glycans can have 3 (capping) and 6S sulfation on galactose and 6S also on GlcNAc. Overlay of the product from the 5OCQ к-carrageenases from Pseudoalteromonas carrageenovora with the Amuc_0725 ${ }^{\mathrm{GH} 16}$ structure shows how the tunnel structure in the -1 subsite could accommodate a sulfate group on the Gal at 6 , however this is most likely not a possibility for the Bacteroides spp. structures (Supplementary Fig. 19e) ${ }^{42}$. Overlay of 3ILF porphyranase from
Zobellia galactanivorans with the O-glycan active GH16 structures mimics a 6 S sulfation of the GlcNAc in the -2 subsite and all enzymes show potential in accommodating this decoration (Supplementary Fig. 19f) ${ }^{22}$. At the -3 subsite, C6 of the galactose points into solution, so could possibly accommodate sulfate here also.

Fucose can be linked through $\alpha 1,2 / 3 / 4$ bonds in O-glycans. It is most likely not possible for a Gal to be in the -1 position if there is a fucose attached. However, C3 of the GIcNAc in the -2 position looks open to fucose decoration at this position as the clefts have a fairly open structure. We characterised if the nine O-glycan active enzymes could accommodate blood group sugars appended to the -3 Gal. The a1,2-linked fucose would point into the cleft and the $\alpha 1,3$-linked GalNAc or Gal would be at approximately 90° to the rest of the linear substrate. As a general trend, the blood group sugars reduce activity of the O-glycan active GH16 enzymes and the removal of the $\alpha 1,3$-linked GalNAc or Gal attenuates this effect (Supplementary Fig. 13). There does look like there are pockets for a $\alpha 1,2$-linked fucose in the -3 ' position in the crystal structures presented in this study.

Minimum substrate requirements

For all the structures, there are three well-defined subsites from -2 to +1 with some possible interactions at the -3 and +2 positions. In contrast, it is not unusual for other GH16 family members to have longer binding clefts, which generates a more specific substrate specificity and requirement for the subsites to be filled for catalytic activity, for example AgaD, which requires a minimum product size of DP8 ${ }^{46}$. The relatively small number of defined subsites in
the O-glycan active GH16 family members described in this study and their minimum substrate length being DP3 likely reflects the variable nature of O-glycan as a substrate, particularly in terms of the sulfate and fucose decoration.

Activities of the two other CAZymes from the B. fragilis PUL

There are two genes predicted to be from other CAZy families in the B. fragilis PUL where the O-glycan active GH16 genes are encoded. They are from families GH20 and GH35 and both predicted to have SPI type signal peptides (Supplementary Table 2). Recombinant versions of these enzymes were expressed as described for the GH16 enzymes in this report and tested against a variety of defined oligosaccharides to determine specificity (Supplementary Fig. 10 and 22).

BF4061 ${ }^{\text {GH35 }}$ was found to be active against LacNAc, Lacto-N-biose and Galß1,3Glu, partially active against lactose and inactive against Galß1,4Gal. This indicates a preference for GIcNAc>GIc>Gal in the +1 position, thus a specificity for mucin-type oligosaccharides over milk and plant-type saccarides (Supplementary Fig 10). There was no activity found against fucosylated versions of these oligosaccharides, indicating that fucose needs to be removed prior to this enzyme carrying out its function. This has been seen previously for host glycans, where fucose needed to be removed from the antenna of complex N -glycans from human $\lg A$ colostrum before the galactosidase (BT0461 ${ }^{\text {GH2 }}$) could act ${ }^{47}$. This galactosidase comes from a different CAZy family, which illustrates how different bacteria evolve different ways of dealing with similar substrates. Interestingly, BF4061 ${ }^{\text {GH35 }}$ described here can accommodate both $\beta 1,3$ and $\beta 1,4$-linkages, whereas BT0461 ${ }^{\text {GH2 }}$ can only accommodate $\beta 1,4$-linkages and these specificities represent the linkages present in their respective substrates. BF4061 ${ }^{\text {GH35 }}$ can also remove $\beta 1,3$-galactose when there is a GalNAc in the +1 subsite and both capping galactose from lacto-N-hexaose, where these substrates represent O-glycan core and branched structures, respectively (Supplementary Fig. 10).

The second CAZyme, BF4059 ${ }^{\text {GH20 }}$, was very broad acting in accommodating a variety of linkages and monosaccharides in the +1 position (Supplementary Fig 22).
Chitooligosacchrides of a degree of polymerisation between 2 and 5 could be degraded to GIcNAc and non-reducing end GIcNAc could be removed from O-glycan-type structures (GIcNAc $\beta 1,3$ Gal, Lacto-N-triose and Lacto-N-hexaose). BF4059GH20 can also degrade GaINAc $\beta 1,3 \mathrm{Gal}$, but not GaINAc $\beta 1,3 \mathrm{GaI} \beta 1,4 \mathrm{Glu}$. N-glycan type structure GIcNAc $\beta 1,2$ Man could also be degraded, reflecting the broad activity of this enzyme.

The predicted localisation of these enzymes and their specificities most likely places them in 512 the periplasm of B. fragilis acting on the GH16 products that have been imported into the 513 cell. The action of these enzymes plus fucosidases and sulfatases would allow degradation of the GH16 products down to monosaccharides.

Cartmell, A. et al. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America 114, 7037-7042, doi:10.1073/pnas. 1704367114 (2017).

Ndeh, D. et al. The human gut microbe Bacteroides thetaiotaomicron encodes the founding member of a novel glycosaminoglycan-degrading polysaccharide lyase family PL29. The Journal of biological chemistry 293, 17906-17916, doi:10.1074/jbc.RA118.004510 (2018).

3 Martens, E. C., Chiang, H. C. \& Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell host \& microbe 4, 447457, doi:10.1016/j.chom.2008.09.007 (2008).

Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America 105, 15064-15069, doi:10.1073/pnas. 0803124105 (2008).

Ambort, D. et al. Calcium and pH -dependent packing and release of the gel-forming MUC2 mucin. Proceedings of the National Academy of Sciences of the United States of America 109, 5645-5650, doi:10.1073/pnas. 1120269109 (2012).

Johansson, M. E. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PloS one 7, e41009, doi:10.1371/journal.pone. 0041009 (2012).

Johansson, M. E. et al. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell host \& microbe 18, 582-592, doi:10.1016/j.chom.2015.10.007 (2015).

8 Hansson, G. C. Mucus and mucins in diseases of the intestinal and respiratory tracts. J Intern Med, doi:10.1111/joim. 12910 (2019).

9 Larsson, J. M., Karlsson, H., Sjovall, H. \& Hansson, G. C. A complex, but uniform Oglycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19, 756-766, doi:10.1093/glycob/cwp048 (2009).

Andersch-Bjorkman, Y., Thomsson, K. A., Holmen Larsson, J. M., Ekerhovd, E. \& Hansson, G. C. Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Molecular \& cellular proteomics : MCP 6, 708-716, doi:10.1074/mcp.M600439-MCP200 (2007).

Thomsson, K. A., Schulz, B. L., Packer, N. H. \& Karlsson, N. G. MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15, 791-804, doi:10.1093/glycob/cwi059 (2005).

Schulz, B. L. et al. Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions. The Biochemical journal 387, 911-919, doi:10.1042/bj20041641 (2005).

Fujita, M. et al. Glycoside hydrolase family 89 alpha-N-acetylglucosaminidase from Clostridium perfringens specifically acts on GlcNAc alpha1,4Gal beta1R at the non-reducing terminus of O-glycans in gastric mucin. The Journal of biological chemistry 286, 6479-6489, doi:10.1074/jbc.M110.206722 (2011).

Nordman, H. et al. Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. The Biochemical journal 364, 191-200, doi:10.1042/bj3640191 (2002).

Jin, C. et al. Structural Diversity of Human Gastric Mucin Glycans. Molecular \& cellular proteomics : MCP 16, 743-758, doi:10.1074/mcp.M116.067983 (2017).

Pudlo, N. A. et al. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans. MBio 6, e01282-01215, doi:10.1128/mBio.01282-15 (2015).

Desai, M. S. et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167, 1339-1353.e1321, doi:10.1016/j.cell.2016.10.043 (2016).

Ottman, N. et al. Genome-Scale Model and Omics Analysis of Metabolic Capacities of Akkermansia muciniphila Reveal a Preferential Mucin-Degrading Lifestyle. Applied and environmental microbiology 83, doi:10.1128/aem.01014-17 (2017). Shin, J. et al. Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion. Frontiers in microbiology 10, 1137, doi:10.3389/fmicb.2019.01137 (2019). Ottman, N. et al. Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Frontiers in microbiology 7, 1157, doi:10.3389/fmicb.2016.01157 (2016).

Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature microbiology 3, 1314-1326, doi:10.1038/s41564-018-0258-8 (2018).

Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908-912, doi:10.1038/nature08937 (2010).

Hehemann, J. H., Kelly, A. G., Pudlo, N. A., Martens, E. C. \& Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences of the United States of America 109, 19786-19791, doi:10.1073/pnas. 1211002109 (2012).

Kitamikado, M., Ito, M. \& Li, Y. T. Isolation and characterization of a keratan sulfatedegrading endo-beta-galactosidase from Flavobacterium keratolyticus. The Journal of biological chemistry 256, 3906-3909 (1981).

Ito, M., Hirabayashi, Y. \& Yamagata, T. Substrate specificity of endo-beta-galactosidases from Flavobacterium keratolyticus and Escherichia freundii is different from that of Pseudomonas sp. Journal of biochemistry 100, 773-780, doi:10.1093/oxfordjournals.jbchem.a121770 (1986).

Abro, A. H., Rahimi Shahmirzadi, M. R., Jasim, L. M., Badreddine, S. \& Al Deesi, Z. Sphingobacterium multivorum Bacteremia and Acute Meningitis in an Immunocompetent Adult Patient: A Case Report. Iranian Red Crescent medical journal 18, e38750, doi:10.5812/ircmj. 38750 (2016).

Ashida, H. et al. A novel endo-beta-galactosidase from Clostridium perfringens that liberates the disaccharide GIcNAcalpha 1-->Gal from glycans specifically expressed in the gastric gland mucous cell-type mucin. The Journal of biological chemistry 276, 28226-28232, doi:10.1074/jbc.M103589200 (2001).

Ashida, H., Maskos, K., Li, S. C. \& Li, Y. T. Characterization of a novel endo-beta-galactosidase specific for releasing the disaccharide GlcNAc alpha 1-->4Gal from glycoconjugates. Biochemistry 41, 2388-2395, doi:10.1021/bi011940e (2002). Nakayama, J. et al. Expression cloning of a human alpha1, 4-N-acetylglucosaminyltransferase that forms GlcNAcalpha1-->4Galbeta-->R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proceedings of the National Academy of Sciences of the United States of America 96, 8991-8996, doi:10.1073/pnas.96.16.8991 (1999). Ishihara, K. et al. Peripheral alpha-linked N-acetylglucosamine on the carbohydrate moiety of mucin derived from mammalian gastric gland mucous cells: epitope recognized by a newly characterized monoclonal antibody. The Biochemical journal 318 (Pt 2), 409-416, doi:10.1042/bj3180409 (1996).

Tempel, W. et al. Three-dimensional structure of GlcNAcalpha1-4Gal releasing endo-betagalactosidase from Clostridium perfringens. Proteins 59, 141-144, doi:10.1002/prot. 20363 (2005).

Caterson, B. \& Melrose, J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 28, 182-206, doi:10.1093/glycob/cwy003 (2018). Yamagishi, K. et al. Purification, characterization, and molecular cloning of a novel keratan sulfate hydrolase, endo-beta-N-acetylglucosaminidase, from Bacillus circulans. The Journal of biological chemistry 278, 25766-25772, doi:10.1074/jbc.M212183200 (2003).

Wang, H. et al. Construction and functional characterization of truncated versions of recombinant keratanase II from Bacillus circulans. Glycoconjugate journal 34, 643-649, doi:10.1007/s10719-017-9786-3 (2017).

Fukuda, M. N. \& Matsumura, G. Endo-beta-galactosidase of Escherichia freundii. Purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein. The Journal of biological chemistry 251, 6218-6225 (1976).

Scudder, P., Uemura, K., Dolby, J., Fukuda, M. N. \& Feizi, T. Isolation and characterization of an endo-beta-galactosidase from Bacteroides fragilis. The Biochemical journal 213, 485-494, doi:10.1042/bj2130485 (1983).

Hirano, S. \& Meyer, K. Enzymatic degradation of corneal and cartilaginous keratosulfates. Biochemical and biophysical research communications 44, 1371-1375, doi:10.1016/s0006-291x(71)80237-1 (1971).

Biarnes, X. et al. The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases. Journal of the American Chemical Society 129, 10686-10693, doi:10.1021/ja068411o (2007).

Labourel, A. et al. Structural and biochemical characterization of the laminarinase ZgLamCGH16 from Zobellia galactanivorans suggests preferred recognition of branched laminarin. Acta crystallographica. Section D, Biological crystallography 71, 173-184, doi:10.1107/s139900471402450x (2015).

Allouch, J., Helbert, W., Henrissat, B. \& Czjzek, M. Parallel substrate binding sites in a betaagarase suggest a novel mode of action on double-helical agarose. Structure (London, England : 1993) 12, 623-632, doi:10.1016/j.str.2004.02.020 (2004). Vasur, J. et al. X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis. The FEBS journal 276, 38583869, doi:10.1111/j.1742-4658.2009.07099.x (2009).

Matard-Mann, M. et al. Structural insights into marine carbohydrate degradation by family GH16 kappa-carrageenases. The Journal of biological chemistry 292, 19919-19934, doi:10.1074/jbc.M117.808279 (2017).

Davies, G. J. et al. Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry 37, 11707-11713, doi:10.1021/bi981315i (1998). Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C. \& Schulein, M. Structures of oligosaccharidebound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry 34, 16210-16220, doi:10.1021/bi00049a037 (1995).

45
Tamura, K. et al. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Cell Rep 21, 417-430, doi:10.1016/j.celrep.2017.09.049 (2017).

Hehemann, J. H. et al. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. The Journal of biological chemistry 287, 30571-30584, doi:10.1074/jbc.M112.377184 (2012).

47 Briliute, J. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nature microbiology 4, 1571-1581, doi:10.1038/s41564-019-0466-x (2019).

Supplementary Table 1 included in this study

| | | | | 0 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Percentage identity between all members of the GH16 family ,

Supplementary Table 2| Signal peptide predictions and likely cellular locations of the Cazymes characterised in this study.

$\left.$| Species | Locus Tag | Cazy
 Classification | Predicted
 signal
 peptide |
| :--- | :--- | :--- | :--- | :--- | | Experimentally |
| :--- |
| determined location | \right\rvert\,

aPredictions carried out using SigP5.0
${ }^{\text {b }}$ Has a very hydrophobic region at the C-terminus that could be a membrane anchor

Supplementary Table 3| List of strains used in this study, the locus tag prefixes and also shortened versions used in Supplementary Figs. 5-7.

Species	Strain analysed	True locus tag prefix	Prefix used for brevity in Supplementary Fig. 20
A. muciniphila	ATCC	Amuc	Amuc
B. caecimuris	I48	Bcae	Bcae
B. caccae	ATCC43185	BACCAC	BC
B. cellulosilyticus	DSM 14838	BACCELL	BAC
B. dorei	DSM 17855	BACDOR	BACDOR
B. fragilis	NCTC 9343	BF	BF
B. finegoldii	DSM 17565	BACFIN	BACFIN
B. helocogenes	DSM 20613	Bache	Bache
B. heparinolyticus	DSM 23917	Bhep	Bhep
B. intestinalis	341, DSM 17393	BACINT	BACINT
B. plebius	DSM 17135	BACPLE	BACPLE
B. thetaiotaomicron	VPI-5482	BT	BT
B. ovatus	ATCC 8482	BACOVA	BO
B. vulatus	ATCC 8483	BVU	BVU
B. xylanisolvans	XB1A	BXY	BXY

Supplementary Table $4 \mid$ Activity of GH16 family members against specific O-glycan substrates This summarises the enzyme activities of the GH16 family members analysed in this study and characterises what sugars and linkages can be accommodated at different subsites. The information is derived from Supplementary Figs. 13-15. The blue text specifically refers to the results obtained from the substrate depletion data where substrate preferences were analysed in greater detail (Supplementary Fig. 13).

						O I 0 0 0 0 0 0 0 0 0 0 0 0				
Linear substr ates	TriLacNAc spanning -3 to +3 subsites (Supplementary Fig Xa)	Yes	Partial	Yes						
	TriLacNAc product GIcNAc $\beta 1,3 \mathrm{Gal} \beta 1,4 \mathrm{Glc}$ NAc spanning the -2 to +1 subsites (Supplementary Fig Xa)	Yes	Partial	Yes						
	Lacto-N-neotetraose spanning the -3 to +1 subsites (Supplementary Fig Xb)	Yes Reduced rate relative to TriLacNAc Preferenc e over LNT	Yes Very reduced rate relative to TriLacNAc	Yes Very reduced rate relative to TriLacNAc	Yes Very reduced rate relative to TriLacNAc	Yes Reduced rate relative to TriLacNAc	Yes Unaffected relative to TriLacNAc	Yes Reduced rate relative to TriLacNAc Preferenc e over LNT	No	Yes Reduced rate relative to TriLacNAc
	Lacto-N-neotetraose product Galß1,4GIcNAcß1,3Gal spanning the -1 to +2 or -2 to +1 subsites (Supplementary Fig Xb)	Yes	No	No	No	No	Yes	Partial	No	Partial

	Lacto-N-tetraose spanning the -3 to +1 subsites (Supplementary Fig Xc)	Yes Reduced rate relative to TriLacNAc	Yes Very reduced rate relative to TriLacNAc	Yes Very reduced rate relative to TriLacNAc	Yes Very reduced rate relative to TriLacNAc	Yes Reduced rate relative to TriLacNAc Preferenc e over LNnT	Yes Unaffected relative to TriLacNAc	Yes Reduced rate relative to TriLacNAc	No	Yes Reduced rate relative to TriLacNAc
	Lacto-N-neotetraose product Galß1,3GIcNAcß1,3Gal spanning the -1 to +2 or -2 to +1 subsites (Supplementary Fig Xc)	No	No	Partial	No	Partial	No	Partial	No	No
	Lacto-N-triose spanning the -2 to +1 subsites (Supplementary Fig Xc)	Yes	Yes	Yes	Partial	Yes	Yes	Yes	No	Yes
	LacNAc	No								
	Galß1,4Gal	No								
	Lacto-N-biose	No								
	Lactose	No								
	Blood group H trisaccharide 1 1,2 fucose at the -2 subsite	No								
$\alpha-$	3-Sialyllactose $\alpha 2,3$ sialic acid at the -2 subsite	No								
sugar at the -	P1 antigen a1,4 Galactose at the -2 subsite	No								
subsite	Globotriose a1,4 Galactose at the -2 subsite	No								
	Forssman antigen a1,4 Galactose at the -2 subsite	No								

a1,4 fucose branch at the - 3 ' subsite	Lacto-N-fucopentaose Il spanning the -3 to +1 subsites	Yes	Yes	Yes	Partial	Yes	Yes	Partial	No	Yes
Blood groups a- linked sugars at the - 4 and - 4' subsite s	Blood Group A hexasaccharide II	Yes Reduced rate relative to LNT and LNnT.	Yes Reduced rate relative to LNT and LNnT.	Partial Reduced rate relative to LNT and LNnT.	No	Partial	Yes Reduced rate relative to LNT and LNnT.	Yes Rate unaffected relative to LNT and LNnT	No	Partial Reduced rate relative to LNT and LNnT.
	Blood Group B hexasaccharide II	Yes Reduced rate relative to LNT and LNnT. Preferenc e for over A	Yes Reduced rate relative to LNT and LNnT.	Yes	No	Partial	Yes Reduced rate relative to LNT and LNnT.	Yes Rate unaffected relative to LNT and LNnT	No	Partial Reduced rate relative to LNT and LNnT.
	Blood Group H pentasaccharide II	Yes Improved rate relative to BGA and B	Yes Same rate to BGA and B	Yes Improved rate relative to BGA and B	Partial Same rate to BGA and B	Yes Improved rate relative to BGA and B	Yes Improved rate relative to BGA and B	Yes Rate unaffected relative to all	No	Partial Rate unaffected relative to BGA and B

Supplementary Table 5| Data collection and refinement statistics

	$\text { Amuc_0724 }{ }_{6}^{\mathrm{GH1}}$	$\begin{aligned} & \text { Baccac_02680 } \\ & \text { H16 ligand } \end{aligned}$	$\underset{7^{\text {GH16 }}}{\text { Baccac_0371 }}$	$\begin{aligned} & \mathrm{BF} 4060^{\mathrm{GH} 16} \\ & \text { ligand } \end{aligned}$
Date	25/01/19	25/11/18	11/10/18	11/10/18
Source	124	103	103	103
Wavelength (A)	0.9786	0.9793	0.9796	0.9796
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	P41	C222 ${ }_{1}$	P6,22
Cell dimensions $a, b, c(\AA)$	$\begin{gathered} 87.5,96.1 \\ 128.8 \end{gathered}$	$\begin{gathered} 82.92,82.92 \\ 121.31 \end{gathered}$	$\begin{gathered} \text { 46.9, 87.1 } \\ 156.2 \end{gathered}$	$\begin{gathered} 156.6,156.6 \\ 197.0 \end{gathered}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 90, 90	90,90, 90	$\begin{gathered} 90.0,90.0 \\ 120.0 \end{gathered}$
No. of measured reflections	$\begin{aligned} & 214047 \\ & (21796) \end{aligned}$	418545 (31263)	$\begin{aligned} & 136701 \\ & (11117) \end{aligned}$	$\begin{aligned} & 469646 \\ & (98047) \end{aligned}$
No. of independent reflections	33993 (4096)	55261 (4092)	19202 (1554)	22156 (4469)
Resolution (Å)	$\begin{aligned} & 19.90-2.70 \\ & (2.83-2.70) \end{aligned}$	$\begin{aligned} & 19.99-2.00 \\ & (2.05-2.00) \end{aligned}$	$\begin{aligned} & 43.57-2.10 \\ & (2.16-2.10) \end{aligned}$	$\begin{aligned} & 197.05-3.30 \\ & (3.56-3.30) \end{aligned}$
$\mathrm{CC}_{1 / 2}$	0.991 (0.485)	0.999 (0.472)	0.995 (0.743)	0.992 (0.679)
//б/	7.7 (1.0)	14.0 (1.2)	7.6 (1.6)	5.1 (1.7)
Completeness (\%)	99.7 (100.0)	99.2 (98.4)	100.0 (100.0)	100.0 (100.0)
Redundancy	6.4 (5.4)	7.6 (7.6)	7.1 (7.2)	21.2 (21.9)
Refinement				
$R_{\text {work }} R_{\text {firee }}$	20.51 / 25.90	19.39 / 22.59	19.72 / 24.20	19.45 / 25.38
No. atoms				
Ligand/lons	2	16	10	111
Water	0	99	126	0
B-factors				
Protein	75.2	47.4	34.1	66.1
Ligand/lons	108.7	46.4	52.2	68.2
Water	N.A.	43.3	36.2	N.A.
R.m.s deviations				
Bond lengths (Å)	0.011	0.011	0.010	0.014
Bond angles (${ }^{\circ}$)	2.01	1.71	1.73	2.31
Ramachandran plot (\%)	87.1 / 3.6	97.5 / 0.0	92.6 / 2.0	1
Favoured/Outliers PDB				

Values in parenthesis are for the highest resolution shell. Rfree was calculated using a set (5\%) of randomly selected reflections that were excluded from

Supplementary Table 6\| Crystallisation conditions for the GH16 enzymes			
Enzyme (*)	Ligand	Condition	Cryoprotectant
Amuc_0724 (10 mg/ml)	apo	1.6 M tri-sodium citrate pH 6.5	Paratone-N
$\begin{aligned} & \begin{array}{l} \text { Baccac__02680 } \\ \mathrm{mg} / \mathrm{ml}) \end{array}{ }^{\mathrm{GH} 16}(8.1 \end{aligned}$	apo	20 \% PEG3350, 0.24 M sodium malonate pH 7.0	25% ethylene glycol
$\begin{aligned} & \text { Baccac__02680 } \\ & \mathrm{mg} / \mathrm{ml} \text {) } \end{aligned}$	apo	24 \% PEG3350, 0.45 M sodium malonate pH 7.0	25 \% ethylene glycol
Baccac__02680 ${ }^{\text {GH16 E143Q }}$ ($8.1 \mathrm{mg} / \mathrm{ml}$)	L404	24 \% PEG3350, 0.45 M sodium malonate pH 7.0	25% ethylene glycol
Baccac__02680 ${ }^{\text {GH16 E143Q }}$ ($8.1 \mathrm{mg} / \mathrm{ml}$)	TriLacNAc	24 \% PEG3350, 0.45 M sodium malonate pH 7.0	25% ethylene glycol
$\begin{aligned} & \text { Baccac_03717 } \\ & \mathrm{mg} / \mathrm{ml} \text {) } \end{aligned}$	apo	1.0 M Ammonium sulphate	33 \% ethylene glycol
BF4060 ${ }^{\text {GH16 }}$ ($9.6 \mathrm{mg} / \mathrm{ml}$)	TriLacNAc	20 \% PEG6000, 1 M lithium chloride, 0.1 M Citric acid pH 4.0	25 \% ethylene glycol

b

Supplementary Figure 1 |Upregulation of Bacteroides thetaiotaomicron genes on mucin O-glycans Genes upregulated at least 10 -fold in vitro using purified mucin O-glycans from PGM type III (Sigma) as the carbon source relative to glucose-grown cells (Martens et al. 2008) a, early in the growth curve. b, late in the growth curve. A number of PULs and non-PUL Cazyme containing loci were upregulated, including those involved in complex N -glycan and glycosaminoglycan degradation. The GH16 family member is indicated to by a red star
a

b

Supplementary Figure 2|Upregulation of Bacteroides fragilis and Bacteroides caccae genes on mucin O-glycans Genes upregulated at least 10-fold in vitro using purified mucin O-glycans from PGM III (Sigma) as the carbon source relative to glucose-grown cells a, Bacteroides fragilis (Pudlo et al. 2015). b, Bacteroides caccae (Desai et al. 2016). The GH16 family members are indicated to by a red star.
--gycans 1 IINAC
人O O

RNAseq data from in vitro growth on mucin O-glycans from procine PGM III versus growth on GIcNAc

RNAseq data from in vitro growth on purified porcine PGM III versus growth on Glucose

RNAseq data from in vitro growth on mucin versus growth without mucin

RNAseq data from the RNA extracted from the cecal contents of mice fed either a fibre free diet vesus in vitro growth on GIcNAc

Proteomics data from in vitro growth on mucin versus growth on glucose

Proteomics data of an outer membrane preparation from in vitro grown cells on mucin versus those grown on glucose

Supplementary Figure 3|Upregulation of A. muciniphila genes and protein levels during growth on mucins in vitro and in vivo a, Genes that are upregulated in vitro using purified mucin O-glycans as the carbon source relative to a culture grown on GlcNAc (Desai et al. 2016). b, Genes that are upregulated in vitro using purified porcine gastric mucin Type III (Sigma) as the carbon source relative to a culture grown on GlcNAc (Ottman et al. 2017). c, Genes that are upregulated in vitro using purified mucin O-glycans as the carbon source relative to a culture grown on GlcNAc (Shin et al. 2019). d, Genes that are upregulated when a mouse is fed a fibre-free diet compared to a simple sugar diet (Desai). e, Relative protein levels during in vitro growth on purified PGM III compared to growth on glucose (Ottman et al. 2016). f, Relative protein levels in the outer membrane fraction during growth on purified PGM III compared to growth on glucose (Ottman et al. 2016). It should be noted that the in vitro growths a-c were performed in different basal medias. The GH16 family members are indicated by a red star.
a Agarose
b к-Carrageenan
c Porphyran
d Laminarin

e Barley β-glucan

j Chitin

f Lichenan
g $\beta 1,3$-galactan

k Keratan sulfate

h Pectic galactan

I O-glycan

Supplementary Figure 4 | Classes of glycan targeted by GH16 enzymes. a, Agarose ($\alpha 1,3-3,6$-anhydrogalactose- $\beta 1,4$ galactose repeating units). b, к-carrageenan ($\alpha 1,3-3,6-a n h y d r o g a l a c t o s e-\beta 1,4$-galactose $6 S$ repeating units). c, Porphyran ($\alpha 1,4-$ galactose6S- $\beta 1,3$-galactose repeating units where the galactose6S is sometimes replaced with 3,6-anhydrogalactose). d, Laminarin ($\beta 1,4$-glucan with occasional $\beta 1,6$-glucose decoration). e, Barley β-glucan ($\beta 1,4$-glucan with occasional $\beta 1,3$-linkages). f, Lichenan (predominantly $\beta 1,4$-glucan with $\sim 25 \% \beta 1,3$-linkages). g, $\beta 1,3$-galactan (arabinogalactan backbone; $\beta 1,3$-linkages). \mathbf{h}, Pectic galactan ($\beta 1,4$-linkages). \mathbf{i}, Xyloglucan (linkages displayed do not follow the key, but are labelled). \mathbf{j}, Chitin ($\beta 1,4-$ linkages). k, Keratan sulfate (polyLacNAc structures that can be O - or N -linked to protein, 6 S decoration possible on galactose and GIcNAc and occasional sialylation and fucosylation). I, Mucin O-glycans. In keratan sulfate and O-glycan structures the GlcNAc sugars can also be linked through $\beta 1,4$ and $\beta 1,6$ linkages (boxes).
B. fragilis

B. thetaiotaomicron

$$
\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow
$$

Supplementary Figure 5|Genomic context of the O-glycanase GH16 genes from different Bacteroides species and the predicted protein domains of the CAZymes explored. a, The GH16 enzymes upregulated on mucin were used to search for homologues in other Bacteroides spp. (see Materials and Methods). The GH16 enzymes upregulated on O-glycans are highlighted with a blue glow. The lines connect the homologues. GH and other protein families are colour-coded: GH20 (blue), GH35 (yellow), GH18 (purple), GH3 (pink) and SusC/D-like pairs (grey). Abbreviations include: MFS - major facilitator superfamily. b, The domain structure and approximate lengths, which were determined as described in Materials and Methods. The white boxes at the start indicate the signal sequence of the protein.

- Glucanase
- Lichanase
- Xyloglucanase

Xyloglucan endotransferase

- Agarase

Porphyranase

- GlcNAc-a1,4-Gal releasing B-galactosidase

K-Carrageenase
Endo-B1,3-galactanase
Keratan sulfate

- Laminarinase

Exo- $\beta 1,3$-galactanase
Chitin β-glucanosyltransferase
Hyaluronidase

a

Supplementary Figure 8|Activity of the GH16 enzymes against porcine small intestinal mucin and commercially available Porcine gastric mucin a, Porcine small intestinal mucin. b, PGM type II. c, PGMtype III. All assays with a GH16 enzyme also included a sialidase and a1,2fucosidase, BT0455 ${ }^{\mathrm{GH} 33}$ and a GH95 (from Bifidobacterium bifidum; see Supplementary Fig. 9).

Supplementary Figure 9|Activity of exo-acting enzymes against di-and oligo-saccharides a, GH95 afucosidase from Bifidobacterium bifidum b, GH95 α-1,2-fucosidase from Bifidobacterium bifidum against blood group sugars. Activity can only be seen after removal of the α-linked GalNAc or Gal (blood group H). c, Activity of a GH109 α-GalNAc'ase and GH110 α-galactosidase against different blood group structures.

Supplementary Figure 10 | Activity of galactosidase BF4061 ${ }^{\mathrm{CH} 35}$ di- and oligosaccharides The polysaccharide utilisation loci in Bacteroides fragilis encoding the O-glycan active GH16 enzymes also encodes a putative GH35. The recombinant form was incubated with a variety of glycans to determine specificity.

a

c

(10

b

d

$9 \square_{0}^{\square}$ 11 (S)

12

Supplementary Figure 11| Products produced by O-glycan active GH16 family members on keratan a, TLC of activity against N -linked egg keratan. \mathbf{b}, TLC of activity against N -linked bovine cornea keratan. \mathbf{c}, Chromatograms of procainamide-labelled keratan products, where the number correspond to those in a and b . The grey dotted box indicated the areas which are magnified in d. d, Magnifications of the chromatograms between 20-30 minutes to allow clearer annotation of the products. All assays also included the broad-acting sialidase BT0455 ${ }^{\mathrm{GH} 33}$. The composition and structure of the products are shown.

A. Control
B. Amuc_0724 ${ }^{\text {GH16 }}$
C. Amuc_0724 ${ }^{\mathrm{GH} 16}$ post-treated with $\beta 1,4$-galactosidase (BT0461 ${ }^{\mathrm{GH} 2}$)
D. Amuc_0724 ${ }^{\text {GH16 }}$ post-treated with broad-acting GlcNAc'ase (BT0459GH20)

Supplementary Figure 12 Activity of Amuc_0724 ${ }^{\text {GH16 }}$ against triLacNAc The products of triLacNAc digestion by Amuc_0724GH16 (lane B) were incubated with either a $\beta 1,4$-galactosidase (lane C) or an β GlcNAc'ase (lane D) to confirm their identity.

$02680^{\mathrm{GH} 16}$

TriLacNAc	Lacto- N neotetraose	Lacto- N tetraose	Blood group A	Blood group B	Blood group H

Supplementary Figure 13 |Substrate depletion assays with defined oligosaccharides to probe the

 importance of the different sub-sites of the GH16 enzymes Assays were carried out with 1 mM substrate concentration and samples taken at different time points to monitor substrate depletion by HPAEC-PAD. Enzyme concentration was $0.1 \mu \mathrm{M}$ (white columns) or $1 \mu \mathrm{M}$ (grey columns). The defined oligosaccharides used were TriLacNAc (light blue circles), Lacto- N-neotetraose (orange squares), Lacto- N-teraose (pink triangles), blood group A (green inverted triangles), blood group B (dark blue diamonds) and blood group H (black stars). a, BT2824 ${ }^{G H 16}$. b, BF4058 ${ }^{G H 16}$. c, BF4060 ${ }^{\text {GH16 }}$. d, BACCAC_02679GH16. e, BACCAC_02680 ${ }^{\mathrm{GH} 16}$. f, BACCAC_03717 ${ }^{\mathrm{GH} 16}$. g, Amuc_0724GH16. h, Amuc_0875 ${ }^{\mathrm{GH} 16}$. i, Amuc_2108 ${ }^{\mathrm{GH} 16}$.

Supplementary Figure $14 \mid$ Activity of the GH16 enzymes against defined oligosaccharides. Products of GH16 activity were visualised by TLC. a triLacNAc. b, paraLacto-N-neohexaose. c, Lacto-N-neotetraose. d, Lacto-N-tetraose. e, Galß1,3GaINAc $\beta 1,3 \mathrm{Gal} \beta 1,4 \mathrm{Glc}$. f, Blood group A hexasaccharide II. g, Blood group B hexasaccharide II. h, Blood group H pentasaccharide generated from A or B . Control = no enzyme added.

Supplementary Figure 15 | Activity of the GH16 enzymes defined di- and oligo-saccharides.
Products of GH16 activity were visualised by TLC. a, LacNAc. b, Blood group H trisaccharide II. c, Galß1,4Gal. d, Lacto-N-biose. e, P1 antigen. f, Lactose. g, Lacto-N-triose. h, Globotriose. i, 3Sialyllactose. j, Forssman antigen.

Marine plant polysaccharides

f

h

j
k

Host glycans

s

q GH16 enzyme-only control assays

GH16 enzymes incubated with syndecan

Supplementary Figure $16 \mid$ Activity of the GH16 enzymes characterised in this work against polysaccharides already associated with the family Activity of GH16 enzymes against substrates associated with this family. All assays were carried out with a, Agar. b, Agarose. c, kcarrageenan. d, Porphyran. e, Laminarin. f, Barley β-glucan. g, Lichenan. h, Pectic $\beta 1,4$-galactan. i, Xyloglucan. j, Larch arabinogalactan. \mathbf{k}, Wheat arabinogalactan. I, Gum arabinogalactan. $\mathbf{m}, \beta 1,3$-galactan \mathbf{n}, Chondroitin sulfate. o, Heparan sulfate. p, Hyaluronic acid. \mathbf{q}, Human syndecan. To assess if the GH16 enzymes could cleave heparan sulfate polysaccharides away from protein they were incubated with human syndecan (bottom gel). A control gel (top) shows GH16-only assays. The red arrow indicates where syndecan ($50 \mu \mathrm{~g}$) runs on the gel and shows that it does not decrease in mass with the addition of GH16. r, Shrimp chitin. s, Squid chitin. All reactions were carried out in phosphate buffer at pH 7 overnight with $3 \mu \mathrm{~m}$ enzyme.

Supplementary Figure 17|B factor putty projections of the O-glycan active GH16 crystal structures obtained in this study. a, Baccac_02680GH16E143Q. b, BF4060GH16. c, Baccac_03717 ${ }^{\text {GH16 }}$. d, Amuc_0724 ${ }^{\mathrm{GH} 16}$.

Agarase
Zobellia galactanivorans (PDB 4ATF)

ovatus succinogenes

(PDB 1ZM1)
β-glucanase
Fibrobacter

(2)

Laminarinase

Zobellia

galactanivorans
(PDB 4BOW)

Xyloglucanase

Tropaeolum

 majus (PDB 2VH9)b GlcNAca1,4Gal disaccharideremoving GH16 (PDB 1UPS)

Supplementary Fig. 18|Crystal structures differences within the GH16 family members a, Crystal structures of a number of different GH16 family members to exemplify their variation in terms of cleft structure and orientation of substrate (Heheman et al. 2012, Tamura et al. 2017, Tsai et al. 2005, Labourel et al. 2014 and Mark et al. 2009). b, The substrate binding site of Clostridium perfringens GH16 family member that removes GlcNAca1,4Gal disaccharide from stomach O-glycans. This pocket-like binding site is a unique example amongst the GH16 family structures so far. Catalytic residues are shown in red (Tempel et al. 2005). c, The active sites of two GH16 enzymes with activity towards marine plant polysaccharides. This demonstrates the differences in the negative subsites to $\mathrm{GH} 16 \beta$-glucanases. Both types of enzyme select for a $\beta 1,3$ linkage between the -1 and -2 subsite, but the structural reasons driving this are different. d, Side views of Amuc_0724GH16, BACCAC_03717 ${ }^{\text {GH16 }}$ and a carrageenase (Matard-Mann et al. 2017) to demonstrate the different types of finger two (yellow) and their interactions with sugars occupying the -3 and -4 subsites.

Supplementary Fig. 19|Crystal structures comparisons within the GH16 family members a, The detailed view of the active sites of Baccac_03717 ${ }^{\mathrm{GH} 16}$, and Amuc_0724 ${ }^{\mathrm{GH} 16}$. The fingers are colour coded. \mathbf{b}, A surface representation of the cavities and pockets around the -1 subsite of a laminarinase (Labourel et al. 2015). A glycerol was crystallised within the pocket adjoining the -1 subsite and the product from Baccac_02680 ${ }^{\text {GH16E143Q }}$ is overlaid to show the -1 subsite. The presence of the glycerol, suggested that branching sugars may be accommodated at this position. c, The two different occupancies possible for W279 in Amuc_0724GH16 in the unit cell to show the interactions between the two molecules. The tyrosines are show as sticks and come from finger 6 (teal). The flipped-out version may represent a crystallographic artefact rather than a biologically relevant observation. d, An example of a dynamic tyrosine (blue arrow) also observed in the positive subsites of a crystal structure of a β-glucanase GH16 family members from B. ovatus. e, A surface representation of the pockets and cavities around the negative subsites of the Amuc_ $0724{ }^{G H 16}$ crystal structure. The different colours represent the different fingers of the enzyme. The trisaccharide product from Baccac_02680 ${ }^{\mathrm{GH} 16 \mathrm{E} 143 \mathrm{Q}}$ is overlaid into the structure (grey) as well as the carrageenan product (yellow) from a k-carrageenases from Pseudoalteromonas carrageenovora (PDB 5OCQ; Matard-Mann et al. 2017) to show how a sulfate could be accommodated in the tunnel of Amuc_0724GH16 (yellow dashed circle). Accommodation of this sulfate group would not be possible with the Oglycan active GH16 enzymes from Bacteroides spp. f. The four O-glycan active GH16 enzymes from this study are overlaid with the porphyran product originally crystallised with a porphyranase from Zobellia galactanivorans (PDB 3ILF; Heheman et al. 2010). This demonstrates how a sulfate group could be accommodated in the cleft at the -2 subsite of these enzymes (yellow dashed circle).
a

PGM type III soluble fraction

PGM type III pellet fraction

b

Chondroitin sulfate

Heparin sulfate

Hyaluronic acid

Supplementary Figure 20|Analysis of the glycosaminoglycan (GAG) content of porcine gastric mucin (PGM) type II and III. a, The polysaccharide lyases from B. thetaiotaomicron involved in or predicted to be involved in the degradation of HS, CS and HA were used to test for the presence of these GAGs in PGM types II and III. PGM was dissolved in DI $\mathrm{H}_{2} \mathrm{O}$ at $50 \mathrm{mg} / \mathrm{ml}$ then centrifuged at 16000 x g for 30 min . The supernatant (soluble) and pellet fractions were assayed separately. Each polysaccharide lyase was tested individually and then as a mix (Cartmell et al. 2017; Ndeh et al. 2018). The red line and purple/teal line represents the HS and CS/HA active lyases, respectively. b, The Polysaccharide lyases were tested against pure GAGs as controls.

Supplementary Figure 21|Growth of human mutualists of host glycans A. muciniphila and different species of Bacteroides were grown on commercially available PGM type II, type III, Heparin sulfate, chondroitin sulfate and hyaluronic acid at $35,40,20.20$ and $10 \mathrm{mg} / \mathrm{ml}$, respectively. Growth (OD600) was monitored continuously using a plate reader.
a

b

Supplementary Figure 22|Activity of BF4059GH20 against β-GIcNAc containing di- and oligosaccharides a, Chitooligosaccharides. b, Other O- and N-glycan substrates were screened for activity. A red asterisk indicates lacto-N-hexaose and Galß1,3GaINAc $\beta 1,3 \mathrm{Gal} \beta 1,4 \mathrm{Glc}$ were pre-treated with BF4061 ${ }^{\mathrm{GH} 35}$ to remove the galactose before testing.

