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Abstract: Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been 

involved in various biological processes. Emerging evidence suggests that the interactions 

between lncRNAs and miRNAs play an important role in regulating of genes and the 

development of many diseases. Due to the limited scale of known lncRNA-miRNA 

interactions, and expensive time and labor costs for identifying them by biological 

experiments, more accurate and efficient lncRNA-miRNA interactions computational 

prediction approach urgently need to be developed. In this work, we proposed a novel 

computational method, GNMFLMI, to predict lncRNA-miRNA interactions using graph 

regularized nonnegative matrix factorization. More specifically, the similarities both 

lncRNA and miRNA are calculated based on known interaction information and their 

sequence information. Then, the affinity graphs for lncRNAs and miRNAs are constructed 

using the p-nearest neighbors, respectively. Finally, a graph regularized nonnegative matrix 

factorization model is developed to accurately identify potential interactions between 

lncRNAs and miRNAs. To evaluate the performance of GNMFLMI, five-fold cross 

validation experiments are carried out. GNMFLMI achieves the AUC value of 0.9769 

which outperforms the compared methods NMF and CNMF. In the case studies for 

lncRNA nonhsat159254.1 and miRNA hsa-mir-544a, 20 and 16 of the top-20 associations 

predicted by GNMFLMI are confirmed, respectively. Rigorous experimental results 
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demonstrate that GNMFLMI can effectively predict novel lncRNA-miRNA interactions, 

which can provide guidance for relevant biomedical research. 

Keywords: lncRNA-miRNA interaction, nonnegative matrix factorization, graph 

regularization, lncRNA-miRNA similarity. 

1 Introduction 

With the development of next-generation sequencing, specific biological mechanisms 

can be better understood from the wide-ranging biomolecular interactions in the genome. 

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAS) were previously thought 

to be non-functional sequences in the process of gene evolution [1]. In fact, they not only 

play an important role in cell differentiation, somatic development and other life processes, 

but also can participate in the occurrence of disease through interaction [1]. LncRNA is a 

type of non-coding RNA (ncRNA) located in the nucleus or cytoplasm of more than 200nt 

in length which has no obvious protein-coding function and exists in any branch of life [2]. 

Depending on the positional relationship of the coding genes, lncRNAs  can be divided 

into five categories (i.e. bidirectional, antisense, sense, introverted and intergenic) [3-5]. 

Because of lncRNA has tissue specificity, cell specificity, spatiotemporal specificity, 

developmental stage specificity and disease specificity, it is widely involved in cell 

differentiation, metabolism and proliferation, and is closely associated with many complex 

diseases [6, 7]. More and more evidences have shown that lncRNAs can silence or activate 

genes by regulating histone modification, DNA methylation, mRNA splicing and 

chromatin remodeling in a variety of ways, such as epigenetics, transcriptional regulation, 

and post-transcriptional control and so on [8]. As a new focus of regulation for gene 

expression, lncRNA plays a biological role mainly through signal function, bait function, 

scaffold function and guiding function [9]. Even though the experiment has identified more 

than 58 000 human lncRNA genes, Only a few lncRNAs have been functionally 

characterized, such as H19, HOTAIR and Malat, Most of them are still functionally 

uncharacterized [10]. 

LncRNAs participate in the regulation of expressed proteins via specific mechanism 

involving multiple biological interactions such as lncRNA-mRNA, lncRNA-ncRNA and 
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lncRNA-protein interactions [11]. Therefore, it is necessary to construct a network of 

biomolecular interactions mediated by lncRNAs, which is very useful for revealing the 

underlying mechanisms and biological functions of lncRNAs [12]. As a bait for miRNA, 

lncRNAs can inhibit the binding of miRNA to target gene mRNA, and can also act as an 

endogenous miRNA sponge to inhibit miRNA expression [13, 14]. With the accumulation 

of knowledge on miRNA function, the lncRNA-miRNA interaction network can help us 

better understand the complex functions of lncRNA [7]. MiRNA is a class of non-coding 

short sequence RNAs of 18-25nt in length that are widely found in eukaryotes and are 

highly conservative, spatiotemporal-specific and tissue-specific [15]. A miRNA molecule 

can regulate the expression of up to 200 target genes, and about one-third of human genes 

are regulated by miRNAs [15]. Up to now, miRNAs are considered to be the most 

important gene regulators in cell differentiation, development, growth, and tumorigenesis, 

progression, metastasis, and drug resistance [16]. In the occurrence and development of 

human tumors, some miRNAs can act as both an oncogenes and a cancer suppressor genes 

[17, 18]. For example, certain miRNAs are associated with the development of ductal 

carcinoma in situ (DCIS) to invasive carcinoma, especially miR-210, miR221 and let-7d, 

which are down-regulated in situ carcinoma but up-regulated in invasive carcinoma [17]. 

In recent years, More and more studies have shown that both lncRNA and miRNA 

play critical roles in various biological processes and human complex diseases [19, 20]. It 

has been systematically studied that the lncRNA-miRNA interactions exert regulation role 

in some human complex diseases [21-23]. In many diseased cells, lncRNA is discovered 

to have a certain quantitative relationship with some miRNAs, this quantitative 

relationship is closely associated with the occurrence and development of diseases [24]. 

For example, in the renal cell carcinoma (RCC), after Malta silencing, miR-205 expression 

is up-regulated, but cell proliferation, migration and invasion are inhibited. Conversely, the 

expression of Malta is significantly reduced after overexpression of miR-205，experiments 

showed that there is a mutual regulation relationship between Malta and miR-205 [25]. 

The detailed understanding of interactions between lncRNAs and miRNAs in disease is 

very helpful for new biomarker discovery and treatment methods exploration [26]. 
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However，identifying the interactions between lncRNAs and miRNAs is expensive and 

time-consuming by biological experiment. 

To accelerate the process of identifying interactions between biomolecules, many 

computational methods have been proposed and effectively used for predicting 

relationships (e.g. miRNA-disease associations, protein-protein interactions and lncRNA-

protein interactions), including manifold learning, manifold embedding and semi-

supervised learning, etc. [27-29]. The computational methods for predicting miRNA-target 

interactions usually have the following common rules, including site accessibility, seed 

matching, free energy and protection [10, 30]. However, many miRNA-target 

identification methods were proposed originally for mRNA targets that may not be able to 

identify the interactions between lncRNAs and miRNAs, or even contradictory [31, 32]. 

Huang and Chan proposed the EPLMI calculation model based on the assumption that 

lncRNAs tend to interact collaboratively with miRNAs of similar expression profiles, and 

constructs bipartite graph via known lncRNA-miRNA interactions for prediction[33]. 

Huang et al. proposed the GBCF computational model based on known interaction 

network to obtain a top-k probability ordering list of individual lncRNA or miRNA for 

prediction [34]. Although the above two methods have better predictive effects in the 

known lncRNA-miRNA interaction network, they cannot be applied to new lncRNA or 

miRNA. The predictive effect of interactions between molecules can be improved by 

integrating biological information from different sources [35-37]. In fact, prediction of 

lncRNA-miRNA interactions can be considered as a recommender system problem [38, 

39]. Accumulated studies have shown that matrix factorization is an effective method 

which has been successfully used in recommender system for data representation，and 

already widely applied in the field of bioinformatics [40-42].  

In this paper, we propose a new calculation model, GNMFLMI, to predict lncRNA-

miRNA interactions using graph regularized nonnegative matrix factorization (NMF) [43]. 

The model is based on the assumption that functionally similar lncRNAs (or miRNAs) are 

more possibility to interact with a same miRNA (or lncRNA) [44] . GNMFLMI fully 

exploits miRNA/lncRNA sequence information and known lncRNA-miRNA interaction 

network to calculate miRNA/lncRNA similarity. Subsequently, the graph spaces of miRNA 
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and lncRNA were constructed based on the local invariance hypothesis of intrinsic 

geometric space [45-47], which promote similar lncRNAs/miRNAs to be close enough to 

each other in the lncRNA/miRNA space. We evaluated the performance of our method by 

five-fold cross validation and compared the performance with standard NMF [43], RNMF 

[48]. The experiment results show that GNMFLMI is better than other compared methods, 

and can effectively predict the novel lncRNA-miRNA interactions. 

2 Materials and methods 

2.1 Benchmark Dataset 

The lncRNA-miRNA interactions dataset used in this work were obtained       

from the lncRNASNP2 database in January, 2019. This dataset is collected and    

collated by Ya-Ru Miao et al. [49] and is accessible to academic users at 

http://bioinfo.life.hust.edu.cn/lncRNASNP. We downloaded the known lncRNA-miRNA 

interactions and the duplicated entries were removed. After the preprocessing, 8634 

experimentally verified lncRNA–miRNA interactions were obtained, containing 262 

miRNAs and 468 lncRNAs. In the experiment, all known lncRNA-miRNA interactions 

provided by lncRNASNP2 dataset were used as positive samples, and other unknown 

lncRNA-miRNA interactions as negative samples. The lncRNA-miRNA interactions 

adjacency matrix 𝑌 ∈ 𝑅𝑟×𝑛 was constructed based on lncRNASNP2 database, where r is 

the number of lncRNAs, n is the number of miRNAs. If the lncRNA 𝑙(𝑖) was verified to 

be interacted with miRNA 𝑚(𝑗) , the element 𝑌(𝑖, 𝑗)  was assigned the value of 1, 

otherwise it is 0.  

In this study ,we let 𝐿 = {𝑙1, 𝑙2, ⋯ , 𝑙𝑟} and 𝑀 = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛} which denote the 

set of 𝑟  lncRNAs and 𝑛  miRNAs. The 𝑖𝑡ℎ  row vector of matrix 𝑌 , 𝑌(𝑙𝑖) =

(𝑌𝑖1, 𝑌𝑖2, ⋯ , 𝑌𝑖𝑛); the 𝑗𝑡ℎ column vector of matrix 𝑌, 𝑌(𝑚𝑗) = (𝑌1𝑗, 𝑌2𝑗, ⋯ , 𝑌𝑟𝑗). 𝑌(𝑙𝑖) 

and 𝑌(𝑚𝑗) represent the interaction profiles for lncRNA 𝑙𝑖 and miRNA 𝑚𝑗, respectively. 

2.2 Related work 

2.2.1 The standard nonnegative matrix factorization (NMF) 

Nonnegative matrix factorization (NMF) is an effective algorithm which has been 

successfully used in recommender system for data representation [41]. This algorithm 
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divides a large original matrix 𝑌 into two low-dimensional nonnegative matrices: a basis 

matrix 𝑈 and a coefficient matrix 𝑉, and make their product as close as possible to the 

original matrix. Recent years, NMF has been successfully utilized to predict potential 

associations of lncRNA-protein [50], miRNA-disease [51], Microbe-disease [52]，drug-

target [53]，CircRNA-disease [54]，etc. In this work, the lncRNA-miRNA interaction 

adjacency matrix 𝑌 ∈ 𝑅468×262 is divided into 𝑈 ∈ 𝑅𝑘×468 and 𝑉 ∈ 𝑅𝑘×262 , 𝑘 is the 

sub-space dimensionality (𝑘 < 𝑟𝑛/(𝑟 + 𝑛)). So that: 

𝑌 ≅  𝑈𝑇𝑉         𝑠. 𝑡.  𝑈 ≥ 0, 𝑉 ≥ 0                  (1) 

The objective function for predicting lncRNA-miRNA interactions can be formulated as 

following: 

min
𝑈,𝑉

‖𝑌 − 𝑈𝑇𝑉‖𝐹
2          𝑠. 𝑡.   𝑈 ≥ 0，𝑉 ≥ 0              (2) 

Where, ‖∙‖𝐹 denotes the Frobenius norm. 𝑈，𝑉 ≥ 0 means that all elements of 𝑈 and 

𝑉 are nonnegative. According to matrix properties ‖𝐴‖𝐹
2 = 𝑇𝑟(𝐴𝑇𝐴),  𝑇𝑟(𝐴𝑇) = 𝑇𝑟(𝐴), 

and 𝑇𝑟(𝐴𝐵) = 𝑇𝑟(𝐵𝐴), we can obtain: 

  ‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 = 𝑇𝑟((𝑌 − 𝑈𝑇𝑉)(𝑌 − 𝑈𝑇𝑉)𝑇) 

             = 𝑇𝑟(𝑌𝑌𝑇) − 2𝑇𝑟(𝑌𝑉𝑇𝑈) + 𝑇𝑟(𝑈𝑇𝑉𝑉𝑇𝑈)    (3) 

Where 𝑇𝑟(∙) is the trace of a matrix. 

Lee and Seung [43] propose the nonnegative matrix factorization algorithm and this 

algorithm is based on the multiplicative update rules of 𝑈 and 𝑉, the update rules are as 

follows: 

  𝑢𝑘𝑖 ← 𝑢𝑘𝑖
(𝑉𝑌𝑇)𝑘𝑖

(𝑉𝑉𝑇𝑈)𝑘𝑖
                        (4) 

 𝑣𝑘𝑗 ← 𝑣𝑘𝑗
(𝑈𝑌)𝑘𝑗

(𝑈𝑈𝑇𝑉)𝑘𝑗
                        (5) 

2.2.2 Constrained nonnegative matrix factorization (CNMF) 

Due to the standard NMF cannot ensure the 𝑈 and 𝑉 smoothness. We can use the 

Tikhonov (𝐿2) in the standard NMF to solve this problem [55]. Pauca et al. proposed the 

following constrained nonnegative matrix factorization (CNMF) formulation [48]: 

min
𝑈,𝑉

‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 + 𝛽(‖𝑈‖𝐹

2 + ‖𝑉‖𝐹
2 )       𝑠. 𝑡.   𝑈 ≥ 0，𝑉 ≥ 0       (6) 

where 𝛽 is the sparseness constraint coefficient which is used adjust the sparsity of 𝑈 
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and 𝑉 via 𝐿2-norm. The Eq. (6) can be written as: 

        ‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 + 𝛽(‖𝑈‖𝐹

2 + ‖𝑉‖𝐹
2) 

= 𝑇𝑟(𝑌𝑌𝑇) − 2𝑇𝑟(𝑌𝑉𝑇𝑈) + 𝑇𝑟(𝑈𝑇𝑉𝑉𝑇𝑈) + 𝛽𝑇𝑟(𝑈𝑈𝑇) + 𝛽𝑇𝑟(𝑉𝑉𝑇)    (7) 

   The multiplicative update rules of 𝑈 and 𝑉 are as follows: 

  𝑢𝑘𝑖 ← 𝑢𝑘𝑖
(𝑉𝑌𝑇)𝑘𝑖

(𝑉𝑉𝑇𝑈+𝛽𝑈)𝑘𝑖
                          (8) 

 𝑣𝑘𝑗 ← 𝑣𝑘𝑗
(𝑈𝑌)𝑘𝑗

(𝑈𝑈𝑇𝑉+𝛽𝑉)𝑘𝑗
                        (9) 

the details of multiplicative update rules are in section 2.3.5. 

2.3 Graph regularized nonnegative matrix factorization for predicting lncRNA-

miRNA interactions (GNMFLMI) 

2.3.1 methods overview 

In this study，we propose a new calculation model, GNMFLMI, to predict lncRNA-

miRNA interactions. The GNMFLMI can be summarized into three steps, and its 

framework is shown in Figure 1. First, the similarity matrices of lncRNA and miRNA are 

calculated based on lncRNA/miRNA sequence information and known lncRNA-miRNA 

interaction network. Second, we construct the affinity graphs for lncRNAs and miRNAs 

using p-nearest neighbors. Finally, graph regularized nonnegative matrix factorization is 

performed to calculate the lncRNA-miRNA interaction scores. 

 

Fig. 1. Flowchart of GNMFLMI for predicting potential lncRNA-miRNA interaction. 

2.3.2 Similarity measure 
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In our method, we need to construct the similarity matrices for lncRNAs and miRNAs 

separately，so the similarity both each pair of lncRNA-lncRNA and each pair of miRNA-

miRNA need to be determined. In this study, two different types of lncRNA/miRNA 

similarity were measured via integrating diverse sources of information. The first type of 

lncRNA/miRNA similarity is calculated using Gaussian interaction profile (GIP) kernel 

based on known lncRNA-miRNA interaction network [56]. The second type is calculated 

using Pearson correlation coefficient (PCC) based on lncRNA/miRNA sequence 

information [57]. Subsequently, the overall similarity matrices for lncRNAs and miRNAs 

were constructed based on above two types of similarity. 

Similarity based on Gaussian interaction profile (GIP) kernel. According to the 

assumption that functionally similar lncRNAs tend to interact with the similar miRNAs, 

and Gaussian interaction profile (GIP) kernel has been widely used to compute the 

molecule similarity [56, 58] . The Gaussian interaction profile kernel similarity of lncRNA 

and miRNA can be constructed according to the topologic information of known lncRNA-

miRNA interaction network. Thus, we use GIP kernel to calculate the similarity 

𝐿𝐺𝐼𝑃(𝑙𝑖, 𝑙𝑗) between lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗 as following: 

𝐿𝐺𝐼𝑃(𝑙𝑖, 𝑙𝑗) = exp (−𝛾𝑙‖𝑌(𝑙𝑖) − 𝑌(𝑙𝑗)‖
2

)               (10) 

where 

𝑌 = [

𝑦1,1 𝑦1,2 ⋯
𝑦2,1 𝑦2,2 ⋯

⋮ ⋮ ⋱

𝑦1,𝑛

𝑦2,𝑛

⋮
𝑦𝑟,1 𝑦𝑟,1 ⋯ 𝑦𝑟,𝑛

]                    (11) 

𝛾𝑙 =
1

1

𝑟
∑ ‖𝑌(𝑙𝑖)‖2𝑟

𝑖=1

                        (12) 

𝑌 is the adjacent matrix of lncRNA-miRNA interaction based on lncRNASNP2 database. 

𝑟  and 𝑚  are the number of lncRNAs and miRNAs, respectively. The size of 𝐿𝐺𝐼𝑃  is 

𝑟 × 𝑟, 𝑌(𝑙𝑖) is the 𝑖𝑡ℎ row of the adjacent matrix 𝑌, 𝛾𝑙 is the kernel width parameter. 

   Similar to lncRNAs, the Gaussian interaction profile kernel similarity 𝑀𝐺𝐼𝑃(𝑚𝑖, 𝑚𝑗) 

of miRNA 𝑚𝑖 and miRNA 𝑚𝑗 can be calculated as follows: 

𝑀𝐺𝐼𝑃(𝑚𝑖, 𝑚𝑗) = 𝑒𝑥𝑝 (−𝛾𝑚‖𝑌(𝑚𝑖) − 𝑌(𝑚𝑗)‖
2

)          (13) 

where 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835934doi: bioRxiv preprint 

https://www.baidu.com/link?url=oH8vCxMw9UATtvF2zhXBuSXIHFOsU1hjGOhLE-qzcXVnWupvZX2nAm43eWv08cnkmysUMHyB_JMNlaKegBHufekJ7up0geuVbhZ9ddtL-pO&wd=&eqid=b9a95c340067d1f7000000035d595f7c
https://www.baidu.com/link?url=oH8vCxMw9UATtvF2zhXBuSXIHFOsU1hjGOhLE-qzcXVnWupvZX2nAm43eWv08cnkmysUMHyB_JMNlaKegBHufekJ7up0geuVbhZ9ddtL-pO&wd=&eqid=b9a95c340067d1f7000000035d595f7c
https://doi.org/10.1101/835934
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝛾𝑚 =
1

1

𝑛
∑ ‖𝑌(𝑚𝑖)‖2𝑛

𝑖=1

                       (14) 

The size of 𝑀𝐺𝐼𝑃 is 𝑛 × 𝑛, 𝑌(𝑚𝑖) is the 𝑖𝑡ℎ column of the adjacent matrix 𝑌, 𝛾𝑚 

is the kernel width parameter. 

Similarity based on Pearson correlation coefficient (PCC). We download the 

expression profiles for lncRNAs and miRNAs from lncRNASNP2 database. For each 

lncRNA/miRNA, the values of expression profile can be obtained. Pearson correlation 

coefficient (PCC) has been widely applied to study expression profiles in bioinformatics 

[59, 60]. PCC of lncRNA/miRNA is calculated based on the lncRNA/miRNA expression 

profile values. For example, Given two lncRNAs 𝑙𝑖 and 𝑙𝑗, the expression profiles are 

denoted as 𝑋𝑙 = {𝑥𝑙1, 𝑥𝑙2, ⋯ , 𝑥𝑙𝑡}  and 𝑍𝑙 = {𝑧𝑙1, 𝑧𝑙2, ⋯ , 𝑧𝑙𝑡} . The similarity between 

lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗 is calculated as follows: 

𝐿𝑝𝑐𝑐(𝑙𝑖, 𝑙𝑗) =
|∑ (𝑥𝑙𝑖−�̅�𝑙)(𝑧𝑙𝑖−𝑍𝑙)𝑡

𝑖=1 |

√∑ (𝑥𝑙𝑖−�̅�𝑙)2𝑡
𝑖=1 √∑ (𝑧𝑙𝑖−�̅�𝑙)2𝑡

𝑖=1

                (15) 

where, 𝑡  is the number of attributes of the expression profile, 𝑋�̅�  and 𝑍�̅�  denote the 

average value of 𝑋𝑙 and 𝑍𝑙, respectively. Generally, the larger 𝐿𝑝𝑐𝑐(𝑙𝑖, 𝑙𝑗) represents the 

more similarly expression of lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗. 

Similar to lncRNAs, the similarity between miRNA 𝑚𝑖  and miRNA 𝑚𝑗  can be 

calculated by Pearson correlation coefficient as follows. 

𝑀𝑝𝑐𝑐(𝑚𝑖, 𝑚𝑗) =
|∑ (𝑥𝑚𝑖−�̅�𝑚)(𝑧𝑖−𝑍𝑚)𝑡

𝑖=1 |

√∑ (𝑥𝑚𝑖−�̅�𝑚)2𝑡
𝑖=1 √∑ (𝑧𝑚𝑖−�̅�𝑚)2𝑡

𝑖=1

            (16) 

where, 𝑋𝑚 = {𝑥𝑚1, 𝑥𝑚2, ⋯ , 𝑥𝑚𝑡}  and 𝑍𝑚 = {𝑧𝑚1, 𝑧𝑚2, ⋯ , 𝑧𝑚𝑡}  denote the expression 

profiles of miRNA 𝑚𝑖 and miRNA 𝑚𝑗. �̅�𝑚 and �̅�𝑚 denote the average value of 𝑋𝑚 

and 𝑍𝑚, respectively. 

Construct the overall similarity for lncRNAs and miRNAs. In this study, the 

Gaussian interaction profile kernel similarity and Pearson correlation coefficient similarity 

of lncRNA and miRNA are calculated, respectively. After that, the functional similarity 

between lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗 is defined according to [61, 62], the final similarity 

matrix 𝑆𝐿 of lncRNA is calculated as follows: 
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𝑆𝐿(𝑙𝑖, 𝑙𝑗) =
𝐿𝐺𝐼𝑃(𝑙𝑖,𝑙𝑗)+𝐿𝑝𝑐𝑐(𝑙𝑖,𝑙𝑗)

2
                  (17) 

where 𝑆𝐿  is 𝑟 -order square matrix, 𝑆𝐿(𝑙𝑖, 𝑙𝑗)  represents the similarity score between 

lncRNA 𝑙𝑖 and lncRNA 𝑙𝑗. 

Based on the same method, the final similarity matrix 𝑆𝑀 of miRNA is calculated as 

follows: 

𝑆𝑀(𝑚𝑖, 𝑚𝑗) =
𝑀𝐺𝐼𝑃(𝑚𝑖,𝑚𝑗)+𝑀𝑝𝑐𝑐(𝑚𝑖,𝑚𝑗)

2
              (18) 

where 𝑆𝑀 is 𝑛-order square matrix, 𝑆𝑀(𝑚𝑖, 𝑚𝑗) represents the similarity score between 

miRNA 𝑚𝑖 and miRNA 𝑚𝑗. 

2.3.3 Sparsification of the similarity matrices  

Recent studies on manifold learning theories and spectral graph have shown that the 

scattered nearest neighbors of data points can effectively model local geometric structure 

[53, 63]. In graph regularized matrix factorization, the nearest neighbor graph can promote 

close lncRNAs (or miRNAs) to be sufficiently close to each other in the lncRNA space (or 

miRNA space) [46, 64]. That is, it can preserve the local geometries of the original data. 

In this study, the affinity graphs (𝑆𝐿∗ and 𝑆𝑀∗) for lncRNAs and miRNAs are constructed 

using p-nearest neighbor graph，respectively. We set p=5, and the weight matrix 𝐺𝑙 is 

generated based on the lncRNA similarity matrix 𝑆𝐿  as follows:  

𝐺𝑖𝑗
𝑙 = {

  1           𝑖 ∈ 𝑁𝑝(𝑙𝑗)＆𝑗 ∈ 𝑁𝑝(𝑙𝑖)

0           𝑖 ∉ 𝑁𝑝(𝑙𝑗)＆𝑗 ∉ 𝑁𝑝(𝑙𝑖)

0.5               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

             (19) 

where 𝑁𝑝(𝑙𝑖)  and 𝑁𝑝(𝑙𝑗)  denote the sets of p-nearest neighbors to lncRNA 𝑙𝑖  and 

lncRNA 𝑙𝑗, respectively. Subsequently, the sparse similarity matrix 𝑆𝐿∗ for lncRNAs is 

defined as： 

∀ 𝑖, 𝑗,          𝑆𝑖𝑗
𝐿∗ = 𝑆𝑖𝑗

𝐿 𝐺𝑖𝑗
𝑙                      (20) 

The same procedure for miRNAs, the sparse similarity matrix 𝑆𝑀∗ can be obtained by the 

similarity matrix 𝑆𝑀 of miRNA. 

2.3.4 The model of GNMFLMI 

In the Euclidean space, the standard nonnegative matrix factorization in Eq. (2) fails 
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to discover the intrinsic geometrical and discriminating structure of the data space [65, 66]. 

To avoid overfitting and enhance generalization capability, we use the Tikhonov  (𝐿2) 

regularization in Eq. (2) to guarantee the 𝑈 and 𝑉 smoothness (i.e. Eq. (6)) [55]. At the 

same time, graph regularization is used to ensure that the relative positions of data points 

in the lncRNA feature space or miRNA feature space are unchanged [46]. The objective 

function of graph regularized nonnegative matrix factorization can be defined as follows: 

min
𝑈,𝑉

‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 + 𝜆𝑙 ∑ ‖𝑢𝑖 − 𝑢𝑗‖

2𝑟
𝑖≤𝑗 𝑆𝑖𝑗

𝐿∗   + 𝜆𝑚 ∑ ‖𝑣𝑖 − 𝑣𝑗‖
2𝑛

𝑖≤𝑗 𝑆𝑖𝑗
𝑀∗    

+𝛽 (‖𝑈‖𝐹
2 + ‖𝑉‖𝐹

2)           𝑠. 𝑡.   𝑈 ≥ 0，𝑉 ≥ 0                  (21) 

and 

   𝑅𝑙 = ∑ ‖𝑢𝑖 − 𝑢𝑗‖
2𝑟

𝑖≤𝑗 𝑆𝑖𝑗
𝐿∗ = ∑ 𝑢𝑗

𝑇𝑟
𝑗=1 𝑢𝑗 ∑ 𝑆𝑖𝑗

𝐿∗𝑟
𝑖,𝑗=1 − ∑ 𝑢𝑖

𝑇𝑢𝑗𝑆𝑖𝑗
𝐿∗𝑟

𝑖,𝑗=1   

  = ∑ 𝑢𝑗
𝑇

𝑟

𝑗=1

𝑢𝑗𝐷𝑗𝑗 − ∑ 𝑢𝑖
𝑇𝑢𝑗𝑆𝑖𝑗

𝐿∗

𝑟

𝑖,𝑗=1

 

              = 𝑇𝑟(𝑈𝐷𝑙𝑈𝑇) − 𝑇𝑟(𝑈𝑆𝐿∗𝑈𝑇)= 𝑇𝑟(𝑈𝐿𝑙𝑈
𝑇)         (22) 

Similarly, 

𝑅𝑚 = ∑ ‖𝑣𝑖 − 𝑣𝑗‖
2𝑛

𝑖≤𝑗 𝑆𝑖𝑗
𝑀∗ = 𝑇𝑟(𝑉𝐿𝑚𝑉𝑇)            (23) 

where 𝜆𝑙  and 𝜆𝑚  are the graph regularization parameters，𝑢𝑖  and 𝑣𝑗   denote the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ  columns of   𝑈  and 𝑉 , respectively. 𝑅𝑙  and 𝑅𝑚  are the graph regularization 

terms of lncRNA and miRNA. We hope that if two data points 𝑙𝑖 and 𝑙𝑗 are close, 𝑢𝑖 

and 𝑢𝑗   are also close to each other by minimizing 𝑅𝑙  (or 𝑅𝑚 ). 𝐿𝑙 = 𝐷𝑙 − 𝑆𝐿∗  and 

𝐿𝑚 = 𝐷𝑚 − 𝑆𝑀∗  represent the graph Laplacian matrices for 𝑆𝐿∗  and 𝑆𝑀∗ [67], 

respectively; 𝐷𝑙 and 𝐷𝑚 are the diagonal matrices whose diagonal elements are column 

(or row) sums of 𝑆𝐿∗ and 𝑆𝑀∗, respectively. The Eq. (21) can be rewritten as: 

min
𝑈,𝑉

‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 + 𝛽 (‖𝑈‖𝐹

2 + ‖𝑉‖𝐹
2)  + 𝜆𝑙𝑇𝑟(𝑈𝐿𝑙𝑈

𝑇)   + 𝜆𝑚𝑇𝑟(𝑉𝐿𝑚𝑉𝑇)   

     𝑠. 𝑡.   𝑈 ≥ 0，𝑉 ≥ 0                                             (24) 

According to trace properties of matrix, the objective function Eq. (24) can be transformed 

into: 

‖𝑌 − 𝑈𝑇𝑉‖𝐹
2 + 𝛽 (‖𝑈‖𝐹

2 + ‖𝑉‖𝐹
2 )  + 𝜆𝑙𝑇𝑟(𝑈𝐿𝑙𝑈𝑇)   + 𝜆𝑚𝑇𝑟(𝑉𝐿𝑚𝑉𝑇)   
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     = 𝑇𝑟((𝑌 − 𝑈𝑇𝑉)(𝑌 − 𝑈𝑇𝑉)𝑇)+ 𝛽 (𝑇𝑟(𝑈𝑈𝑇) + 𝑇𝑟(𝑉𝑉𝑇)) 

      +𝜆𝑙𝑇𝑟(𝑈𝐿𝑙𝑈
𝑇)   + 𝜆𝑚𝑇𝑟(𝑉𝐿𝑚𝑉𝑇) 

           = 𝑇𝑟(𝑌𝑌𝑇) − 2𝑇𝑟(𝑌𝑉𝑇𝑈) + 𝑇𝑟(𝑈𝑇𝑉𝑉𝑇𝑈) + 𝛽𝑇𝑟(𝑈𝑇𝑈) + 𝛽𝑇𝑟(𝑉𝑇𝑉) 

+𝜆𝑙𝑇𝑟(𝑈𝐿𝑙𝑈
𝑇)   + 𝜆𝑚𝑇𝑟(𝑉𝐿𝑚𝑉𝑇)                                 (25)                                 

2.3.5 Model optimization 

Because of the objective functions of GNMFLMI is not convex, finding the global 

minima is unrealistic by optimization algorithm. However, the local minima can be 

achieved via algorithm. In this study, the Lagrange Multiplier method was introduced to 

solve the optimization problem in Eq. (25). Let 𝜓 = {𝜑𝑘𝑖} and 𝛷 = {𝜙𝑘𝑗}, the Lagrange 

multipliers 𝜑𝑘𝑖 and 𝜙𝑘𝑗 are used to restrict the 𝑢𝑘𝑖 ≥ 0 and 𝑣𝑘𝑗 ≥ 0, respectively. The 

Lagrange function ℋ can be constructed as: 

         ℋ = 𝑇𝑟(𝑌𝑌𝑇) − 2𝑇𝑟(𝑌𝑉𝑇𝑈) + 𝑇𝑟(𝑈𝑇𝑉𝑉𝑇𝑈) + 𝛽𝑇𝑟(𝑈𝑇𝑈) + 𝛽𝑇𝑟(𝑉𝑇𝑉) 

     +𝜆𝑙𝑇𝑟(𝑈𝐿𝑙𝑈
𝑇)  + 𝜆𝑚𝑇𝑟(𝑉𝐿𝑚𝑉𝑇) + 𝑇𝑟(𝜓𝑈) + 𝑇𝑟(𝛷𝑉)           (26) 

The partial derivatives of the function ℋ to 𝑈 and 𝑉 are: 

𝜕ℋ

𝜕𝑢
= −2𝑉𝑌𝑇 + 2𝑉𝑉𝑇𝑈 + 2𝛽𝑈+2𝜆𝑙𝑈𝐿𝑙 + 𝜓            (27) 

𝜕ℋ

𝜕𝑣
= −2𝑈𝑌 + 2𝑈𝑈𝑇𝑉 + 2𝛽𝑉+2𝜆𝑚𝑉𝐿𝑚 + 𝛷            (28) 

According to the Karush–Kuhn–Tucker (KKT) conditions [68] ， 𝜑𝑘𝑖𝑢𝑘𝑖 = 0  and 

𝜙𝑘𝑗𝑣𝑘𝑗 = 0, we get the following equations for 𝑢𝑘𝑖 and 𝑣𝑘𝑗: 

−(𝑉𝑌𝑇)𝑘𝑖𝑢𝑘𝑖 + (𝑉𝑉𝑇𝑈)𝑘𝑖𝑢𝑘𝑖 + (𝛽𝑈)𝑘𝑖𝑢𝑘𝑖 + [𝜆𝑙𝑈(𝐷𝑙 − 𝑆𝐿∗)]𝑘𝑖𝑢𝑘𝑖 = 0   (29) 

−(𝑈𝑌)𝑘𝑗𝑣𝑘𝑗 + (𝑈𝑈𝑇𝑉)𝑘𝑗𝑣𝑘𝑗 + (𝛽𝑉)𝑘𝑗𝑣𝑘𝑗 + [𝜆𝑚𝑉(𝐷𝑚 − 𝑆𝑀∗)]𝑘𝑗𝑣𝑘𝑗 = 0  (30) 

Finally, the updating rules can be determined as follows: 

  𝑢𝑘𝑖 ← 𝑢𝑘𝑖
(𝑉𝑌𝑇+𝜆𝑙𝑈𝑆𝐿∗)𝑘𝑖

(𝑉𝑉𝑇𝑈+𝛽𝑈+𝜆𝑙𝑈𝐷𝑙)𝑘𝑖
                     (31) 

 𝑣𝑘𝑗 ← 𝑣𝑘𝑗
(𝑈𝑌+𝜆𝑚𝑉𝑆𝑀∗)𝑘𝑗

(𝑈𝑈𝑇𝑉+𝛽𝑉+𝜆𝑚𝑉𝐷𝑚)𝑘𝑗
                    (32) 

We update the nonnegative matrices 𝑈 and 𝑉 according to Eq. (31) and Eq. (32) 

until convergence or reaching the iteration upper limit. Ultimately, the new prediction 

lncRNA-miRNA interaction matrix 𝑌∗ can be calculated by 𝑌∗ = 𝑈𝑇𝑉. In general, the 

larger value of the element in prediction matrix 𝑌∗, it is more likely that lncRNA/miRNA 
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interacts with the corresponding miRNA/lncRNA. That is, for each miRNA, we can sort 

the lncRNA in descending order according to the value of the element, the top ranked 

lnRNAs in each column of 𝑌∗ are more likely to be associated with the corresponding 

miRNA. The same is true for each lncRNA. Table 1 generalizes the procedure of 

GNMFLMI for predicting lncRNA-miRNA interactions. 

 

Table 1. Algorithm description of graph regularized nonnegative matrix factorization for predicting 

lncRNA-miRNA interactions. 

Algorithm 1：GNMFLMI Algorithm 

Input: Adjacency matrix 𝑌 ∈ 𝑅𝑟×𝑛 , subspace dimensionality k, neighborhood size p, 

sparseness constraint coefficients 𝛽 and regularization coefficients 𝜆𝑙 , 𝜆𝑚. 

Output: Predicted association matrix 𝑌∗. 

1. randomly initialize two nonnegative matrices 𝑈 ∈ 𝑅𝑘×𝑟 and 𝑉 ∈ 𝑅𝑘×𝑛; 

2. construct the similarity matrices 𝑆𝐿 and 𝑆𝑀 

  𝑆𝐿  and 𝑆𝑀  ←  Based on Gaussian interaction profile kernel similarity and Pearson 

correlation coefficient; 

3. construct the weight matrix 𝐺𝑙 and 𝐺𝑚 using p-nearest neighbors; 

4. 𝐿 = {𝑙1, 𝑙2, ⋯ , 𝑙𝑟} ,𝑀 = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛}; 

5. for each lncRNA 𝑙𝑎 ∈ 𝐿 do 

𝐿𝑁𝑁 =K Nearest Known Neighbors(𝑙𝑎, 𝑆𝐿 , 𝑝); 

end for 

6. for each disease 𝑚𝑏 ∈ 𝐷 do 

  MNN= K Nearest Known Neighbors(𝑚𝑏, 𝑆𝑀, 𝑝)； 

  end for 

7. Sparse similarity matrices 𝑆𝑖𝑗
𝐿∗ = 𝑆𝑖𝑗

𝐿 𝐺𝑖𝑗
𝑙  ，𝑆𝑖𝑗

𝑀∗ = 𝑆𝑖𝑗
𝑀𝐺𝑖𝑗

𝑚； 

8. repeat 

update 𝑈 and 𝑉 by the following rules: 

    𝑢𝑘𝑖 ← 𝑢𝑘𝑖
(𝑉𝑌𝑇+𝜆𝑙𝑈𝑆𝐿∗)𝑘𝑖

(𝑉𝑉𝑇𝑈+𝛽𝑈+𝜆𝑙𝑈𝐷𝑙)𝑘𝑖
   

     𝑣𝑘𝑗 ← 𝑣𝑘𝑗
(𝑈𝑌+𝜆𝑚𝑉𝑆𝑀∗)𝑘𝑗

(𝑈𝑈𝑇𝑉+𝛽𝑉+𝜆𝑚𝑉𝐷𝑚)𝑘𝑗
 

9. until convergence or reaching upper limit of the iteration 

10. calculate the predicted association matrix 𝑌∗ = 𝑈𝑇𝑉; 

11. return 𝑌∗. 

3 Results and discussion 

3.1 Experimental settings 
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In this study, to estimate the performance of GNMFLMI on predicting lncRNA-

miRNA interactions, the five-fold cross validation experiments were performed on the 

lncRNASNP2 dataset and compare our method with the following approaches: NMF and 

RNMF. In the five-fold cross validation，we randomly divide 8634 known lncRNA-

miRNA interaction samples into five equal subsets. For each cross validation experiment, 

one of the subsets was used as the test set and the other four subsets were used as the 

training set. 

    The receiver operating characteristics (ROC) curve and AUC (area under the receiver 

operating characteristics curve) are widely used to estimate the performance [69, 70]. A 

larger value of AUC represents the better prediction performance of model. The confusion 

matrix can be obtained by setting different thresholds, the sensitivity (Sen.) and specificity 

(Spe.) are calculated as: 

𝑆𝑒𝑛. =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (33) 

𝑆𝑝𝑒. =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                          (34) 

where FN and TP represent the number of false negative samples and true positive samples, 

respectively; FP and TN represent the number of false positive samples and true negative 

samples, respectively. FPR is false positive rate (FPR=1-Spe.), TPR is true positive rate 

(TPR=Sen.). In addition, precision (Pre.), accuracy (Acc.) and F1-Score are also used as 

general measurements. 

𝑃𝑟𝑒. =
𝑇𝑃

𝑇𝑃+𝐹𝑝
                           (35) 

𝐴𝑐𝑐. =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑝
                       (36) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒.×𝑆𝑛

𝑃𝑟𝑒.+𝑆𝑛
                     (37) 

In this paper, the parameters are chose based on the grid search. There are five 

parameters in our method: neighborhood size 𝑝, subspace dimensionality k, sparseness 

constraint coefficient 𝛽  and graph regularization coefficients 𝜆𝑙   , 𝜆𝑚 . The parameter 

combinations were determined from the following ranges: {65,140} for k, 

{0.0001,0.001,0.01}  for 𝛽  and the ranges of 𝜆𝑙  = 𝜆𝑚 ∈ {0.001,0.01,0.1} . Based on 
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the studies of Cai et al. [46] and Li et al. [65], we set 𝑝 = 5. Finally, the parameter values 

are 𝑝 = 5, k=80, 𝛽 = 0.01, 𝜆𝑙  = 𝜆𝑚 = 0.1. 

3.2 Cross validation 

We compared the performance of GNMFLMI with computational approaches NMF 

and CNMF on the lncRNASNP2 dataset. Figure 2, Figure 3 and Figure 4 plot ROC curves 

and calculate the average AUC values of NMF, CNMF and GNMFLMI, respectively.  

Table 2 lists the AUC values of GNMFLMI, CNMF and NMF under five-fold cross 

validation. GNMFLMI achieved the AUC value of 0.9769, which higher than the AUC 

values of NMF 0.9344 and CNMF 0.9510. The experiment results show that the prediction 

performance of GNMFLMI outperform the NMF and CNMF.  

Fig. 2. The ROC curves of NMF in lncRNA-

miRNA interaction prediction under 5-fold cross 

validation. 

Fig. 3. The ROC curves of CNMF in lncRNA-

miRNA interaction prediction under 5-fold cross 

validation. 

Fig. 4. The ROC curves of GNMFLMI in 
lncRNA-miRNA interaction prediction under 5-
fold cross validation. 

Fig. 5. The ROC curves of three methods. 
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In addition, the sensitivity, precision, accuracy and F1-Score for these methods were 

calculated at different specificity. As shown in Table 3, when specificity is 95%, the 

average sensitivities of GNMFLMI, NMF and CNMF are 89.40%, 80.17% and 82.08%, 

respectively. The sensitivity of GNMFLMI is 9.23% and 7.32% higher than NMF and 

CNMF. When specificity is 90%, GNMFLMI achieves the average sensitivity of 94.20%, 

which is still 10.63% and 8.47% higher than NMF and CNMF, respectively. In figure 5, 

we can also discover that the ROC curve of GNMFLMI is always above CNMF and NMF. 

These results further demonstrate that the performance of GNMFLMI is better than CNMF 

and NMF. 

 

Table 2. The average AUC values and standard deviations obtained by various methods under five-fold 

cross validation (CV) on the lncRNASNP2 dataset. 

Methods  
The AUC values under five-fold CV 

Average  
1st 2nd 3rd 4th 5th  

NMF 0.9399 0.9383 0.9267 0.9331 0.9341 0.93440.0052 

CNMF 0.9562 0.9488 0.9476 0.9453 0.9572 0.95100.0054 

GNMFLMI 0.9748 0.9752 0.9763 0.9799 0.9781 0.97690.0022 

 

Table 3. The average sensitivity, precision, accuracy and F1-Score values of GNMFLMI and existing 

methods at different specificity. 

Methods  Spe.(%) Sen.(%) Pre.(%) Acc.(%) F1-Score(%) 

NMF 95.00 80.17  94.15  87.59  86.59  

CNMF 95.00 82.08  94.28  89.46  88.83  

GNMFLMI 95.00 89.40  94.72  92.21  91.98  

NMF 90.00  83.57  89.29  86.78  86.33  

CNMF 90.00 85.73  89.53  87.86  87.54  

GNMFLMI 90.00  94.20  90.38  92.09  92.25  

 

3.3 Case study 

Case studies are carried out to further verify the capability of GNMFLMI on predicting 

novel interactions between lncRNAs and miRNAs. Here, we left out an arbitrary lncRNA-

miRNA interaction (i.e. removing its interactions from the lncRNASNP2 dataset) to verify 

if its interactions would be discovered successfully. According to [71], the prediction 

performance is greatly affected by nearest neighbor information. If the new lncRNA 𝑙𝑖 
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(miRNA 𝑚𝑖 ) and lncRNA 𝑙𝑗  (miRNA 𝑚𝑗 ) are close to each other, it may be easy to 

accurately predict the interactions between them, and vice versa. In this work, we select 

the lncRNA and miRNA which the similarity to the nearest neighbor is low (according to 

𝑆𝐿∗  and 𝑆𝑀∗ , respectively) to validate the capability of model on predicting novel 

interactions. However, the standard NMF and CNMF fails to discover the novel 

interactions in this case. 

Table 4. The top 20 novel interactions predicted 

by GNMFLMI for nonhsat-159254.1 on the 

lncRNASNP2 dataset. 

Rank miRNAs Evidences 

1 hsa-mir-590-3p confirmed 

2 hsa-mir-150-5p confirmed 

3 hsa-mir-374b-5p confirmed 

4 hsa-mir-374a-5p confirmed 

5 hsa-mir-30d-5p confirmed 

6 hsa-mir-30e-5p confirmed 

7 hsa-mir-30a-5p confirmed 

8 hsa-mir-30c-5p confirmed 

9 hsa-mir-30b-5p confirmed 

10 hsa-mir-200a-3p confirmed 

11 hsa-mir-141-3p confirmed 

12 hsa-mir-205-5p confirmed 

13 hsa-mir-216a-5p confirmed 

14 hsa-mir-4465 confirmed 

15 hsa-mir-26a-5p confirmed 

16 hsa-mir-1297 confirmed 

17 hsa-mir-26b-5p confirmed 

18 hsa-mir-363-3p confirmed 

19 hsa-mir-25-3p confirmed 

20 hsa-mir-92a-3p confirmed 

Table 5. The top 20 novel interactions predicted 

by GNMFLMI for hsa-mir-544a on the 

lncRNASNP2 dataset. 

Rank LncRNAs Evidences 

1 nonhsat137542.2 confirmed 

2 nonhsat137541.2 confirmed 

3 nonhsat137559.2 confirmed 

4 nonhsat159243.1 confirmed 

5 nonhsat137558.2 confirmed 

6 nonhsat022125.2 confirmed 

7 nonhsat159246.1 confirmed 

8 nonhsat159242.1 confirmed 

9 nonhsat159254.1 confirmed 

10 nonhsat096369.2 unconfirmed 

11 nonhsat096376.2 unconfirmed 

12 nonhsat096375.2 unconfirmed 

13 nonhsat022145.2 confirmed 

14 nonhsat159244.1 confirmed 

15 nonhsat159252.1 confirmed 

16 nonhsat198591.1 unconfirmed 

17 nonhsat159248.1 confirmed 

18 nonhsat022132.2 confirmed 

19 nonhsat007675.2 confirmed 

20 nonhsat007699.2 confirmed 
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For lncRNA-nonhsat159254.1, we remove all miRNAs which interact with this 

lncRNA from the lncRNASNP2 dataset, the remaining known interactions are used to train 

the model of GNMFLMI. Then, all candidate miRNAs are sorted in descending order 

according to the predicted interaction scores. Table 4 gives the top 20 predicted interactions 

for nonhsat159254.1, the top 20 predicted interactions were verified by databases. The 

same procedure is performed for miRNA-hsa-mir-544a, Table 5 lists the top 20 predicted 

interactions for hsa-mir-544a, 16 out of the top 20 candidate lncRNAs were verified by 

databases.  

It is worth noting that the nonhsat159254.1 and hsa-mir-544a prediction can be 

considered two difficult cases. Specifically, the similarities both nonhsat159254.1 and hsa-

mir-544a to their nearest neighbors lncRNA and miRNA are as low as 0.1786 (according 

to 𝑆𝐿∗) and 0.3658 (according to 𝑆𝑀∗), respectively. Such low similarity makes it more 

difficult to predict the interactions between them. According to the above two cases, it is 

shown that GNMFLMI can effectively predict novel and challenging interactions between 

lncRNAs and miRNAs ， which can provide valuable information for biological 

experiments 

4 Conclusion 

The interactions between lncRNAs and miRNAs constitute a complex molecular 

regulatory network, and studies have confirmed that their interactions are closely related 

to the occurrence and development of various diseases. Identifying lncRNA-miRNA 

interactions can help people better understand the complex disease mechanisms. In this 

paper, we propose a new method, GNMFLMI, for lncRNA-miRNA interaction prediction. 

Different from other traditional methods, GNMFLMI guides the matrix factorization via 

constructing graph Laplacian regularizations of lncRNAs and miRNAs, and uses Lagrange 

multipliers method to optimize the objective function. This method can also be applied into 

other similar association prediction (e.g. small molecular-miRNA and mRNA–protein 

associations). Five-fold cross validation and case studies were conducted to validate the 

performance of GNMFLMI，the experiment results show that our method outperforms the 

other compared methods and can identify potential lncRNA-miRNA interactions. We 
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believe that our approach is helpful for clinical research. In future work, more different 

biological information can be integrated to further improve prediction performance of 

model. 

Acknowledgements  

This work was supported in part by the NSFC Excellent Young Scholars Program, under 

Grant 61722212, in part by the National Natural Science Foundation of China, under 

Grants 61702444, 61572506, in part by the Pioneer Hundred Talents Program of Chinese 

Academy of Sciences, in part by the Chinese Postdoctoral Science Foundation, under Grant 

2019M653804, in part by the West Light Foundation of the Chinese Academy of Sciences, 

under Grant 2018-XBQNXZ-B-008.  

Competing interests  

The authors declare that they have no competing interests. 

References  

1. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP: A ceRNA hypothesis: the Rosetta Stone of a 

hidden RNA language? Cell 2011, 146(3):353-358. 

2. Schaukowitch K, Kim T-K: Emerging epigenetic mechanisms of long non-coding RNAs. 

Neuroscience 2014, 264:25-38. 

3. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES: Ribosome profiling provides 

evidence that large noncoding RNAs do not encode proteins. Cell 2013, 154(1):240-251. 

4. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, 

Hackermüller J, Hofacker IL: RNA maps reveal new RNA classes and a possible function for 

pervasive transcription. Science 2007, 316(5830):1484-1488. 

5. Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. Nature 

reviews genetics 2009, 10(3):155. 

6. Kurihara M, Shiraishi A, Satake H, Kimura AP: A conserved noncoding sequence can function 

as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed 

gene and a testis-specific long noncoding RNA. Journal of molecular biology 2014, 

426(17):3069-3093. 

7. Chen X, You ZH, Yan GY, Gong DW: IRWRLDA: improved random walk with restart for 

lncRNA-disease association prediction. Oncotarget 2016, 7(36):57919-57931. 

8. Sun M, Kraus WL: From discovery to function: the expanding roles of long noncoding RNAs 

in physiology and disease. Endocrine reviews 2015, 36(1):25-64. 

9. Roberts TC, Morris KV, Weinberg MS: Perspectives on the mechanism of transcriptional 

regulation by long non-coding RNAs. Epigenetics 2014, 9(1):13-20. 

10. Quinn JJ, Chang HY: Unique features of long non-coding RNA biogenesis and function. Nature 

Reviews Genetics 2016, 17(1):47. 

11. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H: starBase v2. 0: decoding miRNA-ceRNA, miRNA-

ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids 

research 2013, 42(D1):D92-D97. 

12. You Z, Lei Y, Ji Z, Zhu Z: A novel approach to modelling protein-protein interaction networks. 

In: Advances in Swarm Intelligence. Springer Berlin Heidelberg; 2012: 49-57. 

13. Tay Y, Rinn J, Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. 

Nature 2014, 505(7483):344. 

14. Guo G, Kang Q, Zhu X, Chen Q, Wang X, Chen Y, Ouyang J, Zhang L, Tan H, Chen R: A long 

noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835934doi: bioRxiv preprint 

https://doi.org/10.1101/835934
http://creativecommons.org/licenses/by-nc-nd/4.0/


competitive endogenous RNA. Oncogene 2015, 34(14):1768. 

15. Sui W, Lin H, Peng W, Huang Y, Chen J, Zhang Y, Dai Y: Molecular dysfunctions in acute 

rejection after renal transplantation revealed by integrated analysis of transcription factor, 

microRNA and long noncoding RNA. Genomics 2013, 102(4):310-322. 

16. Augoff K, McCue B, Plow EF, Sossey-Alaoui K: miR-31 and its host gene lncRNA LOC554202 

are regulated by promoter hypermethylation in triple-negative breast cancer. Molecular 

cancer 2012, 11(1):5. 

17. Di Leva G, Cheung DG, Croce CM: miRNA clusters as therapeutic targets for hormone-

resistant breast cancer. Expert review of endocrinology & metabolism 2015, 10(6):607-617. 

18. Huang Y-A, You Z-H, Li L-P, Huang Z-A, Xiang L-X, Li X-F, Lv L-T: EPMDA: an expression-

profile based computational model for microRNA-disease association prediction. Oncotarget 

2017, 8(50):87033. 

19. Chen X, Yan CC, Zhang X, You ZH: Long non-coding RNAs and complex diseases: from 

experimental results to computational models. Briefings in Bioinformatics 2016, 18(4):558. 

20. Wang L, You Z-H, Chen X, Li Y-M, Dong Y-N, Li L-P, Zheng K: MTRDA: Using logistic model 

tree to predict miRNA-disease associations by fusing multi-source information of sequences 

and similarities. PLOS Computational Biology 2019, 15(3):e1006865. 

21. Yang G, Lu X, Yuan L: LncRNA: a link between RNA and cancer. Biochimica et Biophysica Acta 

(BBA)-Gene Regulatory Mechanisms 2014, 1839(11):1097-1109. 

22. You Z-H, Wang L-P, Chen X, Zhang S, Li X-F, Yan G-Y, Li Z-W: PRMDA: personalized 

recommendation-based MiRNA-disease association prediction. Oncotarget 2017, 8(49):85568. 

23. Yi H-C, You Z-H, Zhou X, Cheng L, Li X, Jiang T-H, Chen Z-H: ACP-DL: A Deep Learning 

Long Short-Term Memory Model to Predict Anticancer Peptides Using High Efficiency 

Feature Representation. Molecular Therapy - Nucleic Acids 2019. 

24. Yoon J-H, Abdelmohsen K, Gorospe M: Functional interactions among microRNAs and long 

noncoding RNAs. In: Seminars in cell & developmental biology: 2014. Elsevier: 9-14. 

25. Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, Ishii N, Dahiya R: Long 

noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and 

interacts with miR-205. Cancer research 2015, 75(7):1322-1331. 

26. You Z, Wang S, Gui J, Zhang S: A Novel Hybrid Method of Gene Selection and Its Application 

on Tumor Classification. In: Advanced Intelligent Computing Theories and Applications With 

Aspects of Artificial Intelligence. Springer Berlin Heidelberg; 2008: 1055-1068. 

27. You Z-H, Yin Z, Han K, Huang D-S, Zhou X: A semi-supervised learning approach to predict 

synthetic genetic interactions by combining functional and topological properties of functional 

gene network. Bmc Bioinformatics 2010, 11(1):343. 

28. Lei Y-K, You Z-H, Ji Z, Zhu L, Huang D-S: Assessing and predicting protein interactions by 

combining manifold embedding with multiple information integration. BMC bioinformatics 

2012, 13(Suppl 7):S3. 

29. Chen Z-H, Li L-P, He Z, Zhou J-R, Li Y, Wong L: An Improved Deep Forest Model for Predicting 

Self-Interacting Proteins From Protein Sequence Using Wavelet Transformation. Frontiers In 

Genetics 2019, 10. 

30. Chen X, Zhang D-H, You Z-H: A heterogeneous label propagation approach to explore the 

potential associations between miRNA and disease. Journal of translational medicine 2018, 

16(1):348. 

31. Li Y, Chen J, Zhang J, Wang Z, Shao T, Jiang C, Xu J, Li X: Construction and analysis of lncRNA-

lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer. Oncotarget 2015, 

6(28):25003. 

32. Liu B, Fang L, Liu F, Wang X, Chen J, Chou K-C: Identification of real microRNA precursors 

with a pseudo structure status composition approach. PloS one 2015, 10(3):e0121501. 

33. Huang Y-A, Chan KC, You Z-H: Constructing prediction models from expression profiles for 

large scale lncRNA–miRNA interaction profiling. Bioinformatics 2017, 34(5):812-819. 

34. Huang Z-A, Huang Y-A, You Z-H, Zhu Z, Sun Y: Novel link prediction for large-scale miRNA-

lncRNA interaction network in a bipartite graph. BMC medical genomics 2018, 11(6):113. 

35. Meng F-R, You Z-H, Chen X, Zhou Y, An J-Y: Prediction of drug–target interaction networks 

from the integration of protein sequences and drug chemical structures. Molecules 2017, 

22(7):1119. 

36. Li ZW, You ZH, Chen X, Li LP, Huang DS, Yan GY, Nie R, Huang YA: Accurate prediction of 

protein-protein interactions by integrating potential evolutionary information embedded in 

PSSM profile and discriminative vector machine classifier. Oncotarget 2017, 8(14):23638. 

37. You Z-H, Li L, Yu H, Chen S, Wang S-L: Increasing reliability of protein interactome by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835934doi: bioRxiv preprint 

https://doi.org/10.1101/835934
http://creativecommons.org/licenses/by-nc-nd/4.0/


combining heterogeneous data sources with weighted network topological metrics. In: 

Advanced Intelligent Computing Theories and Applications. Springer Berlin Heidelberg; 2010: 657-

663. 

38. Luo X, Zhou M, Li S, Xia Y, You Z, Zhu Q, Leung H: An efficient second-order approach to 

factorize sparse matrices in recommender systems. IEEE Transactions on Industrial Informatics 

2015, 11(4):946-956. 

39. Luo X, Zhou M, Li S, You Z, Xia Y, Zhu Q: A nonnegative latent factor model for large-scale 

sparse matrices in recommender systems via alternating direction method. IEEE transactions 

on neural networks and learning systems 2016, 27(3):579-592. 

40. Jiang X, Hu X, Xu W: Microbiome data representation by joint nonnegative matrix 

factorization with laplacian regularization. IEEE/ACM transactions on computational biology 

and bioinformatics 2015, 14(2):353-359. 

41. Luo X, Zhou M, Xia Y, Zhu Q: An efficient non-negative matrix-factorization-based approach 

to collaborative filtering for recommender systems. IEEE Transactions on Industrial Informatics 

2014, 10(2):1273-1284. 

42. Luo X, Zhou M, Leung H, Xia Y, Zhu Q, You Z-H, Li S: An Incremental-and-Static-Combined 

Scheme for Matrix-Factorization-Based Collaborative Filtering. IEEE Trans Automation 

Science and Engineering 2016, 13(1):333-343. 

43. Lee DD, Seung HS: Learning the parts of objects by non-negative matrix factorization. Nature 

1999, 401(6755):788. 

44. Wu X, Jiang R, Zhang MQ, Li S: Network‐based global inference of human disease genes. 

Molecular systems biology 2008, 4(1). 

45. He X, Niyogi P: Locality preserving projections. In: Advances in neural information processing 

systems: 2004. 153-160. 

46. Cai D, He X, Han J, Huang TS: Graph regularized nonnegative matrix factorization for data 

representation. IEEE transactions on pattern analysis and machine intelligence 2010, 33(8):1548-

1560. 

47. Zhu L, You Z-H, Huang D-S, Wang B: t-LSE: A Novel Robust Geometric Approach for 

Modeling Protein-Protein Interaction Networks. PloS one 2013, 8(4):e58368. 

48. Pauca VP, Piper J, Plemmons RJ: Nonnegative matrix factorization for spectral data analysis. 

Linear algebra and its applications 2006, 416(1):29-47. 

49. Miao Y-R, Liu W, Zhang Q, Guo A-Y: lncRNASNP2: an updated database of functional SNPs 

and mutations in human and mouse lncRNAs. Nucleic acids research 2017, 46(D1):D276-D280. 

50. Zhang T, Wang M, Xi J, Li A: LPGNMF: Predicting Long Non-coding RNA and Protein 

Interaction Using Graph Regularized Nonnegative Matrix Factorization. IEEE/ACM 

Transactions on Computational Biology and Bioinformatics 2018. 

51. Xiao Q, Luo J, Liang C, Cai J, Ding P: A graph regularized non-negative matrix factorization 

method for identifying microRNA-disease associations. Bioinformatics 2017, 34(2):239-248. 

52. Liu Y, Wang S-L, Zhang J-F: Prediction of Microbe–Disease Associations by Graph Regularized 

Non-Negative Matrix Factorization. Journal of Computational Biology 2018, 25(12):1385-1394. 

53. Ezzat A, Zhao P, Wu M, Li X-L, Kwoh C-K: Drug-target interaction prediction with graph 

regularized matrix factorization. IEEE/ACM Transactions on Computational Biology and 

Bioinformatics (TCBB) 2017, 14(3):646-656. 

54. Wei H, Liu B: iCircDA-MF: identification of circRNA-disease associations based on matrix 

factorization. Briefings in bioinformatics 2019. 

55. Guan N, Tao D, Luo Z, Yuan B: Manifold regularized discriminative nonnegative matrix 

factorization with fast gradient descent. IEEE Transactions on Image Processing 2011, 

20(7):2030-2048. 

56. Huang Y-A, You Z-H, Chen X, Huang Z-A, Zhang S, Yan G-Y: Prediction of microbe–disease 

association from the integration of neighbor and graph with collaborative recommendation 

model. Journal of translational medicine 2017, 15(1):209. 

57. Wang L, You Z-H, Chen X, Li J-Q, Yan X, Zhang W, Huang Y-A: An ensemble approach for 

large-scale identification of protein-protein interactions using the alignments of multiple 

sequences. Oncotarget 2017, 8(3):5149. 

58. van Laarhoven T, Nabuurs SB, Marchiori E: Gaussian interaction profile kernels for predicting 

drug–target interaction. Bioinformatics 2011, 27(21):3036-3043. 

59. Li M, Zheng R, Zhang H, Wang J, Pan Y: Effective identification of essential proteins based on 

priori knowledge, network topology and gene expressions. Methods 2014, 67(3):325-333. 

60. Kang H, Lee J, Yu S: Differential Co-Expression Networks using RNA-seq and microarrays in 

Alzheimer's disease. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835934doi: bioRxiv preprint 

https://doi.org/10.1101/835934
http://creativecommons.org/licenses/by-nc-nd/4.0/


(BIBM): 2016. IEEE: 1907-1908. 

61. Chen X: KATZLDA: KATZ measure for the lncRNA-disease association prediction. Scientific 

reports 2015, 5:16840. 

62. Chen X, Yin J, Qu J, Huang L: MDHGI: Matrix Decomposition and Heterogeneous Graph 

Inference for miRNA-disease association prediction. PLoS computational biology 2018, 

14(8):e1006418. 

63. You Z, Zhang S, Li L: Integration of genomic and proteomic data to predict synthetic genetic 

interactions using semi-supervised learning. In: Emerging Intelligent Computing Technology and 

Applications With Aspects of Artificial Intelligence. Springer Berlin Heidelberg; 2009: 635-644. 

64. You Z-H, Lei Y-K, Gui J, Huang D-S, Zhou X: Using manifold embedding for assessing and 

predicting protein interactions from high-throughput experimental data. Bioinformatics 2010, 

26(21):2744-2751. 

65. Li X, Cui G, Dong Y: Graph regularized non-negative low-rank matrix factorization for image 

clustering. IEEE transactions on cybernetics 2016, 47(11):3840-3853. 

66. Wang J-Y, Almasri I, Gao X: Adaptive graph regularized nonnegative matrix factorization via 

feature selection. In: Proceedings of the 21st International Conference on Pattern Recognition 

(ICPR2012): 2012. IEEE: 963-966. 

67. Liu X, Zhai D, Zhao D, Zhai G, Gao W: Progressive image denoising through hybrid graph 

Laplacian regularization: A unified framework. IEEE Transactions on image processing 2014, 

23(4):1491-1503. 

68. Facchinei F, Kanzow C, Sagratella S: Solving quasi-variational inequalities via their KKT 

conditions. Mathematical Programming 2014, 144(1-2):369-412. 

69. Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology 1982, 143(1):29-36. 

70. Fawcett T: An introduction to ROC analysis pattern recognition letter. 2006. 

71. Wassermann AM, Geppert H, Bajorath Jr: Ligand prediction for orphan targets using support 

vector machines and various target-ligand kernels is dominated by nearest neighbor effects. 

Journal of chemical information and modeling 2009, 49(10):2155-2167. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/835934doi: bioRxiv preprint 

https://doi.org/10.1101/835934
http://creativecommons.org/licenses/by-nc-nd/4.0/

