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Abstract

Mounting evidence suggests that perception depends on a largely-feedforward brain network. However, the discrep-
ancy between (i) the latency of the corresponding feedforward responses (150-200 ms) and (ii) the time it takes
human subjects to recognize brief images (often >500 ms) suggests that recurrent neuronal activity is critical to vi-
sual processing. Here, we use magneto-encephalography to localize, track and decode the feedforward and recurrent
responses elicited by brief presentations of variably-ambiguous letters and digits. We first confirm that these stimuli
trigger, within the first 200 ms, a feedforward response in the ventral and dorsal cortical pathways. The subsequent
activity is distributed across temporal, parietal and prefrontal cortices and leads to a slow and incremental cascade
of representations culminating in action-specific motor signals. We introduce an analytical framework to show that
these brain responses are best accounted for by a hierarchy of recurrent neural assemblies. An accumulation of com-
putational delays across specific processing stages explains subjects’ reaction times. Finally, the slow convergence
of neural representations towards perceptual categories is quickly followed by all-or-none motor decision signals.
Together, these results show how recurrent processes generate, over extended time periods, a cascade of hierarchical
decisions that ultimately predicts subjects’ perceptual reports.
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1. Introduction1

To process the rich sensory flow emanating from the2

retina, the brain recruits a hierarchical network originat-3

ing in the primary visual areas and culminating in the4

infero-temporal, dorso-parietal and prefrontal cortices.5

[1, 2, 3, 4].6

In theory, the feedforward recruitment of this neural7

hierarchy could suffice to explain our ability to recog-8

nize visual objects. For example, recent studies demon-9

strate that artificial feedforward neural networks trained10

to categorize objects generate similar activations pat-11

terns to those elicited in the infero-temporal cortices12

[5, 6].13

However, feedforward architectures have a fixed14

number of processing stages, and are thus unable to ex-15

plain a number of neural and perceptual phenomena.16

For example, the time it takes subjects to recognize ob-17

jects considerably varies from one trial to the next [7].18

In addition, the neural responses to visual stimuli gener-19

ally exceed the 200 ms feedforward recruitment of the20

visual hierarchy [8, 9].21

A large body of research shows that recurrent pro-22

cessing accounts for such behavioral and neural dynam-23

ics [9, 10, 11, 12, 13, 14]. In this view, recurrent pro-24

cessing would mainly consist in accumulating sensory25

evidence until a decision to act is triggered [13].26

However, the precise neuronal and computational or-27

ganization of recurrent processing remains unclear at28

the system level. In particular, how distinct recurrent29

assemblies implement series of hierarchical decisions30

remains a major unknown.31

To address this issue, we use magneto-32

encephalography (MEG) and structural magnetic-33

resonance imaging (MRI) to localize, track and decode,34

from whole-brain activity, the feedforward (0-200ms)35

and recurrent processes (>200 ms) elicited by variably36

ambiguous characters briefly flashed on a computer37

screen. We show that the late and sustained neural38

activity distributed along the visual pathways generates,39

over extended time periods, a cascade of categorical40
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decisions that ultimately predicts subjects’ perceptual41

reports.42

2. Results43

2.1. Subjective reports of stimulus identity are categor-44

ical45

To investigate the brain and computational bases of46

perceptual recognition, we used visual characters as de-47

scribed in [15]. These stimuli can be parametrically48

morphed between specific letters and digits by varying49

the contrast of their individual edges, hereafter referred50

to as pixels (Fig.1A-B).51

To check that these stimuli create categorical per-52

cepts, we asked eight human subjects to provide contin-53

uous subjective reports by clicking on a disk after each54

stimulus presentation (Experiment 1. Fig.1A). The ra-55

dius and the angle of the response on this disk indicated56

the subjective visibility and the subjective identity of57

the stimulus respectively. We then compared (i) the re-58

ported angle with (ii) the stimulus evidence (i.e. the ex-59

pected angle given the pixels) for each morph separately60

(e.g. 5-6, 6-8, etc). Subjective reports were categori-61

cal: cross-validated sigmoidal models better predicted62

subjects’ responses (r=0.49+/-0.05, p=0.002) than lin-63

ear models (r=0.46+/-0.043, p=0.002, sigmoid>linear:64

p=0.017 Fig.1B-C).65

We adapted this experimental paradigm for an MEG66

experiment by modifying three main aspects (Experi-67

ment 2). First, we used stimuli that could be morphed68

between letters and digits, to trigger macroscopically69

distinguishable brain responses in the visual word form70

area (VWFA) and number form area (NFA) [16, 17].71

Second, we added two task-irrelevant flankers next to72

the target stimulus (Fig.1D) to increase our chances of73

eliciting recurrent processes via crowding [18]. Third, a74

new set of seventeen subjects reported subjective iden-75

tity via a two-alternative forced-choice button press.76

The identity-response mapping was orthogonal to the77

letter/digit category and changed on every block of 4878

trials. There were 1920 trials total, 320 of which were79

presented passively and did not require a response.80

Perceptual reports followed a similar sigmoidal pat-81

tern to Experiment 1: performance was worse for82

more ambiguous trials (65%) as compared to unam-83

biguous trials (92%, p<0.001). In addition, reaction84

time slightly, and consistently, increased with difficulty.85

For example, highly ambiguous stimuli were identified86

within 690 ms, whereas nonambiguous stimuli were87

identified within 624 ms (z=-21.68, p<0.001 (Fig.1E-88

F).89

2.2. Neural representations are functionally organized90

over time and space91

Here, we aimed to decompose the sequence of de-92

cisions that allow subjects to transform raw visual in-93

put into perceptual reports. To this aim, we localized94

the MEG signals onto subjects’ structural MRI with dy-95

namic statistical parametric mapping (dSPM, [19]), and96

morphed these source estimates onto a common brain97

coordinate [20, 21]. The results confirmed that the stim-98

uli elicited, on average, a sharp response in the primary99

visual areas around 70 ms, followed by a fast feedfor-100

ward response along the ventral and dorsal visual path-101

ways within the first 150-200 ms. After 200 ms, the ac-102

tivity appeared sustained and widely distributed across103

the associative cortices up until 500-600 ms after stim-104

ulus onset (Fig.1G and Supplementary Video 1).105

To separate the processing stages underlying these106

neural responses, we applied i) mass-univariate; ii) tem-107

poral decoding and iii) spatial decoding analyses based108

on the five orthogonal features varying in our study: (1)109

the position of the stimulus, (2) its identity, (3) its per-110

ceived category, (4) its difficulty and (5) its correspond-111

ing button press.112

First, we aimed to identify when and where low-level113

visual features would be represented in brain activity.114

To do so, we estimated, at each time sample separately,115

the ability of an l2-regularized logistic regression to pre-116

dict, from all MEG sensors, the position of the stimu-117

lus on the computer screen (left versus right). Stimulus118

position was decodable between 41 and 1,500 ms and119

peaked at 120 ms (AUC=0.94; SEM=0.007; p<0.001120

as estimated with second-level non-parametric tempo-121

ral cluster test across subjects, (Fig.2C). These signals122

peaked in the early visual cortex (mean MNI (x=27.59;123

y=-74.15; z=-1.07)), and propagated along the ventral124

and dorsal streams during the first 200 ms (Fig.2A, sup-125

plementary video). To summarize where stimulus po-126

sition was represented in the brain, we implemented127

‘spatial decoders’: l2-regularized logistic regressions fit128

across all time samples (0 - 1,500 ms) for each esti-129

mated brain source separately. Spatial decoding peaked130

in early visual areas and was significant across a large131

variety of visual and associative cortices as estimated132

with a second-level non-parametric spatial cluster test133

across subjects (Fig.2B), confirming the retinotopic or-134

ganization of the visual hierarchy [22, 23].135

Second, we aimed to isolate more abstract representa-136

tions related to stimulus identity. Stimulus identity can137

be analyzed either from an objective referential (what138

stimulus is objectively presented?) or from a subjec-139

tive referential (i.e. what stimulus did subjects report140

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/840074doi: bioRxiv preprint 

https://doi.org/10.1101/840074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Experimental protocol and behavioral results. Experiment 1: 8 human subjects provided perceptual judgments on variably ambiguous
digits briefly flashed at the center of a computer screen (A). Reports were made by clicking on a disk, where (i) the radius and (ii) the angle on the
disk indicate (i) subjective visibility and (ii) subjective identity respectively. (B) Distribution (areas) and mean response (dots) location for each
color-coded stimulus. (C) Top plots show the same data as B, broken down for each morph set. The x-axis indicates the expected angle given the
stimulus pixels (color-coded), hereafter referred to as evidence. The y-axis indicates the angle of the mean response relative to stimulus evidence.
The bottom plot shows the same data, grouped across morphs. (D) Experiment 2: 17 subjects categorized a briefly flashed and parametrically
manipulated-morph using a two-alternative forced-choice. Stimulus-response mapping changed on every block. (E) Mean reaction times as a
function of categorical evidence (the extent to which the stimulus objectively corresponds to a letter). (F) Mean probability of reporting a letter as
a function of categorical evidence. (G) Evoked activity estimated with dSPM and estimated across all trials and all subjects. These data are also
displayed in Supplementary Video 1. Error-bars indicate the standard-error-of-the-mean (SEM) across subjects.

having seen?). We first focus on decoding features of141

the stimulus that are not ambiguous, such that subjec-142

tive and objective representations are confounded. To143

this aim, we grouped stimuli along common continua144

(e.g. The eight stimuli along the 4-H continuum belong145

to the same morph and are here considered to share a146

common identity) and fit logistic regression classifiers147

across morphs (i.e. E-6 versus 4-H). The correspond-148

ing stimulus identity was decodable between 120 and149

845 ms and peaked at 225 ms (AUC=0.59; SEM=0.01;150

p<0.001). These effects peaked more anteriorly than151

those of stimulus position (mean MNI: x=27.75; y=-152

62.75; z=-1.55; p<0.001).153

Third, we aimed to isolate the neural signatures of154

subjective perceptual categorization and thus focus on155

decoding ambiguous pixels. To this aim, we grouped156

stimuli based on whether the subject reported a digit157

or to a letter category. Temporal decoders weakly but158

significantly classified perceptual category from 150159

to 940 ms after stimulus onset and peaked at 370 ms160

(AUC=55%; SEM=0.01; p<0.001, Fig.2C). The corre-161

sponding sources also peaked in the inferotemporal cor-162
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Figure 2: Spatio-temporal hierarchy. (A) Mass-univariate statistics. Each row plots the average-across-subjects beta coefficients obtained from
regression between single-trial evoked activity and each of the five features orthogonally varying in this study. These results are displayed in
Supplementary Video 2. Colors are thresholded based on t-values that exceed an uncorrected p <.1. (B) Spatial-decoders, consisting of linear
models fit across all time sample for each source separately, summarize where each feature can be decoded. Lines indicate significant clusters of
decoding scores across subjects. (C) Temporal-decoders, consisting of linear models fit across all MEG channels, for each time sample separately,
summarize when each feature can be decoded. To highlight the sequential generation of each representation, decoding scores are normalized by
their respective peaks. Additional statistics are available in Supplementary Figure 1. (D) The peak and the start of temporal decoding plotted for
each subject (dot) and for each feature (color). (E) The peak spatial decoding plotted for each subject (dot) and for each feature (color).

tex but more anteriorly than stimulus identity (x=30.89;163

y=-35.64; z=21.41; p<0.01). These mass-univariate ef-164

fects did not survive correction for multiple compar-165

isons (e.g. 210-320 ms: t̄=1.79, p=0.21). Nonetheless,166

spatial decoders, which mitigate the trade-off between167

temporal specificity and the necessity to correct statis-168

tical estimates for multiple comparisons, showed that169

perceptual category was reliably decoded from a large170

set of brain areas (t̄=4.82; p<0.001; 594 significant ver-171

tices) (Fig.2G).172

Importantly, when training the classifier on all ac-173

tive trials to distinguish letters (E/H) and digits (4/6),174

we could significantly (max AUC= 0.55; SEM=0.011;175

p<.01) decode this contrast for different unambiguous176

tokens (A/C versus 9/8); suggesting that the response177

is tracking the abstract letter/digit contrast, abstracted178

from the specific pixel arrangement.179

Fourth, trial difficulty (i.e. the distance between the180

presented stimulus and the closest unambiguous char-181

acter) could be decoded between 270 and 1485 ms and182

peaked at 590 ms (l2-regularized regression fit across183

sensors, R=0.12; SEM=0.024; p<0.01). Difficulty sig-184

nals were localized more anteriorly than those of stim-185

ulus category (x=12.58; y=-91.44; z=-1.23; p<0.01).186

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/840074doi: bioRxiv preprint 

https://doi.org/10.1101/840074
http://creativecommons.org/licenses/by-nc-nd/4.0/


While spatial decoding led to significant clusters in187

the temporal, parietal and prefrontal areas (Fig.2B), the188

peak location of stimulus difficulty was highly variable189

across subjects and included the dorso-parietal cortex,190

the temporo-parietal junction and the anterior cingulate191

cortex (Fig.2E).192

Finally, temporal decoders of subjects’ button press193

(left versus right index fingers) were significant from194

458 ms after stimulus onset and peaked at 604 ms195

(AUC=0.85; SEM=0.011; p<0.001). A significant clus-196

ter of motor signals could be detected around sen-197

sorimotor cortices between 590 and 840 ms (t̄=4.98,198

p<0.001, Fig.2A). Response-lock analyses revealed199

qualitatively similar but stronger results. For example,200

temporal decoders were significant from 350 ms prior to201

the response and up to 500 ms after the response reach-202

ing an AUC of 94% at response time (p<0.001).203

Overall, the time at which representations became204

maximally decodable correlated with their peak loca-205

tion along the postero-anterior axis (Fig.2D-E) (r=0.57,206

p<0.001). These results thus strengthen the classic no-207

tion that perceptual processes are hierarchically orga-208

nized across space, time and function. Importantly how-209

ever, this cascade of representations spreads over more210

than 600 ms and largely exceeds the time it takes the211

feedforward response to ignite the ventral and dorsal212

pathways (Fig.1G and Supplementary Video 1).213

2.3. A hierarchy of recurrent layers explains the spatio-214

temporal dynamics of neural representations215

To clarify how a cascade of representations can be216

generated over extended time periods, we propose to217

distinguish feedforward and/or recurrent architectures218

depending on (i) the spatial location, (ii) the timing and219

(iii) the spatio-temporal dynamics of their representa-220

tions (Fig.3). This is done by simulating different ar-221

chitectures, and assessing their similarity to the MEG222

data. In these models, we assume that each ‘layer’ gen-223

erates new hierarchical features, in order to account for224

the organization of spatial decoders (Fig.2E). Further-225

more, we only discuss architectures which can code for226

all representations simultaneously, in order to account227

for the overlapping temporal decoding scores (Fig.2C).228

Finally, we only model discrete activations (i.e. a rep-229

resentation is either encoded or not) as any more sub-230

tle variation can be trivially accounted for by signal-to-231

noise ratio considerations.232

Each model predicts (1) ‘source’ decoding time233

courses (i.e. what is decodable within each layer) and234

(2) ‘temporal generalization’ (TG) maps. TG is used to235

characterize the dynamics of neural representations and236

consists in assessing the extent to which a temporal de-237

coder trained at a given time sample generalizes to other238

time samples [24] (Fig.3D).239

Our spatial and temporal decoding results can be240

accounted for by a feedforward architecture that both241

(i) generates new representations at each layer and242

(ii) propagates low-level representations across layers243

(Fig.3 Model 1: ‘broadcast’). This architecture predicts244

that representations would not be maintained within245

brain areas. This lack of maintenance is not sup-246

ported by our data. First, the position of the stimu-247

lus was decodable in the early visual cortex between248

80-320 ms (t̄=5.18, p<.001) and thus longer than the249

stimulus presentation. Second, most temporal de-250

coders significantly generalized over several hundreds251

of milliseconds (Fig.4A-B). For example, the tempo-252

ral decoder trained to predict stimulus position from253

t=100ms could accurately generalize until ≈500 ms as254

assessed with spatio-temporal cluster tests across sub-255

jects (Fig.4A). Similarly, temporal decoders of percep-256

tual category and button-press generalized, on aver-257

age, for 287 ms (SEM=12.47; p<.001) and 689 ms258

(SEM=30.94; p<.001) respectively. Given that the neu-259

ral activity underlying the decoded representations is260

partially stable over several hundreds of milliseconds,261

recurrent connections seem necessary to account our262

data (Fig.4 Model 2-4).263

Consequently, we then considered a simple hierarchy264

of recurrent layers, where recurrence only maintains ac-265

tivated units (Fig.3 Model 2: ‘maintain’). This archi-266

tecture predicts strictly square TG matrices (i.e. tem-267

poral decoders would be equivalent to one another in268

terms of their performance) and is thus at odds with269

the largely diagonal TG matrices observed empirically270

(Fig.4A). Specifically, the duration of significant tempo-271

ral decoding (fitting a new decoder at each time sample)272

was significantly longer than the generalization of a sin-273

gle decoder to subsequent time samples (e.g. 1,239 ver-274

sus 287 ms for perceptual category (t=-61.39; p<.001)275

and 1,215 versus 689 ms for button-press (t=-16.26;276

p<.001), Fig.4B). These results thus suggest that the de-277

coded representations depend on dynamically-changing278

activity: i.e. each feature is linearly coded by partially279

distinct brain activity patterns at different time samples.280

It is difficult to determine, with MEG alone, whether281

such dynamic maintenance results from a change of282

neural activity within or across brain areas. Indeed,283

Model 1 and Model 3 can equally predict diagonal TG284

(Fig.3). However, these two models, and their combi-285

nation (Model 4) diverge in terms of where informa-286

tion should be decodable. Specifically, source anal-287

yses revealed that both stimulus position and percep-288
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Figure 3: Source and temporal generalization predictions for various neural architectures. (A) Four increasingly complex neural architectures
compatible with the spatial and temporal decoders of Fig.2. For each model (rows), the five layers (L1, L2 ... L5) generates new representations.
The models differ in their ability to (i) propagate low-level representations across the hierarchy, (ii) maintain information with each layer in a stable
or dynamic way. (B) Activations within each layer plotted at five distinct time samples. Dot slots indicate different neural assemblies within the
same layer. Colors indicate which feature is linearly represented. For clarity purposes, only effective connections are plotted between different
time samples. (C) Summary of the information represented within each layer across time. (D) Expected result for of the temporal generalization
analyses, based on the processing dynamics of each model.

tual category can be decoded across a wide variety of289

partially-overlapping brain areas (Fig.2B, Supplemen-290

tary video 2), similarly to Model 4. Nonetheless, our291

MEG study remains limited in assessing whether within292

brain regions dynamics also contribute to the diagonal293

TG, which would suggest a mixture between models 3294

and 4.295

Together, source and TG analyses thus suggest that296

the slow and sequential generation of increasingly ab-297

stract representations depends on a hierarchy of recur-298

rent layers that generate, maintain and broadcast repre-299

sentations across the cortex.300

2.4. Hierarchical recurrence induces an accumulation301

of delays302

Can a hierarchy of recurrent processes account for303

single-trial dynamics? To address this issue, we hy-304

pothesized that recurrent processes would take variable305

amounts of time to converge to each intermediary rep-306

resentation. In this view, (i) each feature is predicted307

to propagate across brain areas at distinct moments, and308

(ii) the successive rise of decodable representations is309

thus predicted to incrementally correlate with reaction310

times (Fig.5A-E).311

To test this hypothesis, we estimated how the peak312

of each temporal decoder varied with reaction times.313

For clarity purposes, we split reaction times into four314

quantiles, and averaged the time courses of temporal315

decoders relative to their training time. These anal-316

yses showed that the latencies of (i) perceptual cate-317

gory (r=0.35; p=0.006), (ii) stimulus difficulty (r=0.37;318

p=0.004) and (iii) button press (r=0.66; p<0.001) in-319

creasingly correlated with reaction times (Fig.5F-G).320

Overall, these results show that we can track with321
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Figure 4: Temporal generalization results. (A) Temporal generalization for each of the five features orthogonally varying in our study. Color
indicate decoding score (white=chance). Contours indicate significant decoding clusters across subjects. (B) Cumulative temporal generalization
scores for the temporal decoders trained at 100, 200, 300, 400 and 500 ms respectively. These decoding scores are normalized by mean decoding
peak for clarity purposes. (C) Same data as A but overlaid. For clarity purposes, contours highlight the 25th percentile of decoding performance.

MEG, a series of decisions generated by hierarchical322

recurrent processes. This neural architecture partially323

accounts for subjects’ variable and relatively-slow reac-324

tion times.325

2.5. Hierarchical recurrence implements a series of all-326

or-none decisions327

An architecture based on successive decisions pre-328

dicts a loss of ambiguous information akin to all-or-329

none categorization across successive processing stages330

(Fig.6A). To test this prediction, we quantified the ex-331

tent to which the decoding of ‘percept category’ and332

of ‘motor action’ varied linearly or categorically with333

(i) categorical evidence and (ii) motor evidence respec-334

tively (i.e. the extent to which the stimulus (i) objec-335

tively looks like a letter or a digit and (ii) should have336

led to a left or right button press given its pixels).337

The probabilistic decoding predictions of percept cat-338

egory correlated linearly with sensory evidence be-339

tween 210 and 530 ms (r=0.38 +/-0.03, temporal-cluster340

p<0.001). The spatial decoders fit from 200 to 400 ms341

clustered around the VWFA (t̄=4.6; p=.02; 224 ver-342

tices) (Fig 6H). These results suggest that this region343

first represents the stimulus objectively (i.e. in its full344

ambiguity).345

Between 400 and 810 ms, the predictions of ‘per-346

ceptual category’ decoders were better accounted for347

by sigmoidal (r=0.77 +/-0.03,199 p<0.001) than by lin-348

ear trends (r=0.77 +/-0.03, p<0.001). Spatial decod-349

ing analyses restricted to the 500-700 ms time window350

was more distributed (t̄=4.4; p=.022; 110 vertices). Fi-351

nally, ambiguous stimuli (steps 5 and 6 on the contin-352

uum) reached maximum decodability 205 ms later than353

unambiguous stimuli (steps 1 and 8) (p<0.001) (Fig.6J).354

The interaction between trend (linear or sigmoidal) and355
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Figure 5: Correlation between TG peaks and reaction times. (A, B) Recurrent processing at a given processing stage is hypothesized to take
a variable amount of time to generate adequate representations. (C) According to this hypothesis, the rise of the corresponding and subsequent
representations would correlate with reaction times. (D, left) Predictions when delays are only induced by the perceptual stage of processing. (D,
middle) Predictions when delays are only induced by the motor processing processing stage. (D, right) Predictions when delays are induced by all
processing stages. (E) TG scores aligned to training time, split into trials within the fastest and slowest reaction-time quantile and averaged across
reaction times bins. Dark and light lines indicate the average decoding performance for trials with fastest and slowest reaction times respectively.
(F) Each subject (dot) mean peak decoding time (y-axis) as a function of reaction time (x-axis) color-coded from dark (fastest) to light (slowest).
The beta coefficients indicate the average delay estimate. (G) The average slope between processing delay and reaction time for each feature.
Error-bars indicate the SEM.

window latency was significant across subjects (r=0.07;356

SEM=0.01; p=0.002).357

This progressive categorization of the letter/digit rep-358

resentations contrasts with the all-or-none pattern of359

motor signals. Specifically, the probabilistic predictions360

of button-press decoders varied categorically with re-361

sponse evidence from 440 to 1,290 ms (sigmoid > linear362

cluster, t̄=3.17; p<0.001). There was also a more tran-363

sient linear trend from 410 to 580 ms (t̄=3.69; p<0.001).364

This suggests that, unlike perceptual category, motor365

signals largely derive from categorical inputs.366

Together, delay (Fig.5) and categorization (Fig. 6)367

analyses thus show that perceptual representations368

slowly become categorical and are subsequently fol-369

lowed by all-or-none motor representations.370
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Figure 6: Motor and perceptual decisions. (A) Hypothesis space for when responses become categorical: during sensory, perceptual or motor
processing. (B, top) Time course of decoding the perceptual decision. (B, bottom) Classifier predictions split into different levels of sensory
evidence. (C) Averaging probabilities in different time-windows shows the linear-categorical shift in how information is represented. (D, top)
Time course of decoding the motor decision. (D, bottom) Splitting classifier predictions into different levels of difficulty. (E) Different windows of
classifier predictions, showing the categorical responses throughout processing.

3. Discussion371

Our results show that briefly-flashed stimuli elicit a372

cascade of representations that spread well beyond the373

initial feedforward recruitment of the visual pathways.374

A hierarchy of recurrent processes that incrementally375

build representations best explains this cascade, its ac-376

cumulated delays and its all-or-none categorizations.377

While macroscopic MEG signals advantageously378

give a birds-eye view of the cortical correlates of per-379

ceptual decision making, it should be stressed that their380

source reconstruction remains a coarse approximation.381

Consequently, identifying (1) the role of subcortical ar-382

eas and (2) the extent to which representations dynami-383

cally change within each brain area will necessitate in-384

vasive brain recordings.385

Nonetheless, our results bridge three important lines386

of research on the neural and computational bases of387

visual processing.388

First, core-object recognition research, generally389

based on ≈100 ms-long image presentations has repeat-390

edly shown that the spiking responses of the inferotem-391

poral cortex is better explained by recurrent models than392

by feedforward ones [9, 14]. In particular, Kar et al have393

recently shown that images that are challenging to rec-394

ognize, lead to delayed content-specific spiking activity395

in the macaque’s infero-temporal cortex [14]. Our find-396

ings, based on simpler but highly-controlled stimuli, are397

consistent with these results and further highlight that398

perceptual representations are not confined to the infer-399

otemporal cortices, but also reach a large variety of pari-400

etal and prefrontal areas [25].401

Second, the present study makes important contri-402

butions to the perceptual decision making literature403

[11, 13]. With some notable exceptions (e.g. [26]),404

this line of research primarily aims to isolate motor and405

supra-modal decision signals in the presence of sus-406

tained visual inputs: i.e. neural responses ramping to-407
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wards a virtual decision threshold, independently of the408

representation on which this decision is based [13]. The409

present study complements this approach by tracking410

the representation-specific signals that slowly emerge411

after a brief stimulus. Our results thus open an ex-412

citing avenue for querying the gating mechanisms of413

successive decisions and clarifying the role of the pre-414

frontal areas in the coordination multiple perceptual and415

supramodal modules [27].416

Finally, our results constitute an important confirma-417

tion of modern theories of perception. In particular, the418

Global Neuronal Workspace Theory predicts that per-419

ceptual representations need to be broadcast to asso-420

ciative cortices via the fronto-parietal areas to lead to421

subjective reports [8]. Yet, at some notable exceptions422

[28, 29], previous studies often fail to dissociate percep-423

tual contents and perceptual reports (e.g. [30, 31]). By424

contrast, the present experimental design allows an un-425

precedented dissection of the distinct processing stages426

that transform sensory input into perceptual represen-427

tations and, ultimately, actions. The generation of let-428

ter and digit representations in the dedicated brain areas429

[32, 17] and their subsequent broadcast to the cortex re-430

inforce the notion that subjective perception relate to the431

global sharing of content-specific representations across432

brain areas [8, 33].433

4. Method434

4.1. Target stimuli435

Using the font designed in [15], the stimuli were436

made from 0, 4, 5, 6, 8, 9, A, C, E, H, O, S, or from437

a linear combination of two of these characters varying438

in a single black bar (hereafter ‘pixel’). The correspond-439

ing ‘morphs’ were created by adjusting the contrast of440

the remaining pixel along eight equally spaced steps be-441

tween 0 (no bar) and 1 (black bar).442

4.2. Experiment 1443

Eight subjects with normal or corrected vision, seated444

≈60 cm from a 19” CRT monitor (60Hz refresh rate, res-445

olution: 1024x768), performed a stimulus identification446

task with continuous judgements across 28 variably am-447

biguous stimuli generated from digit stimuli. Ten euros448

were provided in compensation for this 1-hour experi-449

ment.450

Subjects performed four blocks of 50 trials, each or-451

ganized in the following way. After a 200 ms fixation, a452

target stimulus, randomly selected from one of the 28453

stimuli, was flashed for 83 ms on a 50% gray back-454

ground to the left or to the right of fixation. The ori-455

entation of the reporting disk (e.g 5-6-8-9 versus 5-9-456

8-6) was counterbalanced across subjects. Subjects had457

then up to 10 seconds to move a cursor on a large disk458

to report their percepts. The radius on the disk indi-459

cated subjective visibility (center=did not see the stim-460

ulus, disk border=max visibility). The angle on the disk461

indicated subjective identity (e.g. 5, 6, 8, 9 for the top462

left, top right, bottom right, and bottom left ‘corners’463

respectively). Inter-trial interval was 500 ms. To ver-464

ify that subjects provided meaningful reports, the tar-465

get stimulus was absent 15% of the trials. Absent trials466

were rated with a low visibility (i.e radius below 5%467

of the disk radius) in most cases. Absent trials and trials468

reported with a low visibility were excluded from subse-469

quent analyses. The report distribution plotted in Fig.1B470

were generated with Seaborn’s bivariate Gaussian ker-471

nel density estimate function with default parameters.472

Modeling categorical reports. To test whether subjec-473

tive reports of stimulus identity varied linearly or cat-474

egorically with sensory evidence, we analyzed how re-475

ports’ angle (i.e. subjective identity) varied with the ex-476

pected angle given the stimulus (i.e. sensory evidence).477

For each morph (5-6, 5-8, 9-8 and 6-8) separately, we478

fit a linear model:479

ŷ← β1x + β0 (1)

and a sigmoidal model:480

ŷ←
1

1 + exp(β1x + β2)
+ β0 (2)

where ŷ is the report angle predicted by the model, x481

is expected angle given the stimulus pixels and β0 is a482

free bias parameter.483

To minimize the effects of noise, behavioral reports
were first averaged within each level of evidence, sorted
from the stimulus with the least pixels (e.g. 5, in 5-6
morph) to the stimulus with the most pixels (e.g. 6 in
the 5-6 morph). The resulting averages were normal-
ized to range between 0 and 1 within each subject. The
β parameters were fit with Scipy’s ‘curve fit’ function
[34] to minimize a mean squared error across trials i:

argmin
β

∑
i

(yi − ŷi)2 (3)

Because the linear and sigmoidal models have dis-484

tinct numbers of free parameters, we compared them485

within a 5-split cross-validation. Specifically, the two486

models were repeatedly fit and tested on independent487
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trials. A Pearson correlation coefficient r summarised488

the ability of each model to accurately predict ytest given489

xtrain, ytrain and xtest. Finally, a Wilcoxon test was ap-490

plied across subjects to test whether the two models491

were consistently above chance (r > 0) and consistently492

different from one another (rsigmoid > rlinear).493

Experiment 2. This experiment was performed at Neu-494

rospin, Gif usr Yvette, thanks to the support of Stanis-495

las Dehaene. Seventeen subjects performed a discrete496

identification task across 22 variably ambiguous stimuli497

generated from letters and digits inside an Elekta Neu-498

romag MEG scanner (204 planar gradiometers and 102499

magnetometers). Seventy euros were provided in com-500

pensation to the 1-hour experiment and 30 minutes of501

preparation.502

Participants’ head shape was digitized along with five503

fiducial points on the forehead and on each aural canal.504

Five head-position coils were placed on subjects head505

and localized at the beginning of each block.506

The trial structure was as follows. A black fixation507

cross was displayed on a 50% gray background for 300508

ms followed by a 100ms-long target stimulus presented509

on the left or on the right of fixation. Two task-irrelevant510

flankers (e.g. stimulus can be read as an S or a 5) were511

displayed on the side of this target stimulus to increase512

our chances of eliciting recurrent processing via crowd-513

ing [18]. Subjects were given two seconds to report the514

identity of the stimulus. Reports of stimulus identity515

were given by pressing a button with the left and right516

index fingers respectively. The identity-button mapping517

changed on every block to orthogonalize the neural cor-518

relates of stimulus identity and the neural correlates of519

motor actions. For example, in block 1, perceiving an520

E or a 4 should have been reported with a left button521

press, whereas in block 2, E and 4 should have been522

reported with a right button press. The identity-button523

was explicitly reminded before each block. In addition,524

a visual feedback was displayed after non-ambiguous525

trials. Specifically, the fixation turned green for 100ms526

or red for 300 ms in correct and incorrect trials respec-527

tively. The brain responses to these feedback stimula-528

tions are not analyzed in the present study. Inter-trial529

interval was 1 second. Subjects were provided a short530

training to ensure they understood the task, and identi-531

fied non-ambiguous targets at least 80% of the time.532

A total of 1920 trials, grouped into 40 blocks, were533

performed by each subject, 320 of which were presented534

passively at the end of each block – subjects were not535

required to provide a response. The trial structure was536

generated by (i) permuting all combinations of stimulus537

features (e.g. position, identity, response mapping, dif-538

ficulty), and (ii) shuffling the order of presentation for539

each subject. The experiment was presented using Psy-540

chtoolbox [35].541

All experiments were approved by the local ethics542

committee. All subjects signed an informed consent543

form.544

4.3. Structural MRI545

For each subject, an anatomical MRI with a resolu-546

tion of 1×1×1.1 mm was acquired after the MEG exper-547

iment with a 3T Siemens scanner. Gray and white mat-548

ter were segmented with Freesurfer ‘recon-all’ pipeline549

[20] and coregistered with each subject’s digitized head550

shapes along with fiducial points.551

4.4. Preprocessing552

The continuous MEG recording was noise-reduced553

using Maxfilter’s SSS correction on the raw data,554

bandpass-filtered between 0.5 and 40 Hz using MNE-555

Python’s default parameters with firwin design [21] and556

downsampled to 250 Hz. Epochs were then segmented557

between -300 ms and +1500 ms relative to stimulus on-558

sets.559

After coregistering the MEG sensor data with sub-560

jects’ structural MRI and the head position coils, we561

computed the forward model using a 1-layer (inner562

skull) boundary element model, for each subject sep-563

arately and fit a minimum-norm inverse model (signal564

to noise ratio: 3, loose dipole fitting: 0.2, with normal565

orientation of the dipole relative to the cortical sheet)566

using the noise covariance across sensors averaged over567

the pre-stimulus baseline across trials. Finally, the in-568

verse model was applied to single-trial data resulting in569

a dynamic Statistical Parameter Map (dSPM) [19] value570

for each source at each time sample.571

4.5. Modeled features572

We investigated whether single-trial source and sen-573

sor evoked responses varied as a function of five fea-574

tures: (1) the position of the stimulus on the computer575

screen (left versus right of fixation), (2) the morph from576

which the stimulus is generated (E-6 versus H-4), (3) the577

category of the stimulus (letter versus digit), (4) the dif-578

ficulty of the trial (maximum difficulty = stimuli with579

pixel at 50% contrast; minimum difficult stimuli with580

pixels at 0% or 100% contrast), and (5) the response581

button used to report the stimulus (left versus right but-582

ton). By design, these five features are independent of583

one another.584

It is challenging to dissociate brain responses that585

represent objective sensory information from those that586
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represent perceptual decisions as the two are generally587

collinear. To address this issue, we first fit univariate and588

multivariate models to predict perceptual category: i.e.589

whether the button press indicated a character that be-590

longs to the digit or to the letter category. This feature is591

independent of the button press (e.g. the letter E and the592

digit 4 can be reported with the same button in a given593

block). Furthermore, this feature is not necessary to per-594

form the task (i.e. knowing whether E and H are letters595

is unnecessary to discriminate them). We reasoned that596

if subjects automatically generates letter/digit represen-597

tations during perceptual categorization, then we should598

be able to track the generation of this abstract feature599

from brain activity.600

4.6. Mass univariate statistics601

To estimate whether brain responses correlated with
each of these five features, we first fit, within each sub-
ject, mass univariate analyses at each source location
and for each time sample with a linear regression:

β = (XT X)−1Xy (4)

where X ∈ Rn, f is a design matrix of n epochs by602

f = 5 features and y ∈ Rn is the univariate brain re-603

sponse at a given source and at given time. The effect604

sizes βwere then passed to second-level statistics across605

subjects corrected for multiple comparisons using non-606

parametric spatio-temporal cluster testing (see below).607

4.7. Decoding608

Decoding analyses consists in predicting each feature
from multivariate brain responses. Decoding analyses
were performed within a 5-split stratified K-Fold cross-
validation using l2-regularized linear models. Classi-
fiers consisted of logistic regressions (with scikit-learn
[36]’s default parameters: C = 1):

argmin
β

∑
i

log(1 + exp(−yiβ
T~xi)) + C‖β‖2 (5)

where yi ∈ {±1} is the feature to be decoded at trial i609

and xi is the multivariate brain response.610

Regressors consisted of ridge regression (with scikit-
learn [36]’s default parameters: α = 1).

argmin
β

∑
i

(yiβ
T xi)2 + α‖β‖2 (6)

For each subject independently, decoding perfor-611

mance was summarized across trials, with an area under612

the curve (AUC) and a Spearman r correlation score for613

classifiers and regressors respectively.614

All decoders were provided with data normalized by615

the mean and the standard deviation in the training set.616

Spatial decoding consists in fitting a series of de-617

coders at each brain source independently, across all618

1,500 time samples relative to stimulus onset. This anal-619

ysis results in a decoding brain map that indicates where620

a feature can be linearly decoded in the brain. These621

decoding maps were then passed to cluster-corrected622

second-level statistics across subjects.623

Temporal decoding consists in fitting a series of de-624

coders at each time sample independently, across all625

306 MEG sensors. This analysis results in a decod-626

ing time course that indicates when a feature can be lin-627

early decoded from MEG signals. These decoding time628

courses were then passed to cluster-corrected second-629

level statistics across subjects.630

Temporal generalization (TG) consists in testing631

whether a temporal decoder fit on a training set at time632

t can decode a testing set at time t′ [24]. TG can be633

summarized with a square training time × testing time634

decoding matrix. To quantify the stability of neural rep-635

resentations, we measured the duration of above-chance636

generalization of each temporal decoder. To quan-637

tify the dynamics of neural representations, we com-638

pared the mean duration of above-chance generaliza-639

tion across temporal decoders to the duration of above-640

chance temporal decoding (i.e. the diagonal of the ma-641

trix versus its rows). These two metrics were assessed642

within each subject and tested with second-level statis-643

tics across subjects.644

4.8. Linear versus Categorical645

To test whether neural representations varied as a
function of (i) reaction times (RTs, split into 4 quan-
tiles), (ii) sensory evidence (i.e. the extent to the stim-
ulus objectively corresponds to a letter) and (iii) motor
evidence (i.e. whether the stimulus should have led to
the left button press), we analyzed the extent to which
decoders’ predictions covaried with each of these three
variables z:

f (z, βT X) (7)

where f is a linear or a sigmoidal model, X is the646

multivariate brain response and β is the decoder’s coef-647

ficient fit with cross-validation.648

4.9. Statistics649

Univariate, decoding and TG models were fit within650

subjects, and tested across subjects. In case of repeated651

estimates (e.g. temporal decoding is repeated at each652

time sample), statistics derived from non-parametric653

cluster-testing with 10,000 permutations across subjects654

with MNE-Python’s default parameters [21].655
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Simulations. To formalize how distinct neural archi-656

tectures lead to distinct spatio-temporal dynamics, we657

modeled discrete linear dynamical systems forced with658

a transient input U. Specifically:659

Xt+1 = AXt + BUt (8)

where X is a multidimensional times series (i.e. neu-660

rons x time), A is the architecture, and corresponds to661

square connectivity matrix (i.e. neurons x neurons), B662

is an input connectivity matrix (i.e. inputs x neurons),663

and U is the input vector.664

Distinct architectures differ in the way units are con-665

nected with one another. For simplicity purposes, we666

order units in the A matrix such that their row index667

correspond to their hierarchical levels.668

In this view, the recurrent, feedforward and skip con-669

nections of the architecture A were modeled as a bi-670

nary diagonal matrix R, a shift matrix F and a matrix671

S with 1 entries in the last column respectively. These672

three matrices were modulated by specific weights, as673

detailed below. The input U was only connected to the674

first ”processing stage”, i.e. to the first unit(s) of A, via a675

matrix B constant across architectures, and consisted of676

a transient square-wave input, that mimics the transient677

flash of the stimulus onto subjects’ retina.678

To model multiple features, we adopted the same pro-679

cedure with multiple units per layer. Each unit within680

each layer was forced to encode a specific feature.681

Each architecture was fed an input at t=1, and simu-682

lated for 8 time steps. Finally, temporal generalization683

analyses based on the architectures’ activations were ap-684

plied for each of the features.685
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and pattern recognition: A review. Journal of vision 11, 13–13746

(2011).747

[19] Dale, A. M. et al. Dynamic statistical parametric mapping: com-748

bining fmri and meg for high-resolution imaging of cortical ac-749

tivity. Neuron 26, 55–67 (2000).750

[20] Fischl, B. Freesurfer. Neuroimage 62, 774–781 (2012).751

[21] Gramfort, A. et al. Mne software for processing meg and eeg752

data. Neuroimage 86, 446–460 (2014).753

[22] Hagler Jr, D. J. & Sereno, M. I. Spatial maps in frontal and754

prefrontal cortex. Neuroimage 29, 567–577 (2006).755

[23] Wandell, B. A., Dumoulin, S. O. & Brewer, A. A. Visual field756

maps in human cortex. Neuron 56, 366–383 (2007).757

[24] King, J. & Dehaene, S. Characterizing the dynamics of mental758

representations: the temporal generalization method. Trends in759

cognitive sciences 18, 203–210 (2014).760

[25] Freedman, D. J. & Miller, E. K. Neural mechanisms of visual761

categorization: insights from neurophysiology. Neuroscience &762

Biobehavioral Reviews 32, 311–329 (2008).763

[26] Philiastides, M. G. & Sajda, P. Eeg-informed fmri reveals spa-764

tiotemporal characteristics of perceptual decision making. Jour-765

nal of Neuroscience 27, 13082–13091 (2007).766

[27] Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural767

circuits in the frontal cortex. Science 364, eaav8911 (2019).768

[28] Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binoc-769

ular rivalry and visual awareness in human extrastriate cortex.770

Neuron 21, 753–759 (1998).771

[29] King, J.-R., Pescetelli, N. & Dehaene, S. Brain mechanisms772

underlying the brief maintenance of seen and unseen sensory773

information. Neuron 92, 1122–1134 (2016).774

[30] Sergent, C., Baillet, S. & Dehaene, S. Timing of the brain events775

underlying access to consciousness during the attentional blink.776

Nature neuroscience 8, 1391 (2005).777

[31] Van Vugt, B. et al. The threshold for conscious report: Signal778

loss and response bias in visual and frontal cortex. Science 360,779

537–542 (2018).780

[32] Cohen, L. et al. The visual word form area: spatial and temporal781

characterization of an initial stage of reading in normal subjects782

and posterior split-brain patients. Brain 123, 291–307 (2000).783

[33] Lamme, V. A. Why visual attention and awareness are different.784

Trends in cognitive sciences 7, 12–18 (2003).785

[34] Jones, E., Oliphant, T., Peterson, P. et al. SciPy:786

Open source scientific tools for Python (2001–). URL787

http://www.scipy.org/. [Online; accessed ¡today¿].788

[35] Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36,789

1 (2007).790

[36] Pedregosa, F. et al. Scikit-learn: Machine learning in python.791

Journal of machine learning research 12, 2825–2830 (2011).792

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/840074doi: bioRxiv preprint 

https://doi.org/10.1101/840074
http://creativecommons.org/licenses/by-nc-nd/4.0/

