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I. Supplementary Methods

i. Sample level QC control

As a simple sample level quality control, we
always filter out samples for which robustly
estimated standard deviation of log-ratios in
autosomes is greater than one because such
a huge variance always indicated technically
failed samples and not a complex CNAs pat-
tern in the test data. ClinCNV allows analysis
of such samples, but only if their IDs are spec-
ified explicitly as an input parameter which
means that the investigator is aware of poten-
tial QC issues.

i.1 Selection of SNVs for BAF analysis and
CNA detection.

In order to facilitate in-depth analysis of allelic
imbalances, we use bi-allelic single nucleotide
variants, namely their BAFs (ratio between the
number of reads supporting the alternative al-
lele of an SNV to the overall coverage of the
position). We use only well-covered SNVs (>20
reads in tumor and >60 reads for both tu-
mor and normal) since low-covered SNVs tend
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to be erroneous and provide a small amount
of evidence of CNA while increasing com-
putational time. We use only positions that
are likely heterozygous in the normal tissue
(BAF between 0.4 and 0.6). Additionally, to
determine whether the particular SNV is het-
erozygous or not we take into account “inher-
ent biases due to differential mapping affinity
between the reference and the variant allele”
([Shen et al., 2016]). To correct this bias, we cal-
culate the median of the BAFs. Then we only
include SNVs in the analysis in which allele-
specific coverage ratio was not rejected by the
two-tailed Binomial test at the 0.01 level of
significance, using the previously determined
median as the expected probability. Finally,
we remove all SNVs that form clusters (lo-
cated closer than 20 bp from each other) in
the genome since such SNVs are enriched for
false positives and not independent (present in
the same read).

ii. Purpose of the in-direct estimation
of variances

The indirect way of variance inference de-
scribed in the paper may help in 3 ways:
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1. It is not affected by recurrent Tumor CNAs
which can be crucial for the analysis of can-
cers with known recurrent CNAs (such as
short deletions in chr13q14 in chronic lym-
phocytic leukemia malignancies) since we
used only the data from healthy tissues for
individual regions’ variances estimation;

2. For off-target normalized counts we often
see that directly observed variability of a
particular region in log-ratio data is much
smaller than the value predicted by the
method above. It means that these off-
target regions are highly affected by non-
diploid polymorphisms, and that diploidy
assumptions may be violated. These re-
gions are subsequently excluded from the
analysis if the observed and predicted vari-
ance ratios differ by more than three stan-
dard deviations.

3. An estimated variance in general is usu-
ally lower than the variance observed di-
rectly from the data, especially for off-
target reads. It is caused by the large vari-
ability in the proportion of off-target reads
for different samples. The number of on-
target reads is relatively stable across a
particular cohort of samples.

iii. Detailed description of the seg-
mentation and calling algorithm

Having data normalized and parameters esti-
mated we start calling procedure (fig. 1). At
first, we define a set of potential copy-number
changes that may occur in a tumor sample at
each allele. In the beginning, we investigate
major and minor alleles under assumptions of:

1. Discrete set of the potential clonal fraction
(starting from 5 to 100% with the step of
2.5%, further increase of resolution did not
improve calling for both 30− 60x WES and
> 200x TPS samples);

2. Minor copy number from 0 to 4;

3. Major copy number from 0 to 30: major
and minor copies together are limited to 30

copies (we trim our data so all the values
that show higher copy number change will
be at 30 copies with ∼100% CCF model).

Having probabilistic models and set of states
S we can calculate likelihoods of each data
point x1, . . . , xn under all these models:
L(Sa|xi) = pSa(xi) = PSa(xi). We fill a

matrix of size |S| × |G|, where |S| denotes
the number of states and |G| is the length
of the genome with the corresponding like-
lihoods. Ordering of genomic regions must
be preserved in such matrix, in other words,
the first column of the matrix of likelihoods
should contain likelihoods of data points ob-
tained from the most “left” (upstream) part of
the genome or its target of interest, the second
column should contain the likelihood of the
data point from the next genomic window and
so on. It is usually possible to define a base-
line copy-number state: it is a diploid state for
human or mice autosomes, or a haploid state
is a baseline for males’ sex chromosomes. We
denote the probabilistic model corresponding
to such a baseline state as Sb. The problem
of finding one CNV in such a matrix may be
formulated as:

Problem 1 Having matrix of likelihoods of data-
points under different states and baseilne state Sb,
identify a pair of indices i, j and state Sa 6= Sb such
as 1 ≤ i ≤ j ≤ |G| and

arg max
i,j,Sa

P(Sa|xi, . . . , xj)

P(Sb|xi, . . . , xj)

Informally, we need to identify a probabilis-
tic state, and a start and end position of a ge-
nomic segment that shows the highest evidence
that a model different from the baseline fits the
observed coverage depth signature better. Or
in brief, we are looking for a segment with
the highest evidence of being in an alternative
state. Naive computational solutions to this
problem that require checking of all possible
i, j, Sa are not computationally feasible since it
takes O(|S||̇G|2) operations. Even assuming
independence of random variables, we would
need to calculate P(Sa |xk)·P(Sa |xk+1)·...·P(Sa |xl)

P(Sb |xk)·P(Sb |xk+1)·...·P(Sb |xl)
for
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Figure 1: Flowchart of CNA calling.

each pair of k, l such that 1 ≤ k ≤ l ≤| G | and
choose k, l such as value of this expression will
be maximized.

To simplify the problem, we take logarithms
of likelihoods so we will be able to sum them
instead of multiplying (the example of log-
transformed matrix of likelihoods is depicted
on the top of fig. 2), so now we have a matrix
of l(Sa|xi) = log(L(Sa|xi). Then, for each ge-
nomic region i we can switch to likelihood ratio
log L(Sa |xi)

L(Sb |xi)
= l(Sa|xi)− l(Sb|xi) (in the middle

of fig. 2, after “Log-likelihood differences of the
models” header). This value is already mean-
ingful – it shows how strong is the evidence of
Sa against Sb if the log-likelihood ratio is posi-
tive and how strong is the evidence of Sb over
Sa in case of negative log-likelihood ratio. If we
want to find a segment and a state that shows
the biggest evidence against Sb we need to find
a segment with the largest log-likelihood sum
for each state and then choose the state where
we found a segment with the largest value of
log-likelihood sums. To find segments with
the largest sums for one particular state, we

can use a well-known maximum subarray sum
algorithm that solves the following problem:

Problem 2 Giving a one-dimensional array of
numbers A, A[i] ∈ R, find indices i and j, 1 ≤
i ≤ j ≤ n, such as ∑

j
k=i A[k] is a large as possible.

Kadane’s algorithm [Bentley et al., 1984]
solves this problem in linear time. We can ap-
ply Kadane’s algorithm |S| − 1 times for each
state except the baseline one and choose the
segment and the state with the largest sum as
an answer to the problem (on the bottom of
fig. 2).

We reduce the number of steps to O(|S||̇G|)
for solving Problem 1 using the described pro-
cedure.

Whenever we have different signals (such
as read depth and B-allele frequency), we can
simply sum up matrices of likelihoods from
different signal types and perform the same
procedure, so it does not affect computational
time except for the additional calculations of
likelihoods. Models of any complexity may be
applied for finding likelihoods without an in-
crease of computational time on segmentation.
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LOGLIKELIHOODS OF THE MODELS

DUP-NORMAL:-8|-10|-3|-6|-9|-16|9 |-10|20| -6|8| 51| 27|-8

1st Step: Find a Maximum Subarray Sum = 100 in a first row, 
          find a Maximum Subarray Sum = 90 in the second
2nd Step: Detect CNV with the max Score = 100 (Duplication)
          at positions 8-12
3rd Step: Divide genomic region in 3 parts: 0-7, 8-12, 12-13
          and continue

DEL-NORMAL:-8|-10|35|18| 4| 33|-6|-46|-4|-16|7|-11|-26| 2

LOGLIKELIHOOD DIFFERENCES OF THE MODELS

-3 -1 -5 -7 -8 -8 22 33 22 11 -1 61 72 -9

-3 -1 33 17  5 41  7 -3 -2   1 -2 -1 19  1

 5  9 -2 -1   1  8 13 43  2 17 -9 10 45 -1

Figure 2: Toy example on finding one CNV with the help of matrix of likelihoods.

Such a procedure does not require a calling
step afterward – everything is inferred by deter-
mining which Sa is the best for the explanation
of the observed data comparing to the baseline
Sb.

1
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duplicated!
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Figure 3: One branch of the recoursive tree of the seg-
mentation algorithm.

Segmentation of a genomic piece into candi-

date CNV regions is done analogously to CBS
(fig. 3). We find one piece that shows the pres-
ence of an alternative model at one step of our
algorithm, and then we divide the initial ge-
nomic piece into three segments: one to the left,
one to the right from the discovered segment
and the discovered segment itself. We stop seg-
menting once the next detected segment fails
to reach a significance threshold. If the found
segment is significant but shorter than the pre-
defined length, we decrease the evidence of an
alternative state that comes from this region,
and then we re-try to find a significant seg-
ment of sufficient length again. Once all the
branches of the recursive tree report absence of
significantly different genomic sub-segments,
the algorithm collects results from all the end-
points of the recursive tree and form a resulting
callset.

After the investigation of several datasets,
we have found a CNA signature in BAF and
read depth that was not correctly recognized
by the described models. The coverage was
slightly decreased in such regions, which may
indicate a deletion in a small sub-clone, while
BAF was largely shifted from the expected
values. The most likely explanation to such
pattern is that a deletion was followed by a
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duplication, but not in all of the tumor cells
affected by the deletion. Alternatively, a LOH
event occurred, followed by a deletion in less
than 100% of cells that experienced the LOH
event. In order to detect such events without
over-segmentation of the calls, we had to intro-
duce a “second round of CNA calling” even
if ClinCNV does not reconstruct a timeline of
somatic alterations. We added limited support
of second-round CNAs with the following re-
strictions: 1) for interpretability, second-round
CNAs may happen only in less than 50% of
cells that experienced the first copy-number
alteration, so in most cases we can neglect such
changes; 2) second-round CNA can be only a
simple deletion or duplication of one copy; 3)
second-round CNAs are considered only after
heterozygous deletions or simple losses of het-
erozygosity, since otherwise, the calling will
become ambiguous. We add these states only
after clonal structure inference due to signifi-
cant increase in the number of states and thus
the computational time of calling.

To correct for potential ploidy change we
not only select BAF-balanced chromosomes’
arms for normalization, but also try to sep-
arate tetraploid regions from diploid, using
the assumption that the smallest possible BAF-
balanced chromosome’ arm copy-number is 2
(since, as mentioned in [Shen et al., 2016], long
stretches of homozygous deletions most prob-
ably lead to cell death and thus are highly
unlikely). In order to do this, we sub-select
all chromosome arms with small deviations in
BAF and calculate coverage baselines (medians
of log-ratios of coverages) for all such arms.
Then we iteratively merge all arms with differ-
ences in medians of their normalized coverage
less than 2.5% and choose the smallest merged
value that includes at least 10% of markers
from BAF-balanced chromosome arms as the
baseline.

Having all the parameters estimated and ex-
pected values for BAF and coverage ratio in-
ferred, we perform calling, using the algorithm
and states described above. We do not include
unrealistic states (e.g., if all the coverage val-
ues are small, then no high copy-number event

of high purity can be expected). Usually, we
have more than 2000 states used for the initial
calling.

After we have finished the first round of call-
ing using all possible purities, we calculate the
likely sub-clonal structure of the sample. We
assume that CNAs appear in several rounds of
clonal expansions (otherwise, calling may be
stopped at the first step, however it may com-
plicate the interpretation of sub-clonal CNAs).
We assume that having many sub-clones is not
likely, so we penalize each additional sub-clone.
Then, we want to find an optimal set of clonal
cell fractions from the pre-defined discrete set
of 5%, 7.5%, . . . , 97.5%, 100% that will explain
our CNAs in the best possible way, consider-
ing sub-clones as real only if they substantially
improve the overall likelihood of the variants.

We do it in the following way: for each can-
cer cell fraction α and each CNA we choose
the best possible explanation (the state with
the maximum score with the CCF fixed and
equal to α). Then we investigate all potential
combinations of sub-clonal fractions up to 5
clones. For each CNA we select one cancer
cell fraction from the possible combination that
explains this CNA in the best way. Each addi-
tional clone is penalized by empirically chosen
value (this input parameter may vary from 100
to 500, the bigger penalty suggests a smaller
number of sub-clones detected by ClinCNV).
Such penalty may be set equal to BIC penalty
for additional parameter depending on the log-
arithm of the overall number of genomic re-
gions, but in reality, better results are achieved
with more strict penalization. Normally we set
the additional clone penalty to 300, but it may
be too strict for, e.g., panel sequencing data
from a small panel of tens of genes, and thus
has to be decreased. ClinCNV does not fully in-
vestigate the landscape of complex CNAs that
have nested structure (e.g., duplication in X
percents of tumor cells followed by a deletion
in Y < X percents of tumor cells within the
borders of the duplication) so such events can
be detected as separate clones, and additional
analysis has to be performed in order to inves-
tigate evolutionary history of such CNAs and
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“real” sub-clonal structure.
We output CNAs together with their scores

and diagnostic information, such as 95% confi-
dence intervals of on- and off-target coverage in
tumor sample, median of tumor BAFs that are
above and below the expected BAF from the
normal sample which is helpful for checking of
complex variants (such as overlapping CNAs
from different clones, as described above), q-
value of BAFs within the variant and overall
q-value which we obtain by merging p-values
from two sources (coverage-based signal and
from BAFs) with Fisher’s method, followed by
BH FDR correction. The CCF of the biggest
detected sub-clone is reported as the purity of
a tumor sample. False positive results may ap-
pear, especially in low-purity samples, and this
information may help to catch such variants
during the post-processing.

iii.1 QC control

Complex quality control procedure was pro-
posed. It takes into consideration potential
markers of false-positive variants such as ex-
tensive variability in coverage or absence of
evidence from SNVs’ BAFs or presence of zero
covered regions. Such QC control may be
turned off for achieving maximum sensitivity,
performed only at the first step of the algo-
rithm (inference of clonal structure) or at both
steps of the algorithm for the maximum speci-
ficity of calls. We were able to achieve the best
results applying QC control at both steps for
exome samples and applying this filter only for
clonal structure inference for panel sequencing
samples since the SNV signal is much more
sparse in the latter type of data. QC control
works in this way: we filter all variants for
which the within-segment variability is greater
than three times the overall sample’s variability.
We also filter out “homozygous deletions” that
show the presence of normal coverage within
the borders of a variant, so the median cover-
age of the segment is 0, but some regions have
coverage log-ratio similar to the expected for
the diploid regions. During the test runs of
our tool, we noticed that copy-number alter-

ations of small purity (less than 40%) in 30-60x
covered WES samples (increased/decreased
stretches of normalized coverage ratios) are
often false positives. The coverage change is
present and highly significant, but neither BAF
signal changes nor evidence of such events
was found in array data. For this reason we
introduced a quality control procedure for each
CNA call if the cell fraction affected by such a
call is smaller than 40%. We create a baseline
set of deviations in BAFs based on chromo-
some arms used for initial normalization since
pre-selected chromosomes have the smallest
proportion of deviations in BAF comparing
to the normal tissue. For each CNA that is
subject to additional filtering, we perform the
Wilcoxon test using BAF deviations and dis-
card CNA if its p-value is bigger than 10−4

(which means – the null hypothesis that BAFs
of this CNA is equal to the expected diploid
BAFs was not rejected). Variants with small pu-
rity that harbor less than 5 SNVs are discarded
since no information is available for the qual-
ity evaluation. Finally, we retain the filtered
variants if they meet previously described BAF
deviation criteria (the BAF pattern is differ-
ent from the expected). For example, the high
within-variant variance of coverage which may
occur due to technical reasons, but it also may
be caused by undersegmentation of 2 relatively
short closely located variants, thus, it is better
to keep this CNA in a callset if it shows large
deviation in B-allele frequency. BAF signal usu-
ally remains unaffected by coverage artifacts so,
if BAF indicates a presence of a variant, then
this variant is likely real even if its coverage is
noisy.

II. Supplementary Results

i. Another type of plot generated by
ClinCNV

We provide several visualization options as,
e.g., fig. 4, which may be easier for some pro-
fessionals to interpret rather than plots with
coverages and BAFs.
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Figure 4: ClinCNV provides several visualization options, depending on the intended purposes of the demonstration.

ii. Differences between research-
purpose CNA calling and CNA calling
as a clinical routine

CNA detection in tumor-normal pairs can be
performed for research purposes (e.g., for find-
ing genomic alterations responsible for tar-
geted treatment outcome in clinical trials) as
well as in routine clinical practice (common
goal of the sequencing of tumor samples in
clinics is to find alterations responsible for
drug sensitivity, resistance or increased toxi-
city). The main differences between research
and clinical approaches are:

1. Sizes of cohorts sequenced with the same

sequencing panels and thus suitable for
joint analysis. Large consortia such as
TCGA generated cohorts of thousands
of uniformly sequenced cancer samples
while in clinics different custom panels are
frequently used and the amount of sam-
ples uniformly sequenced with the same
panel is usually of the order of tens or
hundreds of samples.

2. In clinics, each calling result may be (and
should be) manually examined and as-
sessed by an experienced data analyst
while it is not suitable for research sam-
ples.

3. Typically it is acceptable to filter out a
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significant percentage of low sequencing
quality or low purity or extremely com-
plex tumor samples in research, but in
clinics, each sequencing result often has to
be analyzed since it is often not possible
to re-sequence a low-quality sample due
to increasing financial costs, limited time,
complexity of biopsy extraction. Certainly,
samples of extremely bad quality have to
be discarded even in clinical practice, but
filtering particular low-quality CNAs in-
stead of filtering the whole samples is pre-
ferred in clinics. However, a specialist usu-
ally does not have infinite time for the re-
solving of one case, and the output of the
tool should allow the analyst to prepare a
CNA report in less than one hour.

Thus, quality control procedures should be
automatized for research purposes, and sum-
mary statistics for manual assessment of each
copy-number alteration have to be provided for
clinical practice. ClinCNV does both, less strict
filtering is usually applied for the clinical sam-
ples, however, no manual post-processing was
done for the samples reported in this study.

iii. CLL cohort results

Sample-level Quality Control
A sample quality assessment was done us-

ing the following procedure. We do not auto-
matically check if samples were mixed (simple
mislabeling or wrong pairing of normal and
tumor data from different patients or a nor-
mal sample contaminated with a tumor tissue).
Wrong pairing can be seen from a large num-
ber of more or less uniformly distributed short
LOH regions and usually normal sample con-
tamination can be seen in the BAF track of
a normal sample. We were able to identify
4 samples (IDs: 1277, 1364, 1297, 1365) that
demonstrated strong evidence of being mixed –
almost whole genome was determined as LOH
in such samples with many sparse heterozy-
gous positions in-between. 2 out of such 4
samples were seemingly normal in array-based
results, but the sex chromosomes did not match
data from WES, which shows that it is more

likely to be mislabeling than an unrecognized
complex change (e.g., high ploidy). Two sam-
ples out of these 4 showed the same pattern
in arrays. Another common pattern of low
sequencing quality was many comparatively
short regions of zero coverage. ClinCNV auto-
matically filters them out if there are more than
five homozygous deletions of length less than
ten regions, but sometimes such 0-coverage re-
gions are longer, and such samples have to be
examined manually. Due to this consideration
we excluded two samples that showed large
0-coverage stretches. These 0-coverage regions
were false positives (presence of genomic ma-
terial there was confirmed by microarrays).

iii.1 Detailed description of the FDR esti-
mation procedure

Checking WES-based results in Array Data:
Null distribution

For the null distribution, 10 CNAs per sam-
ple – five deletions and five duplications – of
random size, ranging from 1 to 100kb, were
introduced into ClinCNV’s callset at positions
not affected by ClinCNV’s CNAs. P-values
from permutation tests were calculated for
BAF and intensity signals if at least one array
marker was inside the borders of a CNA. For
each CNA with n markers inside, we sampled
n markers from CNA-free regions 1000 times
and calculated p-value based on the number
of times we have sampled more extreme value.
We also included raw BAF p-values from our
negative control CNAs (as they were LOH vari-
ants) to have a representative null distribution.

Matrix of Contingency based FDR estima-
tion

As an additional FDR check, we filled the
contingency matrix of deletions and duplica-
tions, distinguishing between deletions and
duplications that show positive/negative in-
tensity in arrays. If ClinCNV called variants
randomly, we could expect the array intensity
to be independent of the CNA type called –
array intensity may be shifted positively and
negatively for false positive (or simulated) dele-
tions or duplications with an equal probability

8
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(and it was observed for the simulated CNAs).
Doubled the number of deletions with positive
array intensity and duplications with negative
array intensity also provides us an estimation
of FDR, but for deletions/duplications only.

The differences in FDR estimation by two
methods

The differences in FDR estimations by differ-
ent methods (p-values and contingency matrix)
is explained by the fact that raw normalized
array values were used for contingency matrix
construction and p-values from intensity and
BAFs were merged for another method of FDR
estimation, so, even if the breakpoints were de-
tected inaccurately or CNV type (i.e., deletion
instead of duplication or vice versa), p-value
may still be quite low. We have discovered
many CNAs where CNV type was incorrect
in CNV-kit results and assumed that we could
switch the labels of tumor and normal samples,
however, all big CNAs were correctly identified
by CNV-kit.

FDR for FACETS was lower with p-value esti-
mation due to the comparatively large number
of false positive deletions (non copy-neutral
CNAs).

Checking Array-based results in WES data
Only those alterations detected in microar-

ray data were taken into account which had
more than five coverage markers in WES data
or more than 5 BAF markers from WES. We
took normalised coverage from ClinCNV and
considered a variant as True Positive (and po-
tentially detected in WES data) if the median
Z-score of the WES coverages of the regions
located within CNA borders or median Z-score
of BAFs was bigger than 0.95 quantile of the
normal distribution or if the absolute value of
coverage was bigger than log2(5/4) or smaller
than log2(3/4). We also looked at the direction
of change in the case of copy-number imbal-
anced events.

iii.2 Recurrent CNAs in CLL

In order to investigate which genes were recur-
rently altered in CLL samples we used GISTIC
([Mermel et al., 2011], genomic regions signifi-

Figure 5: Copy-number alterations across the whole co-
hort of CLL samples.

cance plots are provded in fig. 6).

Most significant peaks occured close to cen-
tromere chr2, end of q-arm of chr14, close
to centromeres of chr22 and chr14 – regions
where frequently rearranged immunogenic
genes are located. Other peaks contain well-
known cancer genes such as TRIM13, TM-
PRSS5, BIRC2, TMEM123, PRSS1, SMARCC1,
PARP1, etc. Whole chr12 was often duplicated.

iii.3 Clonal composition in CLL

Among samples that had at least one CNA
detected by ClinCNV only 2 samples were de-
tected as homogeneous. 393 samples had 2
clones, 31 samples had 3 clones and 4 samples
had 4 clones, according to ClinCNV’s evalu-
ation. Frequency of clonal composition (nor-
malised by the biggest estimated cell fraction
of CNAs from corresponding samples) is de-
picted in the violin plot in fig. 7.
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(a) Enrichment of deletions analyzed with GISTIC (b) Enrichment of duplications analyzed with GISTIC

Figure 6: Enrichment of CNAs analyzed with GISTIC.
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Figure 7: Density of CCF of discovered clones in CLL
(relatively to the biggest, 1st clone).

iv. In-house TPS cohort results

Speaking about the practical importance of
CNAs detected, we analysed our samples with
at least 1 CNA detected and with purity es-
timated bigger than 20% (213 samples over-
all) with the Cancer Genome Interpreter (CGI,
[Tamborero et al., 2018]). We observed that in
the majority of cases such CNAs were impor-
tant: they could be annotated as druggable
alterations or indicated potential resistance to

particular drugs. For visualization purposes,
we merged samples of cancer type that can
not be directly classified into CGI categories
or cancers that have less than 3 cases into one
category (“Mixed”). Three bar plots (biomark-
ers of sensitivity, biomarkers of resistance, and
biomarkers of toxicity) are provided in fig. 8.

The most commonly altered genes, anno-
tated with the CGI, were:

TPMT (117 cases, genes play role in immune
system supression, amplification leads to re-
sistance to Cisplatin and increased toxicity to
Thioguanine (Guanine analog) and Mercap-
topurine (Purine analog), deletion leads to in-
creased toxicity to above mentioned drugs ac-
cording to FDA guidelines),

DPYD (89 cases), amplification or deletion
leads to increased toxicity to Tegafur (Flu-
oropyrimidine), Flourouracil (Fluoropyrimi-
dine), Capecitabine (Fluoropyrimidine) accord-
ing to CPIC and FDA guidelines;

UGT1A1 (81 cases), alterations lead to in-
creased toxicity to Pazopanib (VEGFR in-
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hibitor), Irinotecan (TOPO1 inhibitor), Nilo-
tinib (BCR-ABL inhibitor), Irinotecan (TOPO1
inhibitor), Nilotinib (BCR-ABL inhibitor) ac-
cording to FDA guidelines.

v. Time complexity and WGS samples

ClinCNV takes approximately 3 hours for
preparation of pre-calculated coverage values
and BAFs for a cohort of 160 WES samples and
spends from 10 minutes to one hour per WES
sample analysis (depending on the number of
CNAs and outliers and clonal structure com-
plexity) using 4 cores of Intel Xeon 2.8 GHz pro-
cessor, which is much slower than other tested
tools, but tolerable in both research and clini-
cal practice. Targeted panel sequenced samples
are analysed for 5-10 minutes per sample us-
ing laptop with 2GHz Intel i7 processor and re-
quire around half an hour for pre-processing of
around 200 samples. ClinCNV was not tested
in whole genome samples, however several
simplifications (such as decreasing resolution
of distinct clonal fractions from 2.5% to 5%)
may be applied which dramatically reduce the
computational time.

References

[Chen et al., 2015] Chen, X., Schulz-Trieglaff,
O., Shaw, R., Barnes, B., Schlesinger, F., Kaell-
berg, M., Cox, A. J., Kruglyak, S., Saun-
ders, C. T. (2015) Manta: rapid detection of
structural variants and indels for germline
and cancer sequencing applications Bioin-
formatics (Oxford, England), 32(8), 1220–1222,
doi:10.1093/bioinformatics/btv710

[Raine et al., 2016] Raine, K., Van Loo, P.,
Wedge, D., Jones, D., Menzies, A., . . . , Camp-
bell, P. (2016) ascatNgs: Identifying Somat-
ically Acquired Copy-Number Alterations
from Whole-Genome Sequencing Data Curr
Protoc Bioinformatics. 2016 Dec 8; 56: 15.9.1-
15.9.17. doi: 10.1002/cpbi.17

[Talevich et al., 2016] Talevich, E., Shain, A.
H., Botton, T., and Bastian, B. C. (2016). CN-
Vkit: Genome-Wide Copy Number Detec-

tion and Visualization from Targeted DNA
Sequencing. PLoS computational biology, 12(4),
e1004873. doi:10.1371/journal.pcbi.1004873

[Rousseeuw et al., 1993] Rousseeuw, P.J. and
Croux, C. (1993). Alternatives to the Median
Absolute Deviation Journal of the American
Statistical Association 88, 1273–1283.

[Pasman et al., 1987] Pasman, V.R.,
Shevlyakov, G.L. (1987) Robust meth-
ods of estimating the correlation coefficient
Avtomat. i Telemekh., 1987, Issue 3, Pages
70-80

[Olshen et al., 2004] Olshen, A.B., Venkatra-
man, E.S., Lucito, R., Wigler, M. (2004) Cir-
cular binary segmentation for the analysis
of array-based DNA copy number data. Bio-
statistics. 2004 Oct;5(4):557-72.

[Bentley et al., 1984] Bentley, J. (1984). Pro-
gramming Pearls: Algorithm Design Tech-
niques. Communications of the ACM. 27 (9):
865–873. doi:10.1145/358234.381162.

[Shen et al., 2016] Shen, R., Seshan, V.E. (2016)
FACETS: allele-specific copy number and
clonal heterogeneity analysis tool for high-
throughput DNA sequencing Nucleic
Acids Res. 2016 Sep 19; 44(16): e131. doi:
10.1093/nar/gkw520

[Puente et al., 2015] Puente, X.S., Bea S.,
Valdes-Mas, R., Villamor, N., Gutierrez-
Abril. J., Martin-Subero, J.I., Munar, M., . . . ,
Campo, E. (2015) Non-coding recurrent mu-
tations in chronic lymphocytic leukaemia.
Nature. 2015 Oct 22;526(7574):519-24. doi:
10.1038/nature14666. Epub 2015 Jul 22.

[Van Loo et al., 2010] Van Loo, P., Nordgard,
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Figure 8: Genomic alterations with the evidence of clinical impact found by ClinCNV in different tumors. Only tumors
with at least one CNA detected are shown. Rare tumors from our cohort (2 or less tumors of the particular
type) were not included.
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