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Abstract 
Unbiased assays such as shotgun proteomics and RNA-seq provide high-resolution 
molecular characterization of tumors. These assays measure molecules with highly 
varied distributions, making interpretation and hypothesis testing challenging. Samples 
with the most extreme measurements for a molecule can reveal the most interesting 
biological insights, yet are often excluded from analysis. Furthermore, rare disease 
subtypes are, by definition, underrepresented in cancer cohorts. To provide a strategy 
for identifying molecules aberrantly enriched in small sample cohorts, we present 
BlackSheep--a package for non-parametric description and differential analysis of 
genome-wide data, available at https://github.com/ruggleslab/blackSheep. BlackSheep 
is a complementary tool to other differential expression analysis methods that may be 
underpowered when analyzing small subgroups in a larger cohort. 
  
Introduction 
Proteogenomic studies characterizing cancer have been completed by many groups, 
several of which also conducted phosphoproteome analysis (1–7). Outlier identification 
was used in a number of these studies to identify samples with aberrantly high levels of 
each phosphosite and phosphoprotein (1,8). In these studies, outlier identification and 
subsequent subtype enrichment was used to interpret phosphopeptide data at the 
protein-level, and highlight novel putative clinically relevant targets (1) or to nominate 
targets in a kinase inhibitor screen for sensitizers in drug-resistant cell lines (8). This non-
parametric method is of particular use for multi-omics studies, as non-parametric 
approaches are more robust to the various sources of technical noise present in these 
data sets, which violate assumptions in parametric tests. 
Outlier values in a dataset are often assumed to be experimental artifacts and are 
discarded prior to downstream statistical analyses. However, sometimes recurrent 
outliers are the most meaningful values in a dataset, representing profound biological 
effects. In particular, when characterizing biological systems and identifying disease 
vulnerabilities, the largest changes in abundance are often the most revealing (9,10). 
Furthermore, many diseases, including cancer, are heterogeneous, with significant 
molecular variability requiring highly personalized approaches for successful treatment. 
Current strategies for identifying characteristic molecular patterns for groups of samples 
are underpowered for rare disease subtypes and use assumptions about the underlying 
distributions of the features in question, which are often inaccurate and/or discard 
extreme values with biological significance. We propose a complementary strategy using 
the enrichment of outlier values within subtypes for characterizing disease subtypes, 
informing diagnostic panels, and potentially designing personalized therapeutic strategies 
for individual patients. 
  
Materials and Methods 
BlackSheep is an easy-to-use package available on Bioconductor 
(https://github.com/ruggleslab/blacksheepr) and Bioconda 
(https://github.com/ruggleslab/blackSheep). It can be used in R, python or as a command 
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line utility. BlackSheep has two major components: the ‘DEVA’ (Differential Extreme 
Value Analysis) module for calling outliers, collapsing features by parent molecule (i.e. 
phosphopeptides to a protein) and differential analysis, and the ‘run_simulations’ module 
for assigning p-values to each outlier call. The input data is an expression matrix, 
structured as rows of features (genes, proteins, phosphosites, etc.) and sample columns, 
and a sample annotation file used to group samples for comparisons (Supplementary 
Table 1A, 1B). No prefiltering is necessary or recommended for DEVA. Normalization of 
the input matrix is strongly recommended; a function for this is provided. For normalized 
data, we suggest a sample coverage normalization followed by log2 transformation. 
 
Differential Extreme Value Analysis (DEVA) 
To call outliers, the median and interquartile range (IQR) for each row is calculated. The 
user specifies whether to call overly abundant (i.e. up) or depleted (i.e. down) values. 
Outliers are defined as any value more than a multiple of the IQR above or below the 
median, where the multiple of the IQR is user-specified, with a default of 1.5 (Fig. 1A). 
After calling outliers, there is an optional aggregation step for collapsing rows containing 
related features into a single row (e.g. many phosphosites collapsed into a protein). 
Aggregation is achieved by counting outliers and non-outliers separately for each protein. 
The output is two tables, one with outlier and non-outlier counts per protein used for 
downstream comparisons (Supplementary Table 2A, 2B), and the other containing the 
fraction of outliers in each sample which is helpful for visualization (Supplementary 
Table 2C, 2D). 
 

 
Figure 1. BlackSheep Workflow (A) Outliers are identified for each feature (row) in the 
experimental dataset and (B) using simulations and data resampling significance value 
assigned for each sample/feature. (C) Cohort comparisons identify features with 
enriched outliers within a sample cohort of interest.  
 
Simulations and outlier p-values 
The second main function in the package is ‘run_simulations’, which uses simulations 
based on the observed data to calculate a p-value for each sample for each parent 
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molecule. For each repetition ("simulated sample"), the procedure is as follows. First, for 
each feature in the parent molecule (e.g. phosphosite on a protein), its value in a 
simulated sample is determined to be either observed or missing; the likelihood is based 
on the proportion of missing values for that feature in the actual data. Next, if its value is 
determined to be “observed”, a random value is assigned from a Gaussian KDE fit to the 
observed values from the associated feature. The assigned value is tested against the 
outlier threshold for that feature to determine outlier status. This is repeated for all features 
related to the parent molecule. The frequency of outliers found in the simulated data is 
used to assign a p-value to the observed data based on the number of outliers found for 
each parent molecule in each observed sample. A significance threshold is set at a user 
defined alpha (e.g. p<0.10). The output file (Supplementary Table 3) contains a p-value 
for outlier status for each parent molecule in each sample if it reaches significance (Fig. 
1B). 
  
Cohort comparisons 
Groups of samples can be compared with DEVA to identify features with enrichment of 
outliers within a group. For every comparison in a user-supplied annotation table 
(Supplementary Table 1B), BlackSheep calculates enrichment of outliers for every 
group of samples identified in the annotation table. Analysis can be limited to a user-
supplied list of genes, such as kinases (1).   
To calculate enrichment, first a row-based filter is applied, removing rows where the 
average rate of outliers is lower in the group of interest than in the outgroup. Second, to 
ensure that results are not driven by a small subset of the group of interest, we only keep 
rows that have at least one outlier value in a user-defined proportion of samples in the 
group of interest; the proportion defaults to 0.3. Finally, DEVA performs a Fisher’s exact 
test on counts from outlier and non-outlier values in the group of interest vs the outgroup. 
All p-values are then corrected for multiple hypothesis testing using the Benjamini-
Hochberg procedure. Results can be output as a table of q-values for all comparisons 
(Supplementary Table 2E, 2F); a table with outlier counts, p-values, and q-values per 
comparison (Supplementary Table 2G, 2H); or a heatmap showing values in each 
sample for rows with significant enrichments of outliers (Fig. 2B). 
 
Results 
 
Application to breast cancer cohort 
Reproducibly hyperphosphorylated kinases within a specific subtype or patient cohort 
represent attractive targets for future drug development and repurposing (13–18). To 
demonstrate the utility of BlackSheep, we applied it to a dataset from a proteogenomic 
breast cancer study (1) to find putatively over-active kinases, unique to a molecular 
subtype (1,11,12). Here, we compare the results of BlackSheep to the commonly used 
rank-sum test to identify differentially abundant phosphosites in Her2-enriched (Her2e) 
breast cancer samples vs all other samples (Fig. 2A). In this cohort, Her2e is the 
smallest group, comprising 12 of the 76 samples. Using the full phosphosite expression 
matrix (63,130 phosphosites, 9881 proteins), results of BlackSheep and the rank-sum 
test were corrected for multiple hypotheses with equal stringency. At an FDR cutoff of 
0.01, rank-sum identified one enriched phosphosite, on the Her2 (ERBB2) protein: 
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ERBB2-T1240 (Fig. 2A); the DEVA pipeline identified 10 additional phosphosites on 
ERBB2, as well as phosphosites on established co-amplicons and modulators of Her2 
signaling, such as GRB7 (19,20) (Fig. 2A-B). When applied to RNA abundance data 
from the same cohort, BlackSheep and rank-sum tests identify many of the same 
enriched genes at FDR < 0.01 (Fig. 2C, 2D). In addition, rank-sum found genes that 
have high values in the group of interest and samples in the outgroup (Fig. 2D, top) 
while BlackSheep identified additional genes that are exclusively enriched or depleted in 
only the group of interest (Fig. 2D, bottom). BlackSheep does not identify features that 
are enriched in large fractions of samples within a cohort – a feature with consistently 
high or low values in a large fraction of the cohort will increase the median and IQR, and 
will no longer be called an outlier. For small groups within a cohort, BlackSheep is able 
to identify enriched features (Fig. 2A).  
 

 
Figure 2. Comparing BlackSheep and Rank-Sum Tests (A, C) Signed log10 q-values 
from blacksheep.deva and rank-sum tests when comparing normalized values in Her2e 
vs all other samples in (A) phospho and (C) RNA data. Dotted lines indication FDR < 
0.01. (B) Z-scores of relative log2 abundance of all phosphosites with FDR < 0.01 
calculated by BlackSheep. * indicates ERBB2-T1240 had FDR < 0.01 using a rank-sum 
test. (D)  Z-scores of log2 relative abundance of RNA with FDR < 0.01 calculated by 
rank-sum only (top), both methods (middle) or blacksheep.deva only (bottom).  
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Conclusion 
Several cancer types have patients that fall into rare subgroups with worse prognoses 
than the majority of patients (e.g. serous in endometrial cancer, basal-like in breast 
cancer). Due to the difficulty in acquiring sufficient numbers of samples, these patients 
are the hardest to study, yet they are the patients most in need of new therapies. While 
standard analysis techniques are useful for finding characteristics that are enriched in 
large subgroups of samples, these strategies often lack the power to find the same for 
small subgroups. BlackSheep provides a user-friendly, complementary method to 
delineate enrichments in a small group of samples within a cohort. We show that 
BlackSheep can find enrichment of known markers for small groups of samples, such 
as ERBB2 and GRB7 in Her2e samples, which other commonly used analysis 
paradigms miss. BlackSheep is a flexible complement to other methods such as rank-
sum tests. In the future, BlackSheep-like strategies can be applied in the clinic to design 
and interpret diagnostic panels applied to single tumors, to highlight targets of drugs 
that can be repurposed for new indications, and the “run_simulations” module can be 
particularly useful to devise personalized treatments by prioritizing drugs that target 
significant outliers in a tumor. 
  
Figure Legends  
Figure 1. BlackSheep Workflow (A) Outliers are identified for each feature (row) in the 
experimental dataset and (B) using simulations and data resampling significance value 
assigned for each sample/feature. (C) Cohort comparisons identify features with 
enriched outliers within a sample cohort of interest. 
  
Figure 2. Comparing BlackSheep and Rank-Sum Tests (A, C) Signed log10 q-values 
from blacksheep.deva and rank-sum tests when comparing normalized values in Her2e 
vs all other samples in (A) phospho and (C) RNA data. Dotted lines indication FDR < 
0.01. (B) Z-scores of relative log2 abundance of all phosphosites with FDR < 0.01 
calculated by BlackSheep. * indicates ERBB2-T1240 had FDR < 0.01 using a rank-sum 
test. (D)  Z-scores of log2 relative abundance of RNA with FDR < 0.01 calculated by 
rank-sum only (top), both methods (middle) or blacksheep.deva only (bottom).  
 
Tables  
Supplementary Table 1. Example Input Files. (A) Data expression matrix, structured 
as rows of features (genes, proteins, phosphosites, etc.) and sample columns, and (B) 
sample annotation file, containing comparison group labels for each sample.  
  
Supplementary Table 2. Example Output Files from DEVA. (A, B) Outliers output 
matrix containing the number of (A) up and (B) down outliers per row per sample, (C, D) 
the fracTable matrix containing the fraction of rows mapping to that parent molecule 
(e.g. gene) with (C) up and (D) down outliers per sample. (E, F) a significance output file 
containing a q-value for each row passing this adjustable percentile filter in any 
comparison for (E) up and (F) down outliers. (G, H) a table of outlier counts, p-values 
and q-values for the Her2 comparison in (G) up and (H) down outliers. 
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Supplementary Table 3. Example Output from run_simulations.  (A) p-values 
associated with each parent molecule (e.g. gene) for each sample.  
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