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Supplementary Information

S1 Algorithm for Cross-Validated scPCA

Algorithm 2: Cross-validated scPCA
Result: Produces a sparse low-dimensional representation of the target data, Xn◊p, by contrasting the

variation of Xn◊p and some background data, Ym◊p, while applying an ¸1 penalty to the loadings
generated by cPCA.

Input :
target dataset: X
background dataset: Y
binary variable indicating whether to column-scale the data: scale

vector of possible contrastive parameters: “ = (“1, . . . , “s)
vector of possible ¸1 penalty parameters: ⁄1 = (⁄1,1, . . . , ⁄1,d)
number of sparse contrastive principal components to compute: k

clustering method: cluster_meth

number of clusters: ncluster

number of cross-validation folds: V

For Xn◊p, randomly partition the index set {1, . . . , n} into V validation sets, Vx
1 , . . . , Vx

V , of (approximately)
the same size (i.e.,

tV
v=1 Vx

v = {1, . . . , n}; Vx
v fl Vx

vÕ = ÿ, ’v, vÕ œ {1, . . . , V }). Denote the corresponding
training sets by T x

v = {1, . . . , n} \ Vx
v . For Ym◊p, randomly partition the index set {1, . . . , m} into V

validation sets, Vy
1 , . . . , Vy

V , of (approximately) the same size (i.e.,
tV

v=1 Vy
v = {1, . . . , m};

Vy
v fl Vy

vÕ = ÿ, ’v, vÕ œ {1, . . . , V }). Denote the corresponding training sets by T y
v = {1, . . . , m} \ Vy

v .
Denote by XT x

v
the (n ≠ |T x

v |) ◊ p submatrix of X for training set T x
v and by YT y

v
the (m ≠ |T y

v |) ◊ p
submatrix of Y for training set T y

v . Define similarly XVx
v

and YVy
v

for the validation sets. Note that YVy
v

is
defined explicitly solely to avoid ambiguity; it plays no role in subsequent developments.
for each v in {1, . . . , V } do

Center (and scale if so desired) the columns of {XT x
v

, YT y
v

} and {XVx
v
, YVy

v
}

Compute the empirical covariance matrices: CXp◊p := 1
|T x

v | XT x
v

€XT x
v , CYp◊p := 1

|T y
v | YT y

v
€YT y

v

for each “i œ “ do
for each ⁄1,j œ ⁄1 do

Compute the contrastive covariance matrix C“i = CX ≠ “iCY
Compute the positive-semidefinite approximation of C“i , ÂC“i

Apply SPCA to ÂC“i for k components with ¸1 penalty ⁄1,j

Generate a low-dimensional representation of the target validation set by projecting XVx
v

on the
sparse loadings of SPCA
Normalize the low-dimensional representation produced to be on the unit hypercube
Cluster the normalized low-dimensional representation using cluster_meth with ncluster

Compute and record the clustering strength criterion associated with (“i, ⁄1,j)

Identify the combination of hyperparameters maximizing the cross-validated mean (across all folds
{1, . . . , V }) of the clustering strength criterion: “ı, ⁄ı

1
Output: The low-dimensional representation of the target data given by (“ı, ⁄ı

1), a n ◊ k matrix; the p ◊ k
matrix of loadings given by (“ı, ⁄ı

1); contrastive parameter “ı; ¸1 penalty parameter ⁄ı
1
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S2 Contrastive Parameter Intuition

Figure S1: E�ect of contrastive parameter for cPCA. cPCA as implemented by Abid et al. was applied
to a simulated dataset of n = 400 observations, split across 4 groups, with p = 30 variables. The first 10
variables are distributed as N(0, 10) for all observations. Variables 11 through 20 are distributed as N(0, 1)
for Groups 1 an 2, and as N(3, 1) for Groups 3 and 4. Variables 21 through 30 are distributed as N(≠3, 1)
for Groups 1 and 3, and as N(0, 1) for Groups 2 and 4. cPCA also takes as input a background dataset of
m = 400 observations, with p = 30 variables, where the first 10 variables are distributed as N(0, 10), the
following 10 as N(0, 3), and the remaining 10 as N(0, 1). The results of cPCA are then presented for eight
increasing values of the contrastive parameter “, selected using the technique described by Abid et al. For
the smaller values of the contrastive parameter, the noise contained in the first 10 variables of the target data
dominates the signal contained in variables 11 through 30. As the contrastive parameter increases, the signal
in the target data set is unmasked. However, once the contrastive parameter value becomes larger than ¥ 20,
the distinction between groups becomes increasingly poor; the variation contained in the background data
begins to dominate the variation contained in the target data. A virtually identical dataset is presented in
the supplementary material of Abid et al.
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S3 Simulated Data

See Section 3.1 for information on the simulation model and dataset.

Figure S2: Simulated scRNA-seq data: Di�erential expression. The 98 di�erentially expressed genes in
the simulated target dataset are ranked in decreasing order of their absolute level of di�erential expression
between groups. In the Splatter framework, genes are di�erentially expressed between groups by way of a
group-specific multiplicative factor. Thus, the level of di�erential expression of any gene between two groups
may be computed as the absolute value of the di�erence between each groups multiplicative factor. We find
that all 20 of the genes with non-zero entries in scPCA’s first loading vector, highlighted in green, are among
the most di�erentially expressed.
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Figure S3: Simulated scRNA-seq data: Average silhouette width comparison. scPCA produces the densest
biological clusters with the least amount of technical noise. The ZINB-WaVE method, when taking into
account the batch e�ect, has a similar performance to scPCA with respect to the removal of unwanted e�ects,
though the biological clusters it produces have lower average silhouette widths. Though cPCA produces
denser biological clusters than ZINB-WaVE, it fails to completely remove the batch e�ect. The remaining
methods are unable to disentangle the biological and technical e�ects.

S4 Dengue Microarray Data

See Section 3.2 for information on the data.

Table S1: Dengue microarray data: Genes with non-zero weights in
the first scPCA loadings vector.

Gene Symbol Gene Name Weight
1 PRSS33 protease, serine, 33 -0.0059
2 PDZK1IP1 PDZK1 interacting protein 1 -0.0347
3 SDC1 syndecan 1 0.2507
4 CAV1 caveolin 1, caveolae protein, 22kDa 0.0889
5 GGH gamma-glutamyl hydrolase (conjugase, folylpolygam-

maglutamyl hydrolase)
0.2318

6 PI3 peptidase inhibitor 3, skin-derived -0.0209
7 BUB1B budding uninhibited by benzimidazoles 1 homolog

beta (yeast)
0.1242

8 ZWINT ZW10 interactor 0.3984
9 TUBB2A tubulin, beta 2A -0.0004

20



A preprint - November 8, 2019

Table S1: Dengue microarray data: Genes with non-zero weights in
the first scPCA loadings vector.

Gene Symbol Gene Name Weight
10 PTGS2 prostaglandin-endoperoxide synthase 2

(prostaglandin G/H synthase and cyclooxyge-
nase)

-0.0627

11 TTK TTK protein kinase 0.0201
12 ORM1 /// ORM2 orosomucoid 1 /// orosomucoid 2 -0.0055
13 CD38 CD38 molecule 0.0399
14 CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39) -0.0384
15 HLA-DQB1 major histocompatibility complex, class II, DQ beta

1
0.0720

16 BUB1 budding uninhibited by benzimidazoles 1 homolog
(yeast)

0.0853

17 CDK1 cyclin-dependent kinase 1 0.2650
18 IGH@ /// IGHA1 ///

IGHA2 /// IGHD ///
IGHG1 /// IGHG3 ///
IGHG4 /// IGHM
/// IGHV4-31 ///
LOC100290146 ///
LOC100290528

immunoglobulin heavy locus /// immunoglobulin
heavy constant alpha 1 /// immunoglobulin heavy
constant alpha 2 (A2m marker) /// immunoglobu-
lin heavy constant delta /// immunoglobulin heavy
constant gamma 1 (G1m marker) /// immunoglob-
ulin heavy constant gamma 3 (G3m marker) ///
immunoglobulin heavy constant gamma 4 (G4m
marker) /// immunoglobulin heavy constant mu ///
immunoglobulin heavy variable 4-31 /// hypothetical
protein LOC100290146 /// similar to pre-B lympho-
cyte gene 2

0.0180

19 IGH@ /// IGHA1 ///
IGHA2 /// IGHD ///
IGHG1 /// IGHG3 ///
IGHG4 /// IGHM
/// IGHV3-23 ///
LOC100126583 ///
LOC100290146 ///
LOC652128

immunoglobulin heavy locus /// immunoglobulin
heavy constant alpha 1 /// immunoglobulin heavy
constant alpha 2 (A2m marker) /// immunoglobu-
lin heavy constant delta /// immunoglobulin heavy
constant gamma 1 (G1m marker) /// immunoglob-
ulin heavy constant gamma 3 (G3m marker) ///
immunoglobulin heavy constant gamma 4 (G4m
marker) /// immunoglobulin heavy constant mu
/// immunoglobulin heavy variable 3-23 /// hy-
pothetical LOC100126583 /// hypothetical protein
LOC100290146 /// similar to Ig heavy chain V-II
region ARH-77 precursor

0.1867

20 NOV nephroblastoma overexpressed gene -0.0619
21 SELENBP1 selenium binding protein 1 -0.1315
22 IGHA1 /// IGHG1 ///

IGHM /// LOC100290293
immunoglobulin heavy constant alpha 1 /// im-
munoglobulin heavy constant gamma 1 (G1m marker)
/// immunoglobulin heavy constant mu /// similar
to hCG2042717

0.0162

23 CEP55 centrosomal protein 55kDa 0.2863
24 PBK PDZ binding kinase 0.1358
25 SHCBP1 SHC SH2-domain binding protein 1 0.2901
26 MGC29506 plasma cell-induced ER protein 1 0.4012
27 CNTNAP3 contactin associated protein-like 3 -0.0494
28 JAZF1 JAZF zinc finger 1 -0.0441
29 KIAA1324 KIAA1324 -0.0962
30 CDCA2 cell division cycle associated 2 0.3858
31 KLHL14 kelch-like 14 (Drosophila) 0.0801
32 CYAT1 cyclosporin A transporter 1 0.1657
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Table S1: Dengue microarray data: Genes with non-zero weights in
the first scPCA loadings vector.

Gene Symbol Gene Name Weight
33 HLA-DRB1 /// HLA-

DRB3 /// HLA-DRB4
/// HLA-DRB5 ///
LOC100294036

major histocompatibility complex, class II, DR beta
1 /// major histocompatibility complex, class II, DR
beta 3 /// major histocompatibility complex, class
II, DR beta 4 /// major histocompatibility complex,
class II, DR beta 5 /// similar to HLA class II histo-
compatibility antigen, DRB1-7 beta chain

0.0422

34 FLJ10357 protein SOLO -0.0966

Table S2: Dengue microarray data: Genes with non-zero weights in
the second scPCA loadings vector.

Gene Symbol Gene Name Weight
1 PRSS33 protease, serine, 33 0.1822
2 IFI27 interferon, alpha-inducible protein 27 -0.0147
3 PI3 peptidase inhibitor 3, skin-derived 0.1692
4 SLC2A5 solute carrier family 2 (facilitated glucose/fructose

transporter), member 5
0.0701

5 MYOM2 myomesin (M-protein) 2, 165kDa -0.0278
6 HLA-DRB4 major histocompatibility complex, class II, DR beta

4
-0.0620

7 IGH@ /// IGHA1 ///
IGHD /// IGHG1 ///
IGHG3 /// IGHG4
/// IGHM /// IGHV3-
23 /// IGHV4-31 ///
LOC100290146 ///
LOC100290528

immunoglobulin heavy locus /// immunoglobulin
heavy constant alpha 1 /// immunoglobulin heavy
constant delta /// immunoglobulin heavy constant
gamma 1 (G1m marker) /// immunoglobulin heavy
constant gamma 3 (G3m marker) /// immunoglobu-
lin heavy constant gamma 4 (G4m marker) /// im-
munoglobulin heavy constant mu /// immunoglobulin
heavy variable 3-23 /// immunoglobulin heavy vari-
able 4-31 /// hypothetical protein LOC100290146
/// similar to pre-B lymphocyte gene 2

0.4987

8 IGKV3-20 Immunoglobulin kappa variable 3-20 0.1623
9 RSAD2 radical S-adenosyl methionine domain containing 2 -0.2294
10 USP18 ubiquitin specific peptidase 18 -0.4599
11 SIGLEC1 sialic acid binding Ig-like lectin 1, sialoadhesin -0.2750
12 KCTD14 potassium channel tetramerisation domain containing

14
-0.3142

13 FAM118A family with sequence similarity 118, member A -0.1382
14 0.0269
15 SLC16A14 solute carrier family 16, member 14 (monocarboxylic

acid transporter 14)
0.3232

16 ANKRD22 ankyrin repeat domain 22 -0.2800
17 KLC3 kinesin light chain 3 0.1021
18 SIGLEC1 sialic acid binding Ig-like lectin 1, sialoadhesin -0.0434
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Figure S4: Dengue microarray data: t-SNE. Similarly to UMAP, t-SNE almost completely separates the
convalescent patients from those with some form of dengue. The two main clusters are further split into
distinct sub-clusters, perhaps indicating the presence of a batch e�ect.

Figure S5: Dengue microarray data: cPCA. When varying the a priori specified number of clusters for cPCA,
all four embeddings are virtually identical, suggesting that optimal contrastive parameters were selected in
each case. Thus, cPCA is robust to misspecifications of the number of clusters.
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Figure S6: Dengue microarray data: scPCA. When varying the a priori specified number of clusters for
scPCA, we find that the two-dimensional embeddings are sensitive to this choice. When scPCA is performed
on this data with four and five clusters, the results resemble those produced by PCA.

S5 Leukemia Patient scRNA-seq Data

See Section 3.3 for information on the data.
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Figure S7: AML Patient 027 scRNA-seq data. The two-dimensional embeddings of the patient’s BMMC
cells produced by PCA, ZINB-WaVE, t-SNE, UMAP, cPCA, and scPCA. cPCA and scPCA produce two-
dimensional representations that distinguish between the pre- and post-transplant cells of Patient 027.
Although cPCA’s embedding contains denser clusters, scPCA’s clusters are more distinct — though they are
oddly shaped. This is the result of sparsity: the scPCA embedding is produced with the count data of only
three genes.
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S6 Mouse Protein Expression Data

Down Syndrome, the leading genetic cause of intellectual disability [42], is the result of trisomy of all or part of
the long arm of chromosome 21 [39]. Recently, researchers have begun exploring the use of pharmacotherapies
to mitigate these cognitive deficits using the Ts65Dn mouse model [39, 41]. Though not a perfect model for
the study of Down Syndrome, the Ts65Dn displays many relevant neurological phenotypic features, such as
deficits in learning and memory [45].
Ahmed et al. [39] analyzed protein expression in the hippocampus and cortex of Ts65Dn and control mice
after exposure to context fear conditioning and Memantine treatment. Memantine, a drug often prescribed
to Alzheimer’s patients, has been demonstrated to improve performance of the Ts65Dn in tasks that reflect
cognitive abilities [39]. The corresponding dataset was made available by Higuera et al. [41]. The data consist
of normalized expression measures for 77 proteins from subcellular fractions of the cortex assayed from 38
control and 34 Ts65Dn mice. Each protein expression measurement was repeated 15 times (i.e., 15 technical
replicates per mouse for each of the 77 proteins), though a small number of replicates contain missing protein
expression measurements due to technical artifacts [41]. More details on the experimental design are provided
in fig. S8.

Figure S8: Mouse protein expression data: Experimental design. The control dataset is comprised of protein
expression measurements for 15 technical replicates from each of 9 control mice subject to context fear
conditioning and given a placebo (red leaf). The target dataset consists of protein expression measurements
for 15 technical replicates from each of 9 control mice not subject to context fear condition and given a
placebo (purple leaf) and 15 technical replicates from each of 9 trisomic mice not subject to context fear
condition and given a placebo (green leaf).

To demonstrate scPCA’s capacity to capture biologically meaningful and interpretable variation in protein
expression data, the technical replicates of the subset comprising 9 control and 9 Ts65Dn mice not subject to
context fear conditioning and given a placebo were designated as the target dataset. The technical replicates
of the subset of 9 control mice that were subject to context fear conditioning and given a placebo made up
the background dataset, as the variation in their protein expression measurements are believed to be similar
to that found in the control mice of the target dataset. The data are identical to those used by Abid et
al. [1] to demonstrate cPCA. PCA, t-SNE, UMAP, cPCA, and scPCA were applied to the target dataset
(fig. S9A) to identify di�erences in protein expression between the control and trisomic mice not exposed to
the context fear conditioning experiment. In addition to the target dataset, cPCA and scPCA took as input
the column-centered background dataset and specified two clusters a priori. The embedding produced by
t-SNE is substantially worse than other methods because it generates spurious sub-clusters (fig. S10).
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PCA proved incapable of distinguishing between the biological groups of interest. UMAP, cPCA, and scPCA
successfully split the control and trisomic mice into virtually distinct clusters, though the number of clusters
found by UMAP and cPCA in two dimensions did not match, even when varying the a priori specified
number of clusters in cPCA (fig. S11). Comparing the results of UMAP and scPCA, we find that they
produce the same number of clusters, but their representations of the global structure are markedly di�erent,
even when varying the number of clusters specified a priori in scPCA (fig. S12). The presence of distinct
Ts65Dn clusters in UMAP’s representation may correspond to technical noise that is diminished in cPCA’s
and scPCA’s embeddings, or may arise from UMAP’s inability to dependably capture global structure. We
also remark that cPCA and scPCA produce very similar embeddings, up to a rotation; however, the first and
second columns of scPCA’s loadings matrix contain merely 12 and 16 non-zero entries, respectively (fig. S9B).
Also note that the the separation of control and trisomic mice by scPCA only occurs in scPC2: the proteins
with non-zero weights in its corresponding loading vector include AKT, APP, SOD1, and GSK3, each of
which has been associated with Down Syndrome in human or mouse models [46, 44, 40, 43]. The full list of
proteins with non-zero weights in the first two loadings vectors of scPCA are provided in Table S3 and Table
S4.

Table S3: Mouse protein expression data: Proteins with non-zero
weights in the first scPCA loadings vector.

Protein Symbol Weight
1 ELK 0.0618
2 BRAF -0.1001
3 RSK -0.0927
4 SOD1 0.1800
5 S6 0.1281
6 AcetylH3K9 0.3992
7 RRP1 0.0606
8 Tau 0.7320
9 CASP9 -0.0795
10 PSD95 -0.0329
11 Ubiquitin -0.3674
12 H3AcK18 0.2958
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Figure S9: Mouse protein expression data. A All methods but PCA were capable of separating the control
from the trisomic mice, though it is unclear why UMAP splits the Ts65Dn mice into two distinct groups.
scPCA’s low-dimensional representation of the protein expression data is markedly similar to that of cPCA, up
to a rotation, despite relying on only a fraction of non-zero values in the loadings matrix. On average, scPCA
also produces the tightest clusters. Note: a small group of control mice were clustered with the trisomic
mice in the UMAP, cPCA, and scPCA representation, potentially comprising a group of mislabeled mice. B
scPCA’s leading vectors of loadings are much sparser than those of cPCA, increasing the interpretability
of findings and clarity of the visualization. The di�ering rotations of cPCA and scPCA, in addition to the
drastically di�erent weighting scheme of the proteins in their respective loadings matrices, may indicate that
the contrastive step performed by cPCA does not su�ciently dampen spurious sources of variation in the
data.
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Figure S10: Mouse protein expression data: t-SNE. t-SNE produces almost linearly-separable clusters,
though these clusters contain many fractured, spurious sub-clusters that do not relate to biological signal.

Figure S11: Mouse protein expression data: cPCA. When varying the a priori specified number of clusters
for cPCA, we find that the two-dimensional embedding is once again robust to misspecifications.
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Figure S12: Mouse protein expression data: scPCA. Unlike with the dengue microarray data, when varying
the a priori specified number of clusters for scPCA, we find that the two-dimensional embedding is robust
to misspecifications. This may indicate that the sensitivity of the method to this tuning parameter is
data-dependent.

Table S4: Mouse protien expression data: Proteins with non-zero
weights in the second scPCA loadings vector.

Protein Symbol Weight
1 ELK -0.2236
2 AKT -0.0999
3 APP 0.3525
4 SOD1 -0.2323
5 NUMB 0.4690
6 P70S6 0.1554
7 GSK3B 0.3574
8 PKCG 0.3978
9 S6 0.3674
10 RRP1 0.0272
11 GluR4 0.0404
12 IL1B -0.2664
13 P3525 0.0196
14 PSD95 -0.1289
15 SNCA -0.0783
16 H3AcK18 0.0169
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