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ABSTRACT

Are degree distributions of human brain functional connectivity networks heavy-tailed? Initial claims based on least-square fitting
suggested that brain functional connectivity networks obey power law scaling in their degree distributions. This interpretation
has been challenged on methodological grounds. Subsequently, estimators based on maximum-likelihood and non-parametric
tests involving surrogate data have been proposed. No clear consensus has emerged as results especially depended on data
resolution. To identify the underlying topological distribution of brain functional connectivity calls for a closer examination of the
relationship between resolution and statistics of model fitting. In this study, we analyze high-resolution functional magnetic
resonance imaging (fMRI) data from the Human Connectome Project to assess its degree distribution across resolutions. We
consider resolutions from one thousand to eighty thousand regions of interest (ROIs) and test whether they follow a heavy
or short-tailed distribution. We analyze power law, exponential, truncated power law, log-normal, Weibull and generalized
Pareto probability distributions. Notably, the Generalized Pareto distribution is of particular interest since it interpolates between
heavy-tailed and short-tailed distributions, and it provides a handle on estimating the tail’s heaviness or shortness directly
from the data. Our results show that the statistics support the short-tailed limit of the generalized Pareto distribution, rather
than a power law or any other heavy-tailed distribution. Working across resolutions of the data and performing cross-model
comparisons, we further establish the overall robustness of the generalized Pareto model in explaining the data. Moreover,
we account for earlier ambiguities by showing that down-sampling the data systematically affects statistical results. At lower
resolutions models cannot easily be differentiated on statistical grounds while their plausibility consistently increases up to
an upper bound. Indeed, more power law distributions are reported at low resolutions (5K) than at higher ones (50K or 80K).
However, we show that these positive identifications at low resolutions fail cross-model comparisons and that down-sampling
data introduces the risk of detecting spurious heavy-tailed distributions. This dependence of the statistics of degree distributions
on sampling resolution has broader implications for neuroinformatic methodology, especially, when several analyses rely on
down-sampled data, for instance, due to a choice of anatomical parcellations or measurement technique. Our findings that
node degrees of human brain functional networks follow a short-tailed distribution have important implications for claims of brain
organization and function. Our findings do not support common simplistic representations of the brain as a generic complex
system with optimally efficient architecture and function, modeled with simple growth mechanisms. Instead these findings
reflect a more nuanced picture of a biological system that has been shaped by longstanding and pervasive developmental and
architectural constraints, including wiring-cost constraints on the centrality architecture of individual nodes.

Introduction 1

The idea that the topology of brain networks may follow power law or heavy-tailed characteristics has received a lot of 2

attention starting with the initial discovery that some real-world networks, including social, genetic and technological networks 3

such as the internet show power law degree distribution in scale-free networks as opposed to Poisson degree distributions in 4

Erdos-Renyi networks1. Since then, power law distributions have been reported in many more instances of social, cellular and 5

technological networks (see2–5 for an overview). These observations have led to the idea that most complex real-world networks 6

may be structured, and that this structure may have arisen from simple growth mechanisms, such as preferential attachment1. 7
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It has also been suggested that the so-called scale-free property facilitates efficient communication via a small number of 8

designated central nodes acting as hubs of information flow, as in the case of airline or transportation networks2. However, this 9

interpretation has not been without controversy, and recently, it has been claimed that these cases of power law scaling might 10

not be as prevalent as initially thought6 (see also7 for a commentary and8 for a counter-claim arguing that real-world scale-free 11

networks are highly prevalent). In earlier work, challenges to the omnipresence of power laws and heavy tails have been made, 12

but only within specific domains9, 10. In contrast,6 have analyzed power law distributions across domains taking a data-centric 13

approach. Considering over a thousand networks from various disciplines, they conclude that scale-free networks (typically 14

those following a power law with scaling factor close to 2) are rare in real-world data. The reason why this has only recently 15

been realized is that confirming the existence of a statistically significant power law is a lot more demanding than previously 16

employed heuristics of fitting data with linear least-squares on a log-log scale. As an alternative, the statistical bootstrapping 17

method, initially developed for power law testing, was first introduced by Clauset et al. in11. This has since then been extended 18

to test for other distributions and has subsequently been implemented in several studies12–14. However, challenges remain, 19

both, for statistical analyses involving large data-sets (incurring a high computational cost for very large networks) and for 20

issues concerning robustness and interpretability of results (i.e., different parcellation schemes or network representations 21

lead to different interpretations of plausible distributions12, 15, 16). In this study, we address these open issues systematically, 22

investigating the reproducibility of power laws and other heavy-tailed distributions within the specific domain of human brain 23

functional connectivity networks constructed from resting-state functional Magnetic Resonance Imaging (rs-fMRI). 24

Alongside the advancement of computational and machine learning tools in data science, the neuroscience community itself 25

has greatly benefited from adopting a network science approach. Some of the big questions in network neuroscience involve 26

mechanisms and scaling properties of large-scale structural and functional brain networks. As in other domains of network 27

science, there have been suggestions that the degree distribution of voxels in brain functional networks may also be scale-free 28

or at least heavy-tailed17–21. These studies point to the presence of a small number of hub nodes that connect widely across the 29

network. Other studies have suggested that functional brain networks are not scale-free, but instead are characterized by an 30

exponentially truncated distribution10, 22, 23. The scaling characteristics of brain networks reflect the organization of the brain’s 31

architecture and are therefore essential for understanding how the brain operates24–31 and how it responds to injury10, 32, 33. 32

The initial excitement in looking for scale-free and other heavy-tailed distributions in brain networks was due to the proposal 33

that the dynamics of the brain might be operating at criticality17, 18. In this critical regime the network dynamics are scale 34

invariant and that has been touted as a plausible mechanism for near-optimal information processing17. On the other hand, a 35

definitive absence of heavy-tailed distributions in brain network topology would put this evidence for criticality at odds (see 36

also34 for a critical discussion on criticality). Hence, given the current debate on power law scaling in real-world networks, a 37

rigorous statistical analysis is required to estimate the underlying degree distribution of brain networks. Indeed, these may well 38

not be scale-free, power law or even heavy-tailed. For these reasons, in this work, we revisit the issue of the scaling properties 39

of human brain functional connectivity with a more detailed and specific analysis. We focus on the specific domain of brain 40

functional networks and perform detailed checks over plausible model distributions. 41

The earliest studies testing for power law distributions used least-squares fitting method on log-log plots of frequency 42

distributions of node degrees19, 20. This methodology, although seemingly straightforward, is statistically flawed11. Least- 43

squares fitting on log-log plots gives systematically biased estimates of scaling parameters as regression lines are not valid 44

probability distributions and do not respect normalization constraints of the associated cumulative distribution. Moreover, 45

in addition to model testing, one also requires a statistical measure to estimate the goodness-of-fit of prospective degree 46

distributions. Approaches using least-squares fitting do not consider this aspect. An alternative framework11 has advocated for 47

a Maximum Likelihood Estimation (MLE) of scaling parameters and subsequent model comparisons to other distributions 48

using samples of both, real and synthetic data. These authors have derived an analytic measure for power law models that has 49

subsequently been extended to other distributions as well, albeit, for most of these, the derivation has to be carried through 50

numerically. 51

In spite of these developments, it has been observed that distribution estimates are still dependent on a number of factors such 52

as the way data is pre-processed (e.g. confound regression or Independent Component Analysis based de-noising procedures), 53

how the network is constructed (e.g. using either correlations for edge weights or alternative measures of causality), how 54

network thresholds have been set, the spatial resolution or scale of the data, and also on whether one uses region-based or 55

voxel-based node specifications12, 16, 23. For instance, Hayasaka et al.23 have found that although degree distributions of many 56

analyzed functional networks followed an exponentially truncated model, the higher the resolution (of the order of 15 thousand 57

voxels), the more the distribution trends towards a power law. Hence, in response, in our data we will reanalyze degree 58

distributions near this voxel resolution as well as those at much higher ones. 59

In this work, we advance an analysis which addresses the aforementioned issues. We analyze resting-state fMRI data of 10 60

subjects obtained from the Human Connectome Project35. Using maximum likelihood methods for parameter extraction, we 61

first estimate scaling parameters for the best possible fit among all possible model distributions. Subsequently, we check the 62
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goodness-of-fit for each distribution by comparing to synthetically generated data (based on the same MLE parameters). We 63

consider six different model distributions to cover a wide range of heavy and short-tailed distributions: power law, exponential, 64

power law with exponential cut-off, log-normal, Weibull and generalized Pareto. In particular, the generalized Pareto distribution 65

will be important for this study. This distribution was first introduced in36. Its applications include use in the analysis of 66

extreme events, as a failure-time distribution in reliability studies37. In particular, it has often been employed in meteorological 67

and geophysical studies38–41. What is interesting, is that this distribution interpolates between heavy-tailed and short-tailed 68

distributions, with the power law and exponential distributions being special cases of it. This interpolation depends on a 69

tail-parameter, which will give us a handle on estimating the tail’s heaviness or shortness directly from the data. We will 70

consider weighted functional networks and will analyze statistics for 18 different thresholds (separately for positive as well as 71

negative correlations) for each data-set. Furthermore, instead of choosing a fixed resolution of the data, we analyze the same 72

data at six different voxel resolutions: 1,000, 5,000, 10,000, 20,000, 50,000 and 80,000 voxels. These resolutions are obtained 73

by down-sampling the original data at ∼80K voxels to lower resolutions. 74

Importantly, our results show that the topology of human brain functional connectivity networks follow a short-tailed 75

distribution. Additionally, we demonstrate that down-sampling data introduces the risk of detecting spurious heavy-tailed 76

distributions that fail cross-model comparisons. This dependence of statistics on data resolution has broader implications for 77

neuroinformatic methodologies and analyses, especially, when these analyses rely on down-sampled data (for instance, into 78

anatomical parcellations). Our findings that node degrees of brain functional networks follow a short-tailed distribution have 79

important implications for prospective brain architectures, including realistic biological constraints such as wiring cost and 80

aging of nodes. 81

Methods 82

Participants, Imaging Data and Network Extraction 83

We analyzed high-quality, high-resolution resting-state fMRI scans of 10 subjects (age range: 26 to 35, 16.7% male) obtained 84

from the Human Connectome Project (HCP, Q1 data-set, released by the WU-Minn HCP consortium in March 201335). 85

Individual rs-fMRI data were acquired for ∼15 minutes providing a total of ∼80,000 gray-ordinates time-series of 1,200 time 86

points each (min-max range 67,709 - 86,332). Before analyzing it, each data-set has been transformed into a series of graphs. 87

Data preprocessing involved ICA de-noising of the time-series in order to remove artefacts. A schematic illustration of the 88

overall procedure used to build each of the networks is provided in Fig. 1A. Building and visualizing functional networks was 89

performed using the BrainX3 platform33, 42–44. 90

For all the subjects, we consider six different network resolutions where the original data-set of ∼80,000 regions of interest 91

(ROIs) is further down-sampled at five different resolutions ∼1,000, ∼5,000, ∼10,000, ∼20,000 and ∼50,000 regions of 92

interest by averaging the time-series of neighbouring gray-ordinates within a cube of 13, 7, 5, 4, 2.5 mm3, respectively (see 93

supplementary table 4 for the exact number of ROIs for each data-set). 94

We build a N ×N functional connectivity matrix for each data-set by calculating the Pearson’s correlation coefficient 95

between each possible pair of ROIs45, where N corresponds to the number of nodes in the network, which is symmetric by 96

construction and with self-connections set to zero. Our analysis took into account the weighted degree distributions of the data. 97

We examined the full range of positive as well as negative correlation thresholds. To obtain weighted un-directed adjacency 98

matrices, we threshold each functional matrix at 18 different levels (R) in the range −0.7 to 0.8, at intervals of 0.1. Outside 99

this range, the functional matrices become too sparse for meaningful statistics. For positive thresholds (r > 0), the weighted 100

adjacency matrix is obtained by keeping all the values above threshold while all entries below threshold are set to zero. For 101

negative correlations, a threshold sets an upper bound. All correlation strengths more negative than the threshold are maintained 102

in the adjacency matrix, whereas correlations above the threshold are set to zero. In a weighted network, the weighted degree 103

of a node corresponds to the sum of all weighted edges connected to that node. Figure 1B depicts the degree distributions of 104

extracted networks across three different thresholds (r > 0.2, 0.3 and 0.4) for a representative subject and the averaged degree 105

distributions over all ten data-sets. The region-wise group average for the original dataset of the top twenty leading degree 106

nodes mapped on the Automated Anatomical Labeling (AAL) volume atlas46 is illustrated in Figure 1C. 107

Fitting Parametric Models to Weighted Degree Networks 108

For every generated network, the vector of degrees x = [x1,x2, ...,xn] is sorted in ascending order for each correlation threshold. 109

Fitting parametric models to these degree distributions follows the statistical bootstrapping approach outlined in11. This method 110

uses Maximum Likelihood Estimation (MLE) to determine model parameters, followed by the Kolmogorov-Smirnov (KS) 111

statistic to estimate the tail of the distribution corresponding to that model. For example, in the case of power law models, MLE 112

is used to estimate the scaling parameter α providing the best possible fit for a hypothetical power law distribution P(x)∼Cx−α
113

for the tail of the observed data in the range xi to xn. Next, we determine the KS statistic for this power law distribution with 114

respect to xi. Out of all possible xi from the data, the one with the smallest KS statistic corresponds to the lower bound xmin for 115
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Figure 1. A. Overview of the processing steps used to generate graph-based brain connectivity functional networks. Five
different parcellation schemes were generated which divided the original ∼ 80K brain data into 1K, 5K, 10K, 20K, 50K
regions-of-interest (ROIs). For each node pair, temporal correlation was calculated from the fMRI signals to generate a
Functional Connectivity (FC) matrix for each subject. The edges’ distribution of the resulting individual weighted functional
networks is then examined for a range of different thresholds (examples are given for thresholds equal to 0.1, 0.2 and 0.3) from
which distinct graph structures can be defined. B. An example of degree distributions for three different values of the FC
threshold for a representative data-set (top) and the average over the 10 data-sets included in the study (bottom). C.
Region-wise group average for the 80K resolution of the top twenty hubs mapped on the Automated Anatomical Labeling
(AAL) volume atlas46. Across subjects the highest degree connectivity is observed across the fronto-parietal-occipital areas.
Darker colors denote regions belonging to a larger number of subject data-sets.
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Table 1. The six models used for the analysis of the degree distribution.

Distribution model Probability density function (PDF)
Power law x−α

Exponential e−λx

Power law with exponential cutoff xα eβx

Weibull x(β−1)e−λxβ

Log-Normal 1
x e−

(log(x)−µ)2

2σ2

Generalized Pareto (1+ k x−xmin
σ

)−1− 1
k

power law behavior in the data. For other models (listed in table 1), the same procedure is repeated to estimate their respective 116

parameters. 117

To verify whether the observed KS statistic indeed provides a good fit for the data, we then generate and fit 1000 synthetic 118

data-sets from a true model distribution using the parameters determined from MLE and the bound xmin as the one estimated 119

for the best fit of the empirical data. We then fit each synthetic data-set by calculating the KS statistic relative to its original 120

model. From that, we calculate an empirical p-value as the fraction of the times the empirical distribution shows a smaller value 121

of the KS statistic as compared to the synthetically generated ones. If the obtained p-value is below a significant threshold, 122

p 6 0.111, the model hypothesis can be ruled out as a non-plausible explanation of the data. Furthermore, we impose an 123

additional constraint that the tail size of a plausible distribution contains at least fifty nodes, to avoid those cases where the 124

p-value may be high, but the tail is extremely sparse. Note, however, that large p-values by themselves do not guarantee that the 125

given model is the best. One still has to perform cross-model comparisons with other plausible distributions (listed in table 1). 126

All the analyses were performed in Matlab (Mathworks Inc., USA) using the methods from11. Further, for testing the 127

alternative models, we adapted the framework provided in11 to include the competing hypothesis. For each subject, we analyzed 128

thresholds in the range −0.7 to 0.8, with 0.1 increments. The parametric goodness-of-fit test was conducted over 1,000 129

repetitions, ensuring precision of p-value up to two decimal digits. Fittings to power law distribution for the 10K resolution 130

were also computed using the Powerlaw Python package from14 to verify the consistency of the procedure used here. 131

Results 132

In order to estimate degree distributions of human brain functional networks, we analyzed high-resolution fMRI data from the 133

Human Connectome Project at varying resolutions from one thousand to 80 thousand regions of interest (ROIs) and tested 134

whether they follow heavy or short-tailed distributions considering the power law, exponential, power law with an exponential 135

cutoff, log-normal, Weibull and generalized Pareto distributions. We tested each of the above-mentioned statistical models for 136

18 different functional connectivity thresholds in each of the ten subjects and across all resolutions of the data (1K, 5K, 10K, 137

20K, 50K and 80K). 138

Table 2. Proportion of fitted distributions that are a statistically plausible explanation of the data with the
goodness-of-fit test larger or equal to 0.1. Legend: PL: power law, Exp: exponential, LNOrm: log-normal, Wei: Weibull, GP:
Generalized Pareto, PLexp: Power law with exponential cutoff, na: numerical analysis did not converge to a stable solution.

PL (%) Exp (%) PLexp (%) LNorm (%) Wei (%) GP (%)
80K 16.7 21.7 na na 13.3 44.4
50K 13.3 29.4 na 32.2 12.2 43.3
20K 19.4 32.2 41.7 41.7 15.0 52.2
10K 24.4 34.4 40.6 47.2 18.9 54.4
5K 32.2 40.6 39.4 50.0 12.2 52.8
1K 34.4 33.3 45.0 48.9 6.1 52.8

Our analysis revealed that across all resolutions of the data the statistical plausibility of the power law model is consistently 139

weaker than other models (with the exception of the Weibull distribution; Figure 2 left panel and Table 2). Indeed, it is the 140

generalized Pareto model that consistently dominates the statistics at every resolution (mean proportion of statistically plausible 141

fits across resolutions: 49.98 ±4.81). Another trend we observe is the increase in the proportion of plausible model fits as the 142

data is down-sampled (Figure 2B). In particular, this increase is strictly monotonous for all models from a resolution of 50K 143

5/40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/840066doi: bioRxiv preprint 

https://doi.org/10.1101/840066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Overall results of model fitting. Left: Proportion of fitted distributions that are statistically significant. Across
resolutions, the generalized Pareto model is consistently outperforming the other candidate models. Right. Proportion of
models that are a plausible explanation of the data across resolutions. For lower resolutions, multiple models become
simultaneously plausible. A fit is considered plausible if its p-value is equal or larger than 0.1 and the tail of the distribution
contains more than 50 nodes.

Table 3. Overall Likelihood ratio test results of comparing the alternative distributions at the different resolutions.
The data express the number of times a model is a plausible explanation of the data. In parenthesis the proportion
with respect to the total number of comparisons made.

Distribution 1K 5K 10K 20K 50K 80K
Power law 141 (11.6) 148 (11.3) 114 (8.9) 100 (8.6) 56 (7.4) 61 (13.9)
Exponential 162 (13.3) 189 (14.4) 167 (13.1) 164 (14.2) 140 (18.6) 80 (18.3)
Truncated PL 85 (7.0) 112 (6.6) 136 (10.6) 115 (9.9) - (-) - (-)
Log normal 230 (18.9) 229 (17.5) 219 (17.1) 198 (17.1) 141 (18.7) - (-)
Weibull 20 (1.6) 54 (4.1) 99 (7.7) 89 (7.7) 62 (8.2) 53 (12.1)
Gen Pareto 265 (21.8) 260 (19.9) 276 (21.6) 282 (24.4) 231 (30.7) 191 (43.6)
Inconclusive 312 (25.7) 316 (24.1) 267 (20.9) 207 (17.9) 122 (16.2) 53 (12.1)
Comparisons 1215 1308 1278 1155 752 438

to 10K. As we shall see, this is because at lower resolutions multiple models become simultaneously statistically significant 144

(Figure 2B). 145

After model fitting, when multiple models became simultaneously plausible, we performed log-likelihood ratio (LLR) tests 146

between pairs of models to determine the most plausible one. The log-likelihood tests have been done at each FC threshold, for 147

each subject, and each resolution. 148

Once again, percentages of the number of times a given model outperforms a competing model in pair-wise comparisons 149

indicates a clear dominance of the generalized Pareto model compared to all other distributions and this superiority is consistent 150

across all resolutions (Figure 3, Table 3 and supplementary Tables 38 to 43). In contrast, the power law distribution turns out to 151

be the weakest (statistically) model in log-likelihood ratio tests, at every resolution. The percentages of log-likelihood ratio 152

outcomes are fairly robust across resolutions with the exception of the highest resolution, where, as noted earlier, there is a lower 153

number of multiple comparisons. What is also noteworthy is the number of ’inconclusive’ cases (Table 3 and Figure 3). These 154

indicate instances when it was statistically impossible to discern between multiple models. These occurrences are the lowest at 155

the highest resolution and rise systematically with every decreasing data resolution. What we find is that coarse-graining the 156

original data by half already leads to a threefold increase in the number of inconclusive statistical tests as compared to the 157

highest resolution. 158

Our analysis also reveals the shape of the tail of degree distributions of functional networks allowing to answer the question 159

whether they are heavy-tailed or short-tailed. This question can be addressed by looking at the most plausible statistical model 160

at each threshold and examining the values of the tail parameters of the model – when such parameters explicitly exist. The 161
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Figure 3. Log-likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power law
distribution. We show the percentage of times a power law model (PL), the alternative model (Alternative) or neither
(Inconclusive) was favored.
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power law model, by definition, is heavy-tailed, whereas the exponential is short-tailed. The generalized Pareto, log-normal and 162

Weibull all have parameters that explicitly determine the shape of the tail (k, σ and β respectively). The generalized Pareto 163

model is of particular interest here as it interpolates between heavy-tailed and short-tailed distributions. A large positive k value 164

indicates the presence of a fat-tail, whereas a small or negative value points to the opposite. Given that the generalized Pareto 165

model statistically outperforms all other models in our analysis, across thresholds and resolutions, we examined the values of 166

its k parameter for those instances where the p-value of the model is greater than 0.1 and tail size is higher than 50 (Figure 4A). 167

Overall, including both positive and negative thresholds, we find that k is close to zero, approaching an exponential distribution. 168

When considered separately, for positive thresholds k assumes negative values, implying a short tail (Figure 5B), whereas it 169

becomes positive for negative thresholds. Moreover, these observations hold across all resolutions (Figure 5C). 170
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Figure 4. Statistics of the generalized Pareto model across resolutions and thresholds. Left: population averaged
goodness-of-fit tests. Center: percentage of the tail of the distribution explained by the model across different thresholds.
Horizontal dashed lines in the box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).
The central mark is the median, the edges of the boxes are the 25th and 75th percentiles. Right: Estimated k parameter as a
function of threshold.
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Taken together, the main conclusions of our analysis is that: 171

172

(i) Degree distributions of brain functional connectivity networks obtained from fMRI recordings rarely follow a power 173

law scaling. Instead, the generalized Pareto distribution provides the best statistical explanation of the graph of the functional 174

connectivity network of the human brain. 175

176

(ii) The results pertaining to model comparisons remain robust at all resolutions of the data from the very high resolution of 177

80K voxels up to the low resolution of 1K. 178

179

(iii) The degree distributions of these networks are rarely heavy-tailed. Instead, the trend is towards short-tailed distributions. 180

We see this from values of the shape parameter k of the generalized Pareto distribution as well as σ of the log-normal distribution. 181

182

(iv) Data down-sampling systematically affects all statistical tests. Namely, the statistical plausibility of every model 183

increases upon down-sampling. Lowering the resolution of the data makes it harder to statistically discern between models, 184

even though the actual tail lengths only decrease moderately as we lower resolutions as seen in figure 4). Multiple models 185

become simultaneously plausible at low resolutions. 186

Discussion 187

We have examined degree distributions of human brain functional networks constructed from high-resolution resting-state fMRI 188

data to clarify contrasting claims made in the literature concerning the nature of their underlying graph. The main conclusion of 189

our analysis is that these networks are short-tailed, following the generalized Pareto distribution. While several alternatives to 190

the power law and other heavy-tailed models have been extensively discussed, the generalized Pareto model has surprisingly 191

received little attention outside of meteorology and geophysics38–41. What is remarkable, is that this distribution interpolates 192

between heavy-tailed and short-tailed distributions, with the power law and exponential distributions being special cases of it. 193

This interpolation depends on a tail-parameter, which gives one a handle on estimating the tail’s heaviness or shortness directly 194

from the data. Here, we have found that the generalized Pareto distribution happens to outperform all other distributions, at 195

least, within the domain of human brain functional networks. 196

Overall, our results indicate that the statistics do not support a heavy-tailed network topology for node degree distributions 197

of human brain functional networks. The heavy-tail hypothesis, including the power law is firmly rejected in the majority of the 198

thresholds we examined. Instead, it is the generalized Pareto distribution that is consistently preferable to competing models for 199

most of the examined thresholds. We also tested for other models commonly discussed in the literature, such as the exponential, 200

log-normal, Weibull and power law with exponential cut-off (truncated power law). Overall, we find that the generalized Pareto 201

model outperforms all others across resolutions. These results suggest that after taking into account continuously weighted 202

networks at each threshold (rather than binary networks), the dynamics of brain functional networks might not be governed by 203

as many ultra-high degree hubs as a typical heavy-tailed network. 204

For completeness, let us also mention how our results are affected by specific parameter settings. Note that the generalized 205

Pareto, Weibull as well as the exponentially truncated power law are all defined by three parameters (scale or normalization 206

factor, shape factor, and tail parameter), whereas the power law, exponential and log-normal are defined using only two 207

parameters (scale/normalization factor and tail parameter). One may ask whether the improved statistical significance is merely 208

the result of adding an extra parameter to the model. One can see that this is not the case as the Weibull and the truncated 209

power law do not systematically outperform any of the two-parameter distributions. It is only the generalized Pareto within its 210

short-tail limit that best characterizes the shape of the tail in the data. 211

What does the above observation mean for the heavy-tailed hypothesis (sometimes also referred to as the fat-tailed 212

hypothesis) in relation to brain functional networks? Our results on model tail parameters suggest that human brain functional 213

networks have a short tail, rather than a heavy or fat tail as observed in the estimated k parameter values of the generalized 214

Pareto model. Since this model interpolates between heavy-tailed and short-tailed distributions it includes both power law and 215

exponential distributions as special cases. Most k values (considering only models passing plausibility criteria) of networks 216

studied here point to a short tail, in many instances, even shorter than the exponential. In other words, these models have 217

even fewer ultra high degree nodes than what would be expected for a random graph. In terms of the implications that this 218

might have, let us make the following remarks. Firstly, this network design could be explained as an outcome of pervasive 219

developmental and architectural constraints, including wiring-cost constraints, which prevent the emergence of long-range 220

hubs, under the assumption that long-distance functional connectivity connections correspond to long-distance anatomical 221

connections (a hypothesis that can be experimentally tested in future studies). Secondly, in a modeling study carried out in47, 222

the authors showed how constraints to a preferential attachment growth model limit the shape of the resulting tail. More 223

specifically, this study showed that when either the cost of adding new edges to existing vertices increases sufficiently, or 224
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Figure 5. The degree distributions of functional connectivity networks tend towards the shorter limit of the generalized Pareto
distribution. A: Overall distribution of the generalized Pareto estimated k parameter values for those distributions that are a
statistically plausible fit of the data (p-value>0.1 with a minimum tail length of 50 nodes). Large positive k values indicate the
presence of a heavy-tail, whereas small or negative values point to a suppressed tail. B: Example of short- and heavy-tailed
generalized Pareto distributions as a function of the scaling parameter k. C. Distributions of the generalized Pareto estimated k
parameter values for the positive thresholds across resolutions. Gray bars corresponds to all possible fits whereas blue bars
corresponds to statistically plausible fits that (p-value>0.1 with a minimum tail length of 50 nodes)
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that a significant number of vertices become inactive due to aging processes, then the network topology inevitably settles 225

to a short-tailed distribution, in spite of a preferential attachment growth model. Given that such constraints on edge costs 226

and vertex aging are reasonable for brain networks, this study lends credence to our conclusion that the analyzed functional 227

connectivity networks may be short-tailed. And more generally, our findings do not support common simplistic representations 228

of the brain as a generic complex system with optimally efficient architecture and function, modeled with simple growth 229

mechanisms. Instead these findings reflect a more nuanced picture of a biological system that has been shaped by longstanding 230

and pervasive developmental and architectural constraints, including wiring-cost constraints on the centrality architecture of 231

individual nodes48–50. 232

An important observation emerging from our study concerns the effect that down-sampling of data has on statistical models. 233

We found that down-sampling systematically affects all statistical tests. One might think that down-sampling smooths out 234

variations in the data leading to more robust statistics. The opposite turns out to be the case. Intrinsic variability present in 235

data at higher resolutions helps differentiate between competing models, enabling greater interpretability of observed results. 236

On the other hand, we found that down-sampling the original data by half already leads to an increase in inconclusive model 237

comparisons by more than three times the original. This is because the statistical plausibility of every model systematically 238

increases, even though the actual tail lengths only decrease moderately as we lower resolutions. The result is that multiple 239

models simultaneously pass plausibility criteria, making it harder to discern between them. Similar to data over-fitting, there are 240

not sufficient features in the down-sampled data to distinguish between models. Of course, at very low resolutions, this effect 241

breaks down as the tail of the degree distributions in the data by necessity begins to get sparse. Note that even if the data at each 242

resolution were to be explained by a different model, the point here is that unless cross-model comparisons show statistical 243

discernibility, those results have to be interpreted with caution. Thus, at low resolutions of the data, one does see more power 244

laws than at higher resolutions, but those fail cross-model comparisons. This point is particularly relevant for studies where 245

one routinely down-samples functional data into anatomical parcellations, for instance, when comparing fMRI data to various 246

neuro-computational models51, 52. Even though the focus of our work here concerned the identification of the underlying 247

topological distribution of human functional connectivity and the reproducibility of power laws in human fMRI data, the 248

down-sampling effects we have reported bear significance for the broader discussion of reproducibility of scientific results53, 54. 249

Many of the problems associated with reproducibility have been attributed to flawed methodology54. Within the narrow domain 250

of the problem we have addressed here, methodological rigour turns out to be extremely important to verify robustness and 251

interpretability of results. Statistical significance is a necessary condition, but, by itself, is not sufficient. Goodness-of-fit tests 252

and discernibility in cross-model comparisons turn out to be methodologically crucial for reproducible science. 253

Finally, how does our study address the on-going debate on the abundance (or universality) of power law networks?6, 7
254

As proposed in55, "knowledge of whether or not a distribution is heavy-tailed is far more important than whether it can be fit 255

using a power law". Extending this philosophy, an empirical detection of a statistical distribution can be insightful either when 256

it brings us closer to understanding underlying organizational principles or results from one. In the current study, evidence 257

favoring a short-tailed, rather than a heavy-tailed degree distribution suggests constraints on the topological organization of 258

brain networks. There have also been criticisms against the conclusions of statistical tests applied to real-world data, claiming 259

that such tests will always discriminate against power laws because strictly speaking, power laws are only to be found in the 260

infinite size limit of growth models as preferential attachment. To counter this claim, we point to studies where the same 261

statistical methods used here have also been able to rigorously establish power law behaviors in temporal dynamics of localized 262

fMRI signals as well as brain electric field potentials, without having to resort to asymptotic limits56, 57. In those studies, power 263

law scaling underlies heavy-range temporal correlations. Besides that, as pointed out in55, under certain conditions, power laws 264

also arise from mixing multiple heavy-tailed distributions (as a special case of the central limit theorem). Hence, the infinite 265

limit argument cannot be used every time a statistical test fails to show a power law in the data. In systems where such a limit is 266

physically meaningful and can be justified using a growth model, this argument would have been plausible. However, brain 267

functional networks are finite-sized and follow more complicated growth patterns. Nonetheless, the network sizes we have 268

examined here are much larger than those considered in previous studies of functional networks. At the highest resolution, 269

there is no trend towards a power law, quite the opposite. At higher resolutions of the data, the trend moves away from a power 270

law, and the data shows evidence for short tails. In this case, we would conclude that observed finite size effects provide useful 271

indicators to probe underlying informational and organizational principles of brain function. Another suggestion, made recently 272

in8, is to test for "noisy power laws", that are modulated by slowly varying functions which approach a constant in the large size 273

limit. This point is well taken. However, in our analysis, we have considered distributions that interpolate between heavy-tailed 274

and short-tailed distributions, including possible modulations of power laws. Once again, we find that the data points in the 275

direction of short-tails. Even more recently,58 have suggested that power law tests can be affected by correlations present in the 276

data, which may lead to their false rejections. To resolve this, they proposed a method based on shuffling and under-sampling 277

the data to account for correlations. We have addressed this issue in our analysis by way of down-sampling across resolutions. 278

It has been noted in12 that down-sampling is yet another way to control for the effects of local correlations. Indeed, at lower 279
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resolutions, more power laws pass compared to higher ones. Nevertheless, in our data, we found that the generalized Pareto 280

model consistently outperforms the power law model at all resolutions. In summary, for many real-world problems, including 281

brain dynamics, finite size effects are not merely statistical fluctuations about a "true" underlying theory, but signatures of new 282

systems-level principles. Therefore, for future work, the development of rigorous computational methods for the analysis of 283

order parameters and non-equilibrium effects in real-world networks will prove valuable for the network science community. 284
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Supplementary material 389

Table 4. List of datasets used for the analysis. Each column indicates the number of nodes at the six different resolutions.
Data belong to the Q1 data released by the WU-Minn Human Connectome Project consortium in March 201335

ID 1K 5K 10K 20K 50K 80K
100307 1012 5026 10070 20151 50005 79547
103414 1006 5012 10072 20003 50089 82503
105115 1006 5009 10041 20086 50127 84857
110411 1006 5041 10039 20027 50376 67709
111312 1011 5000 10021 20115 50015 72671
113619 1009 5062 10017 20081 50006 76703
115320 1002 5004 10074 20104 50111 76802
117122 1097 5000 10020 20064 50157 76460
118730 1004 5010 10024 20079 50241 86332
118932 993 5030 10008 20040 50114 85292

1K resolution 5K resolution 10K resolution

20K resolution 50K resolution 80K resolution

Figure 6. Overall distribution of the plausible fits (p>0.1 and tail >50) for the different examined thresholds and resolutions.
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Figure 7. 1K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the six distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.
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Figure 8. 5K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the six distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.

18/40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/840066doi: bioRxiv preprint 

https://doi.org/10.1101/840066
http://creativecommons.org/licenses/by-nc-nd/4.0/


-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Power law (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0

5

10

15

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Exponential (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0

1

2

3

4

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Power law cutoff (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0

2

4

6

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Weibull (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

-0.5

0

0.5

1

1.5

2

2.5

3

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Log Normal (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

-2

0

2

4

6

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

0  

50 

100

T
a

il 
L

e
n

g
th

 (
%

)

Generalized Pareto (tail length vs total)

-.8 -.6 -.4 -.2 -0 0 .2 .4 .6 .8

Correlation Threshold

-0.5

0

0.5

1

1.5

2

k

Figure 9. 10K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the six distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.
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Figure 10. 20K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the six distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.
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Figure 11. 50K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the five distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.
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Figure 12. 80K data set. Left: population averaged goodness-of-fit tests. Center: percentage of the tail of the distribution
explained by the model (center) across different thresholds for each of the four distributions. Horizontal dashed lines in the
box-plots indicate the acceptance criteria for a model to be considered plausible (p-value> 10).The central mark is the median,
the edges of the boxes are the 25th and 75th percentiles. Cross marks correspond to outliers. Right: Estimated scaling
parameters for the different candidate distributions as a function of threshold.
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Table 5. Fit results of the exponential distribution for the 1K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 0.068 0.404 25.500 0.029 0.000 0.747
+0.7 0.065 1.093 54.500 0.063 0.009 0.695
+0.6 0.110 2.221 161.500 0.063 0.176 0.650
+0.5 0.060 2.180 187.000 0.061 0.068 0.667
+0.4 0.053 24.811 255.000 0.061 0.205 0.541
+0.3 0.047 43.658 356.500 0.071 0.035 0.490
+0.2 0.041 103.496 163.000 0.069 0.122 0.199
+0.1 0.063 172.515 113.500 0.071 0.444 0.116
+0.0 0.108 5.186 234.500 0.062 0.508 0.233
−0.0 0.108 5.186 234.500 0.062 0.520 0.233
−0.1 0.224 1.395 267.500 0.116 0.042 0.383
−0.2 0.555 0.383 71.500 0.202 0.000 0.396
−0.3 0.000 0.000 0.000 0.000 0.000 0.898
−0.4 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; λ model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 6. Fit results of the power law distribution for the 1K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 0.950 0.404 25.500 0.053 0.000 0.795
+0.7 1.718 1.055 55.000 0.104 0.001 0.783
+0.6 2.641 7.416 92.000 0.126 0.024 0.427
+0.5 3.754 18.093 104.000 0.113 0.051 0.268
+0.4 4.977 59.781 76.000 0.103 0.156 0.145
+0.3 7.982 105.467 74.500 0.104 0.117 0.106
+0.2 9.926 154.151 88.500 0.097 0.107 0.101
+0.1 12.110 172.515 93.500 0.079 0.195 0.095
+0.0 3.012 12.589 118.500 0.058 0.662 0.118
−0.0 3.012 12.589 118.500 0.058 0.664 0.118
−0.1 2.588 2.091 145.000 0.083 0.342 0.185
−0.2 2.588 0.447 123.000 0.122 0.064 0.497
−0.3 0.000 0.000 0.000 0.000 0.000 0.650
−0.4 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; α model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 7. Fit results of the generalized Pareto distribution for the 1K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.000 0.696 0.403 25.500 0.029 0.000 0.831
+0.7 -0.072 5.662 1.847 53.500 0.051 0.122 0.568
+0.6 -0.230 12.132 7.004 100.500 0.058 0.722 0.493
+0.5 -0.211 22.787 9.726 147.500 0.035 0.868 0.404
+0.4 -0.340 30.337 13.315 229.500 0.031 0.889 0.453
+0.3 -0.440 36.590 53.520 211.500 0.030 0.910 0.314
+0.2 -0.399 39.570 84.198 226.500 0.031 0.830 0.274
+0.1 -0.420 51.221 107.558 354.000 0.033 0.784 0.357
+0.0 0.405 3.788 2.983 540.500 0.022 0.615 0.539
−0.0 0.405 3.788 2.983 540.500 0.022 0.610 0.539
−0.1 0.469 2.028 1.061 344.000 0.036 0.599 0.463
−0.2 0.521 0.827 0.551 88.500 0.070 0.292 0.401
−0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.686
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; k, σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 8. Fit results of the log-normal distribution for the 1K resolution dataset.

Thr µ σ xmin TL KS p-value TLr
+0.8 0.000 0.383 0.404 25.500 0.028 0.000 0.786
+0.7 1.025 0.466 0.718 53.000 0.051 0.002 0.465
+0.6 1.919 0.678 1.928 138.000 0.058 0.228 0.599
+0.5 3.189 0.476 14.200 157.500 0.043 0.642 0.394
+0.4 4.112 0.281 42.950 149.500 0.037 0.903 0.279
+0.3 4.603 0.200 79.863 145.000 0.036 0.695 0.233
+0.2 4.981 0.162 124.291 152.000 0.036 0.862 0.196
+0.1 5.061 0.145 132.611 192.000 0.036 0.835 0.194
+0.0 1.746 1.153 4.474 540.500 0.028 0.390 0.539
−0.0 1.746 1.153 4.474 540.500 0.028 0.392 0.539
−0.1 0.132 1.190 0.896 364.500 0.035 0.782 0.490
−0.2 -0.238 1.072 0.567 69.000 0.059 0.307 0.382
−0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.823
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; µ , σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 9. Fit results of the Weibull distribution for the 1K resolution dataset.

Thr b a xmin TL KS p-value TLr
+0.8 0.595 1.194 0.404 25.500 0.038 0.000 0.775
+0.7 1.175 6.292 0.723 61.500 0.062 0.000 0.843
+0.6 1.358 16.338 0.951 166.500 0.061 0.000 0.862
+0.5 1.337 25.943 2.938 326.000 0.051 0.000 0.857
+0.4 1.332 48.639 3.155 484.500 0.046 0.000 0.898
+0.3 2.173 83.217 21.348 527.000 0.041 0.000 0.731
+0.2 2.581 110.484 24.139 639.500 0.043 0.000 0.743
+0.2 3.026 145.226 44.496 736.000 0.040 0.000 0.745
+0.0 1.385 10.267 1.406 1002.000 0.109 0.000 1.000
−0.0 1.385 10.267 1.406 1002.000 0.109 0.000 1.000
−0.1 0.783 2.090 0.120 693.000 0.120 0.895 0.883
−0.2 0.942 1.505 0.249 125.000 0.184 0.000 0.659
−0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.730
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 10. Fit results of the power law with exponential cutoff distribution for the 1K resolution dataset.

Thr α λ xmin TL KS p-value TLr
+0.8 0.000 0.049 0.404 25.500 0.030 0.000 0.864
+0.7 0.076 0.051 0.715 57.500 0.060 0.000 0.841
+0.6 0.398 0.072 1.602 241.500 0.060 0.105 0.805
+0.5 0.141 0.047 0.819 288.500 0.051 0.390 0.867
+0.4 0.006 0.026 0.484 525.000 0.068 0.225 0.938
+0.3 0.000 0.016 0.343 704.500 0.101 0.270 0.975
+0.2 0.000 0.013 0.360 836.500 0.140 0.330 0.965
+0.1 0.000 0.010 0.124 977.500 0.159 0.350 0.988
+0.0 1.048 0.044 3.174 645.000 0.025 0.605 0.646
−0.0 1.048 0.044 3.174 645.000 0.025 0.615 0.646
−0.1 1.548 0.051 0.834 399.000 0.041 0.485 0.475
−0.2 1.883 0.060 0.639 108.500 0.077 0.335 0.372
−0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.500
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 -
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 11. Fit results of the exponential distribution for the 5K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.665
+0.7 0.055 1.877 56.000 0.042 0.254 0.436
+0.6 0.085 4.515 134.500 0.078 0.194 0.403
+0.5 0.042 10.185 303.000 0.046 0.533 0.374
+0.4 0.023 12.670 597.000 0.043 0.167 0.392
+0.3 0.016 26.930 455.500 0.034 0.414 0.229
+0.2 0.014 56.294 949.000 0.032 0.116 0.258
+0.1 0.010 103.691 1866.500 0.047 0.001 0.374
+0.0 0.038 58.758 1190.500 0.023 0.429 0.238
−0.0 0.038 58.758 1190.500 0.023 0.425 0.238
−0.1 0.056 14.940 368.500 0.048 0.233 0.080
−0.2 0.206 1.418 227.500 0.137 0.000 0.274
−0.3 0.556 0.317 106.000 0.235 0.000 0.789
−0.4 0.000 0.000 0.000 0.000 0.000 0.754
−0.5 0.000 0.000 0.000 0.000 0.000 0.892
−0.6 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; λ model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 12. Fit results of the power law distribution for the 5K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.760
+0.7 1.705 1.414 59.000 0.084 0.001 0.310
+0.6 2.511 2.750 81.000 0.115 0.038 0.370
+0.5 2.819 19.770 132.500 0.094 0.025 0.192
+0.4 3.783 93.027 141.500 0.086 0.087 0.109
+0.3 6.883 170.489 113.500 0.077 0.270 0.042
+0.2 9.258 284.261 125.000 0.077 0.229 0.031
+0.1 12.458 517.130 155.000 0.074 0.108 0.031
+0.0 4.907 76.779 384.500 0.033 0.599 0.077
−0.0 4.907 76.779 384.500 0.033 0.607 0.077
−0.1 2.537 9.146 592.500 0.065 0.114 0.125
−0.2 2.558 2.109 611.500 0.069 0.004 0.353
−0.3 2.411 0.802 83.000 0.112 0.001 0.407
−0.4 0.000 0.000 0.000 0.000 0.000 0.473
−0.5 0.000 0.000 0.000 0.000 0.000 0.938
−0.6 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; α model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 13. Fit results of the generalized Pareto distribution for the 5K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.635
+0.7 0.000 4.044 1.485 68.500 0.037 0.102 0.412
+0.6 0.038 11.339 4.468 123.000 0.049 0.414 0.408
+0.5 0.011 23.610 6.611 341.500 0.031 0.649 0.390
+0.4 -0.146 59.947 34.465 497.500 0.026 0.671 0.350
+0.3 -0.231 93.821 45.148 588.000 0.025 0.573 0.231
+0.2 -0.251 140.834 50.755 1017.500 0.016 0.618 0.296
+0.1 -0.307 144.573 102.543 1583.000 0.014 0.653 0.316
+0.0 0.081 21.723 45.926 1561.500 0.014 0.805 0.312
−0.0 0.081 21.723 45.926 1561.500 0.014 0.787 0.312
−0.1 0.196 11.532 9.101 643.500 0.018 0.883 0.133
−0.2 0.376 1.841 0.894 355.000 0.036 0.568 0.430
−0.3 0.664 0.586 0.942 67.500 0.098 0.005 0.399
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.280
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.825
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; k, σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 14. Fit results of the log-normal distribution for the 5K resolution dataset.

Thr µ σ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.581
+0.7 1.154 0.484 1.484 57.000 0.043 0.178 0.396
+0.6 1.840 0.940 1.967 161.500 0.043 0.268 0.430
+0.5 3.065 0.762 7.883 228.500 0.032 0.842 0.289
+0.4 3.501 0.575 27.431 547.000 0.031 0.462 0.273
+0.3 4.234 0.539 47.040 617.000 0.026 0.477 0.238
+0.2 5.526 0.302 197.403 641.000 0.024 0.628 0.172
+0.1 5.854 0.226 258.005 442.500 0.021 0.660 0.089
+0.0 3.774 0.530 29.803 2801.000 0.011 0.838 0.556
−0.0 3.774 0.530 29.803 2801.000 0.011 0.808 0.556
−0.1 2.074 0.948 6.704 634.500 0.026 0.710 0.139
−0.2 0.469 1.080 0.934 615.000 0.041 0.298 0.487
−0.3 -1.652 1.487 0.350 115.000 0.123 0.002 0.657
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.518
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 -0.010
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; µ , σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 15. Fit results of the Weibull distribution for the 5K resolution dataset.

Thr b a xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.773
+0.7 0.926 4.464 0.712 85.000 0.068 0.000 0.788
+0.6 1.085 8.981 0.646 244.000 0.084 0.000 0.693
+0.5 0.926 16.819 0.563 554.000 0.074 0.000 0.769
+0.4 0.835 34.284 0.656 1071.000 0.064 0.026 0.823
+0.3 0.818 50.100 0.782 1746.000 0.052 0.000 0.763
+0.2 1.062 117.434 5.490 2610.000 0.043 0.000 0.698
+0.1 1.526 216.007 21.726 3822.000 0.038 0.000 0.763
+0.0 1.974 56.210 14.462 5009.500 0.107 0.000 1.000
−0.0 1.974 56.210 14.462 5009.500 0.107 0.000 1.000
−0.1 0.700 5.459 0.110 4193.000 0.094 1.000 0.915
−0.2 0.782 2.817 0.230 680.500 0.141 0.997 0.781
−0.3 0.824 1.666 0.338 104.500 0.203 0.004 0.718
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.550
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.492
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 16. Fit results of the power law with exponential cutoff distribution for the 5K resolution dataset.

Thr α λ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.673
+0.7 0.100 0.046 1.122 60.500 0.040 0.155 0.466
+0.6 0.583 0.065 1.883 193.000 0.056 0.300 0.621
+0.5 0.484 0.037 3.328 541.500 0.030 0.590 0.551
+0.4 0.592 0.016 1.898 1117.000 0.022 0.390 0.671
+0.3 0.314 0.010 3.231 1833.500 0.024 0.120 0.704
+0.2 0.188 0.007 3.829 2778.000 0.035 0.015 0.722
+0.1 0.016 0.006 3.789 4263.500 0.067 0.015 0.853
+0.0 0.748 0.026 23.766 3764.500 0.041 0.185 0.748
−0.0 0.748 0.026 23.766 3764.500 0.041 0.185 0.748
−0.1 1.475 0.026 4.251 1593.000 0.019 0.470 0.340
−0.2 1.837 0.029 1.810 517.000 0.043 0.070 0.272
−0.3 2.022 0.000 0.836 80.000 0.098 0.000 0.353
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.473
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.946
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 17. Fit results of the exponential distribution for the 10K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.0 0.000 0.0000 0.714
+0.7 0.162 1.186 83.5 0.056 0.3125 0.500
+0.6 0.089 3.887 130.5 0.058 0.4840 0.306
+0.5 0.038 15.544 175.5 0.050 0.6170 0.187
+0.4 0.020 23.051 440.5 0.037 0.7305 0.160
+0.3 0.012 44.067 805.0 0.030 0.3305 0.167
+0.2 0.008 44.049 1552.5 0.024 0.0895 0.205
+0.1 0.006 25.520 4350.5 0.031 0.0015 0.433
+0.0 0.007 545.110 1597.0 0.037 0.0290 0.159
−0.0 0.021 123.255 1678.0 0.021 0.0485 0.168
−0.1 0.023 53.151 141.0 0.072 0.1835 0.014
−0.2 0.095 7.104 123.0 0.170 0.0170 0.105
−0.3 0.348 0.330 95.5 0.224 0.0000 0.534
−0.4 0.000 0.000 0.0 0.000 0.0000 0.876
−0.5 0.000 0.000 0.0 0.000 0.0000 0.881
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510

All data are expressed as median values. Legend: Thr, R threshold; λ model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 18. Fit results of the power law distribution for the 10K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 0.000 0.000 0.0 0.000 0.0000 0.655
+0.7 2.257 1.427 83.0 0.120 0.0005 0.437
+0.6 2.324 4.387 94.5 0.099 0.0070 0.336
+0.5 2.765 21.077 201.0 0.085 0.0275 0.141
+0.4 2.946 48.800 300.0 0.079 0.0020 0.099
+0.3 3.711 180.624 224.0 0.079 0.0650 0.045
+0.2 5.541 360.395 281.5 0.079 0.0060 0.036
+0.1 8.615 745.120 208.0 0.0666 0.1490 0.021
+0.0 12.594 931.660 246.5 0.059 0.1810 0.025
−0.0 5.303 142.645 1249.0 0.021 0.5085 0.124
−0.1 2.402 11.896 2352.5 0.044 0.0000 0.236
−0.2 2.417 3.349 521.5 0.052 0.0030 0.277
−0.3 2.367 1.089 118.5 0.088 0.0105 0.319
−0.4 0.000 0.000 0.0 0.000 0.0000 0.332
−0.5 0.000 0.000 0.0 0.000 0.0000 0.399
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510

All data are expressed as median values. Legend: Thr, R threshold; α model parameter; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 19. Fit results of the generalized Pareto distribution for the 10K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.0 0.000 0.0000 0.696
+0.7 0.000 3.663 1.539 58.5 0.049 0.1315 0.531
+0.6 0.118 11.094 2.943 172.5 0.048 0.3305 0.440
+0.5 0.031 28.656 20.072 338.5 0.034 0.7380 0.229
+0.4 0.001 62.035 34.191 372.5 0.027 0.6155 0.174
+0.3 -0.128 102.619 85.215 638.5 0.021 0.7975 0.176
+0.2 -0.178 152.365 136.945 938.5 0.014 0.8275 0.135
+0.1 -0.226 241.640 201.475 2387.0 0.010 0.7555 0.238
+0.0 -0.224 218.500 380.050 4681.5 0.009 0.6750 0.467
−0.0 0.182 32.619 127.480 1195.5 0.012 0.8425 0.119
−0.1 0.426 12.883 9.690 1469.0 0.020 0.1725 0.149
−0.2 0.439 2.549 0.763 820.5 0.030 0.1890 0.457
−0.3 0.433 0.996 0.649 101.5 0.062 0.0105 0.405
−0.4 0.000 0.000 0.000 0.0 0.000 0.0000 0.253
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 1.000
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 1.000

All data are expressed as median values. Legend: Thr, R threshold; k, σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 20. Fit results of the log-normal distribution for the 10K resolution dataset.

Thr µ σ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.639
+0.7 0.618 0.599 1.141 58.000 0.039 0.103 0.466
+0.6 1.804 0.958 2.589 110.500 0.040 0.187 0.381
+0.5 3.363 0.794 15.168 246.500 0.033 0.702 0.223
+0.4 3.452 0.799 24.044 543.500 0.027 0.488 0.186
+0.3 4.809 0.535 72.627 525.000 0.023 0.463 0.114
+0.2 5.754 0.434 209.015 759.500 0.023 0.395 0.100
+0.1 6.143 0.299 418.120 852.000 0.019 0.645 0.085
+0.0 6.299 0.236 472.295 1684.500 0.015 0.315 0.168
−0.0 4.298 0.588 81.662 4837.000 0.010 0.350 0.482
−0.1 2.176 1.198 7.106 1764.000 0.019 0.360 0.180
−0.2 0.486 1.317 0.610 879.000 0.034 0.017 0.599
−0.3 -0.243 1.237 0.543 106.000 0.072 0.005 0.592
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.825
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.607
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; µ , σ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 21. Fit results of the Weibull distribution for the 10K resolution dataset.

Thr b a xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.732
+0.7 1.130 4.758 0.746 100.500 0.095 0.000 0.759
+0.6 1.088 8.477 0.698 296.500 0.091 0.000 0.556
+0.5 0.874 14.914 0.654 794.000 0.087 0.000 0.611
+0.4 0.822 41.623 1.122 1480.000 0.082 0.001 0.608
+0.3 0.810 57.835 1.388 2546.500 0.071 0.000 0.536
+0.2 0.795 74.564 1.683 4226.000 0.055 0.000 0.555
+0.1 1.020 202.123 7.832 7336.000 0.045 0.000 0.731
+0.0 2.058 425.071 40.358 10022.500 0.032 0.000 1.000
−0.0 2.022 111.971 35.387 10022.500 0.133 0.000 1.000
−0.1 0.640 4.837 0.100 9843.500 0.102 1.000 1.000
−0.2 0.726 3.937 0.228 1396.500 0.131 1.000 0.781
−0.3 0.801 2.341 0.331 140.500 0.194 0.612 0.703
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.685
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.619
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.510

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 22. Fit results of the power law with exponential cutoff distribution for the 10K resolution dataset.

Thr α λ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.714
+0.7 0.520 0.039 1.125 77.000 0.048 0.160 0.597
+0.6 0.719 0.070 1.927 184.500 0.037 0.360 0.421
+0.5 0.747 0.028 2.208 302.000 0.029 0.795 0.358
+0.4 0.805 0.013 1.940 1098.500 0.019 0.590 0.421
+0.3 0.595 0.008 4.171 1933.000 0.017 0.155 0.429
+0.2 0.003 0.005 40.707 2980.500 0.018 0.035 0.374
+0.1 0.003 0.007 35.191 4913.000 0.029 0.000 0.488
+0.0 0.001 0.007 541.945 1388.000 0.034 0.065 0.138
−0.0 1.822 0.002 98.425 2461.000 0.012 0.690 0.245
−0.1 1.255 0.013 9.618 2055.500 0.016 0.350 0.207
−0.2 1.404 0.013 1.445 520.000 0.034 0.530 0.329
−0.3 2.203 0.000 1.300 92.000 0.074 0.000 0.319
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.332
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.590
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.510

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 23. Fit results of the exponential distribution for the 20K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 0.067 0.402 25.500 0.043 0.000 0.537
+0.7 0.320 1.181 109.000 0.089 0.066 0.330
+0.6 0.091 4.105 113.500 0.062 0.312 0.216
+0.5 0.037 15.185 239.500 0.048 0.471 0.101
+0.4 0.021 54.464 327.500 0.045 0.418 0.070
+0.3 0.010 70.877 898.500 0.032 0.294 0.090
+0.2 0.006 93.748 1778.000 0.020 0.298 0.109
+0.1 0.004 115.855 4516.500 0.020 0.020 0.225
+0.0 0.004 518.180 8893.500 0.028 0.003 0.443
−0.0 0.014 228.770 6877.500 0.019 0.001 0.343
−0.1 0.021 52.362 333.000 0.093 0.000 0.017
−0.2 0.052 14.021 92.000 0.141 0.026 0.038
−0.3 0.261 1.009 61.500 0.266 0.000 0.396
−0.4 0.144 0.200 27.500 0.142 0.000 0.739
−0.5 0.000 0.000 0.000 0.000 0.000 0.738
−0.6 0.000 0.000 0.000 0.000 0.000 0.653

Table 24. Fit results of the power law distribution for the 20K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 0.927 0.402 25.500 0.056 0.000 0.568
+0.7 2.875 2.463 71.000 0.136 0.009 0.325
+0.6 2.712 10.254 90.500 0.093 0.104 0.126
+0.5 2.133 1.637 272.000 0.073 0.010 0.199
+0.4 2.318 46.160 833.000 0.062 0.000 0.156
+0.3 3.359 170.924 392.000 0.070 0.000 0.037
+0.2 4.275 439.870 432.500 0.062 0.001 0.025
+0.1 6.308 908.020 467.000 0.066 0.013 0.023
+0.0 9.823 1170.700 492.000 0.057 0.005 0.025
−0.0 6.299 300.355 1437.500 0.016 0.798 0.072
−0.1 2.344 19.710 4518.000 0.032 0.000 0.226
−0.2 2.226 3.464 1502.500 0.056 0.000 0.239
−0.3 2.313 1.026 199.500 0.079 0.001 0.357
−0.4 1.141 0.200 74.500 0.020 0.000 0.315
−0.5 0.000 0.000 0.000 0.000 0.000 0.482
−0.6 0.000 0.000 0.0 0.000 0.0000 0.672

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 25. Fit results of generalized Pareto distribution for the 20K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.000 0.023 0.400 25.500 0.027 0.000 0.448
+0.7 0.589 1.285 1.839 136.500 0.072 0.208 0.693
+0.6 0.002 11.055 4.328 180.500 0.042 0.634 0.182
+0.5 0.051 24.567 17.856 268.000 0.036 0.647 0.103
+0.4 0.121 60.904 29.183 519.500 0.026 0.439 0.123
+0.3 -0.106 130.720 161.190 692.000 0.023 0.650 0.066
+0.2 -0.109 212.785 231.480 1216.000 0.015 0.764 0.079
+0.1 -0.171 316.070 303.185 2260.500 0.011 0.784 0.113
+0.0 -0.167 317.320 557.405 5312.000 0.008 0.572 0.265
−0.0 0.125 55.521 270.430 3026.500 0.010 0.560 0.151
−0.1 0.527 12.322 3.984 6471.500 0.017 0.176 0.322
−0.2 0.525 3.316 0.785 1180.500 0.028 0.126 0.356
−0.3 0.580 1.452 0.880 162.000 0.056 0.010 0.491
−0.4 0.333 0.013 0.201 45.000 0.019 0.000 0.126
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 0.293
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 0.992

All data are expressed as median values. Legend: Thr, R threshold; k, σ , µ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 26. Fit results of the log-normal distribution for the 20K resolution dataset.

Thr µ σ xmin TL KS p-value TLr
+0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.327
+0.7 0.474 0.988 1.172 64.000 0.040 0.088 0.240
+0.6 2.321 0.855 6.410 102.000 0.045 0.752 0.127
+0.5 3.049 0.922 10.177 249.500 0.037 0.573 0.102
+0.4 4.115 0.799 38.797 556.500 0.024 0.513 0.111
+0.3 4.091 0.711 43.011 545.000 0.025 0.668 0.062
+0.2 5.272 0.609 175.675 1064.000 0.021 0.315 0.067
+0.1 6.281 0.401 469.260 1470.500 0.017 0.283 0.073
+0.0 6.297 0.425 365.665 14367.500 0.011 0.018 0.714
−0.0 4.486 0.672 235.485 6114.000 0.010 0.383 0.305
−0.1 2.024 1.318 5.743 5080.000 0.017 0.312 0.254
−0.2 1.066 1.331 0.802 906.000 0.030 0.528 0.330
−0.3 -0.599 1.394 0.867 131.000 0.059 0.000 0.499
−0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.424
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.556
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 -

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 27. Fit results of the Weibull distribution for the 20K resolution dataset.

Thr β λ xmin TL KS p-value TLr
+0.8 0.567 0.938 0.402 25.500 0.036 0.000 0.648
+0.7 1.335 4.353 0.803 123.000 0.133 0.000 0.500
+0.6 1.258 13.004 1.439 183.000 0.110 0.000 0.247
+0.5 1.175 29.107 2.448 713.500 0.090 0.000 0.271
+0.4 0.993 58.500 2.273 1442.500 0.085 0.000 0.272
+0.3 0.878 86.394 2.574 2813.000 0.090 0.000 0.285
+0.2 0.768 69.888 2.397 6495.000 0.076 0.000 0.391
+0.1 0.697 145.778 2.101 18273.000 0.059 0.500 0.912
+0.0 2.049 631.567 100.867 20080.000 0.050 0.000 1.000
−0.0 2.824 241.419 101.626 20041.000 0.138 0.000 1.000
−0.1 0.657 6.909 0.100 20054.500 0.128 1.000 1.000
−0.2 0.925 5.265 0.687 683.000 0.131 0.004 0.342
−0.3 0.927 5.048 1.197 60.000 0.163 0.000 0.254
−0.4 0.360 0.602 0.217 25.500 0.107 0.000 0.638
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.471
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.622

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 28. Fit results of the power law with exponential cutoff distribution for the 20K resolution dataset.

Thr α λ xmin TL KS p-value TLr
+0.8 0.150 0.046 0.402 25.500 0.039 0.000 0.489
+0.7 1.767 0.058 1.481 98.500 0.128 0.130 0.443
+0.6 0.719 0.052 2.239 181.000 0.045 0.365 0.274
+0.5 0.836 0.024 2.505 612.000 0.035 0.450 0.358
+0.4 0.887 0.009 1.848 2509.000 0.019 0.190 0.331
+0.3 0.807 0.005 3.518 2792.000 0.015 0.060 0.293
+0.2 0.673 0.003 5.534 4697.000 0.013 0.020 0.295
+0.1 0.105 0.003 76.096 8323.000 0.013 0.020 0.415
+0.0 0.001 0.004 624.430 9088.000 0.021 0.005 0.452
−0.0 2.487 0.002 223.250 5195.000 0.010 0.590 0.259
−0.1 1.275 0.013 4.567 4362.500 0.012 0.720 0.218
−0.2 1.780 0.008 3.296 701.000 0.032 0.475 0.236
−0.3 2.198 0.000 1.139 164.500 0.073 0.000 0.375
−0.4 1.141 0.000 0.200 72.500 0.020 0.000 0.315
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.482
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.672

All data are expressed as median values. Legend: Thr, R threshold; b, a model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 29. Fit results of the exponential distribution for the 50K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 1.315 1.688 73.000 0.138 0.018 0.130
+0.7 0.286 3.456 144.000 0.087 0.227 0.052
+0.6 0.083 9.730 216.500 0.047 0.508 0.030
+0.5 0.031 26.037 272.000 0.046 0.289 0.015
+0.4 0.014 49.906 485.500 0.042 0.036 0.015
+0.3 0.007 116.039 1000.000 0.029 0.303 0.025
+0.2 0.004 240.325 2055.500 0.019 0.152 0.043
+0.1 0.002 378.170 6877.500 0.017 0.065 0.137
+0.0 0.002 1094.400 22287.500 0.012 0.007 0.445
−0.0 0.007 584.605 11996.000 0.017 0.001 0.240
−0.1 0.010 125.965 512.000 0.104 0.000 0.010
−0.2 0.027 32.981 118.000 0.112 0.003 0.012
−0.3 0.136 3.263 67.500 0.195 0.001 0.091
−0.4 0.218 0.416 51.000 0.261 0.000 0.702
−0.5 0.000 0.000 0.000 0.000 0.000 0.700
−0.6 0.000 0.000 0.000 0.000 0.000 0.516

Table 30. Fit results of the power law distribution for the 50K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 4.878 1.662 100.000 0.143 0.002 0.141
+0.7 3.455 1.608 265.500 0.089 0.002 0.153
+0.6 2.340 1.832 732.000 0.066 0.024 0.080
+0.5 2.888 2.623 516.500 0.066 0.001 0.038
+0.4 2.649 2.156 4458.500 0.068 0.000 0.140
+0.3 2.287 0.706 24476.500 0.063 0.000 0.594
+0.2 1.636 1.643 23799.000 0.063 0.000 0.496
+0.1 5.519 1340.500 959.000 0.069 0.000 0.019
+0.0 5.926 1649.000 8378.500 0.052 0.000 0.168
−0.0 7.738 851.895 3342.000 0.012 0.797 0.067
−0.1 2.382 25.005 12457.000 0.024 0.000 0.248
−0.2 2.259 8.079 2045.500 0.041 0.000 0.157
−0.3 2.306 1.322 470.000 0.057 0.018 0.218
−0.4 2.446 0.697 59.500 0.082 0.001 0.345
−0.5 0.000 0.000 0.000 0.000 0.000 0.307
−0.6 0.000 0.000 0.0 0.000 0.0000 0.344

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 31. Fit results of the generalized Pareto distribution for the 50K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.472 0.084 1.691 84.000 0.089 0.066 0.131
+0.7 0.311 2.282 3.004 279.000 0.057 0.147 0.106
+0.6 0.146 8.489 6.110 279.000 0.033 0.571 0.049
+0.5 0.270 29.789 15.580 726.000 0.026 0.614 0.039
+0.4 0.513 35.703 23.940 2313.500 0.020 0.191 0.074
+0.3 -0.010 128.614 117.816 1102.500 0.022 0.347 0.028
+0.2 -0.093 308.690 336.890 1845.500 0.019 0.347 0.039
+0.1 -0.168 536.680 884.885 2566.500 0.014 0.512 0.051
+0.0 -0.059 515.560 845.705 26921.000 0.008 0.001 0.537
−0.0 0.159 133.645 684.440 6367.000 0.007 0.378 0.127
−0.1 0.594 26.092 12.098 19056.000 0.012 0.000 0.380
−0.2 0.634 4.589 1.430 2449.000 0.019 0.224 0.295
−0.3 0.596 2.443 0.935 434.000 0.033 0.011 0.328
−0.4 0.692 0.091 0.410 137.500 0.066 0.000 0.718
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 0.243
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 0.637

All data are expressed as median values. Legend: Thr, R threshold; k, σ , µ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 32. Fit results of the log-normal distribution for the 50K resolution dataset.

Thr µ σ xmin TL KS p-value TLr
+0.8 0.589 0.626 1.701 75.000 0.169 0.007 0.126
+0.7 1.242 1.169 2.679 161.500 0.067 0.112 0.061
+0.6 2.418 0.926 7.344 262.000 0.038 0.400 0.035
+0.5 2.886 0.849 6.419 329.500 0.032 0.510 0.019
+0.4 3.655 0.900 25.373 827.500 0.026 0.342 0.026
+0.3 4.561 0.843 72.916 1370.500 0.022 0.050 0.034
+0.2 5.570 0.586 229.450 1828.000 0.019 0.030 0.039
+0.1 6.854 0.405 957.705 2240.500 0.016 0.147 0.045
+0.0 6.768 0.493 729.410 28046.000 0.007 0.003 0.559
−0.0 6.027 0.418 456.595 34350.000 0.008 0.007 0.687
−0.1 2.334 1.345 12.872 5050.500 0.012 0.112 0.101
−0.2 1.050 1.538 1.103 2108.500 0.021 0.250 0.260
−0.3 -0.458 1.478 0.741 413.500 0.042 0.012 0.416
−0.4 0.000 0.561 0.220 96.000 0.024 0.000 0.368
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.625
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.559

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 33. Fit results of the Weibull distribution for the 50K resolution dataset.

Thr b a xmin TL KS p-value TLr
+0.8 2.545 2.808 1.340 94.500 0.182 0.000 0.195
+0.7 2.102 6.799 3.095 163.000 0.118 0.000 0.086
+0.6 1.443 20.377 5.479 754.000 0.133 0.000 0.082
+0.5 1.599 42.253 5.893 233.000 0.112 0.000 0.015
+0.4 1.066 64.165 6.527 1801.500 0.110 0.000 0.056
+0.3 0.869 91.490 6.296 4791.000 0.109 0.000 0.116
+0.2 0.780 143.668 6.806 11589.500 0.107 0.000 0.240
+0.1 0.780 158.921 16.408 34078.000 0.095 0.000 0.679
+0.0 2.362 1185.807 301.736 50112.500 0.082 0.000 1.000
−0.0 3.281 596.815 298.105 50052.000 0.149 0.000 1.000
−0.1 0.722 12.127 0.324 50100.000 0.173 1.000 1.000
−0.2 1.006 20.542 4.651 641.000 0.141 0.000 0.118
−0.3 0.973 17.591 3.652 73.500 0.158 0.000 0.058
−0.4 0.812 1.596 0.444 51.000 0.210 0.000 0.569
−0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.559
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.518

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 34. Fit results of the exponential distribution for the 80K resolution dataset.

Thr λ xmin TL KS p-value TLr
+0.8 0.723 2.424 80.500 0.149 0.034 0.052
+0.7 0.225 4.907 192.500 0.065 0.269 0.038
+0.6 0.079 10.428 436.000 0.038 0.338 0.029
+0.5 0.033 28.607 909.000 0.060 0.021 0.022
+0.4 0.013 65.146 804.500 0.047 0.007 0.016
+0.3 0.006 134.157 1262.500 0.031 0.034 0.018
+0.2 0.003 345.358 2190.500 0.019 0.150 0.029
+0.1 0.002 513.945 7653.000 0.017 0.017 0.092
+0.0 0.005 933.312 19524.500 0.015 0.000 0.256
−0.0 0.005 933.312 19524.500 0.015 0.000 0.256
−0.1 0.009 139.661 902.500 0.099 0.000 0.011
−0.2 0.024 29.743 269.500 0.159 0.000 0.017
−0.3 0.071 7.720 81.500 0.153 0.009 0.051
−0.4 0.346 0.472 55.000 0.270 0.000 0.569
−0.5 0.024 0.259 25.500 0.107 0.000 0.630
−0.6 0.000 0.000 0.000 0.000 0.000 0.505
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Table 35. Fit results of the power law distribution for the 80K resolution dataset.

Thr α xmin TL KS p-value TLr
+0.8 3.867 2.464 72.500 0.149 0.003 0.053
+0.7 2.838 2.187 345.000 0.067 0.010 0.058
+0.6 3.056 2.143 1244.000 0.056 0.002 0.075
+0.5 2.413 2.441 3677.000 0.065 0.000 0.102
+0.4 2.741 2.134 12172.000 0.056 0.000 0.190
+0.3 2.525 2.746 21472.000 0.063 0.000 0.292
+0.2 1.717 4.314 11952.500 0.065 0.000 0.151
+0.1 2.707 694.927 37578.500 0.059 0.000 0.468
+0.0 8.273 1258.367 5745.500 0.011 0.362 0.075
−0.0 8.273 1258.367 5745.500 0.011 0.354 0.075
−0.1 2.312 19.290 13168.500 0.023 0.000 0.170
−0.2 2.237 11.680 2844.000 0.035 0.000 0.132
−0.3 2.240 2.666 681.000 0.054 0.042 0.223
−0.4 2.375 1.107 111.000 0.107 0.000 0.315
−0.5 1.068 0.266 25.500 0.019 0.000 0.293
−0.6 0.000 0.000 0.000 0.000 0.000 0.410

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 36. Fit results of the generalized Pareto distribution for the 80K resolution dataset.

Thr k σ xmin TL KS p-value TLr
+0.8 0.698 0.163 2.107 130.000 0.096 0.004 0.118
+0.7 0.297 2.578 3.675 190.500 0.044 0.185 0.042
+0.6 0.119 7.267 6.109 570.000 0.025 0.532 0.031
+0.5 0.306 18.800 14.445 961.000 0.019 0.335 0.030
+0.4 0.303 48.210 33.473 1800.000 0.021 0.120 0.034
+0.3 0.154 106.347 60.200 2383.500 0.022 0.195 0.035
+0.2 -0.075 363.671 468.904 1734.500 0.018 0.400 0.022
+0.1 -0.144 655.662 1432.557 2416.500 0.010 0.767 0.031
+0.0 0.187 179.022 1139.975 5933.000 0.009 0.147 0.080
−0.0 0.187 179.022 1139.975 5933.000 0.009 0.140 0.080
−0.1 0.590 39.240 23.752 23584.000 0.011 0.000 0.289
−0.2 0.664 6.544 3.499 2992.500 0.016 0.253 0.211
−0.3 0.663 2.680 1.164 389.000 0.030 0.292 0.312
−0.4 0.707 0.747 0.858 86.500 0.059 0.003 0.464
−0.5 0.232 0.025 0.250 33.000 0.018 0.000 0.257
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.564
−0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.773

All data are expressed as median values. Legend: Thr, R threshold; k, σ , µ model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.
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Table 37. Fit results of the Weibull distribution for the 80K resolution dataset.

Thr b a xmin TL KS p-value TLr
+0.8 2.354 3.535 1.841 100.000 0.168 0.000 0.087
+0.7 1.950 9.263 3.790 204.000 0.142 0.000 0.047
+0.6 1.396 20.110 5.254 653.500 0.139 0.000 0.044
+0.5 1.125 36.690 6.423 2215.500 0.140 0.000 0.056
+0.4 1.050 86.351 7.985 2232.000 0.122 0.000 0.042
+0.3 0.930 137.916 10.353 5415.500 0.116 0.000 0.077
+0.2 0.808 191.619 9.965 14371.500 0.117 0.000 0.186
+0.1 0.781 322.665 27.748 46635.000 0.118 0.000 0.645
+0.0 3.715 960.365 529.864 76752.500 0.153 0.000 1.000
−0.0 3.715 960.365 529.864 76752.500 0.153 0.000 1.000
−0.1 0.885 35.413 1.006 70190.000 0.187 0.396 1.000
−0.2 0.704 9.017 0.579 6616.500 0.150 0.801 0.447
−0.3 0.982 17.408 5.343 98.000 0.151 0.000 0.051
−0.4 0.909 2.253 0.455 51.500 0.205 0.000 0.479
−0.5 0.357 0.797 0.258 25.500 0.087 0.001 0.562
−0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.550

All data are expressed as median values. Legend: Thr, R threshold; λ , α model parameters; xmin , lower bound for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model; TLr , proportion of
non-zero nodes in the tail.

Table 38. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 1K dataset. We show the percentage of times a power law model (MPL), the alternative model (MAlt )
or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 22.078 (17/77) 40.260 (31/77) 37.662 (29/77)
Truncated PL 83.333 (55/66) 6.061 (4/66) 10.606 (7/66)
Log normal 3.261 (3/92) 41.304 (38/92) 55.435 (51/92)
Weibull 93.939 (62/66) 6.061 (4/66) 0.000 (0/66)
Generalized Pareto 4.040 (4/99) 45.455 (45/99) 50.505 (50/99)

Table 39. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 5K dataset. We show the percentage of times a power law model (MPL), the alternative model (MAlt )
or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 25.806 (24/93) 51.613 (48/93) 22.581 (21/93)
Truncated PL 69.014 (49/71) 19.718 (14/71) 11.268 (8/71)
Log normal 9.091 (9/99) 50.505 (50/99) 40.404 (40/99)
Weibull 81.690 (58/71) 18.310 (13/71) 0.000 (0/71)
Generalized Pareto 7.767 (8/103) 51.456 (53/103) 40.777 (42/103)

Table 40. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 10K dataset. We show the percentage of times a power law model (MPL), the alternative model
(MAlt ) or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 29.070 (25/86) 58.140 (50/86) 12.791 (11/86)
Truncated PL 49.254 (33/67) 34.328 (23/67) 16.418 (11/67)
Log normal 9.574 (9/94) 61.702 (58/94) 28.723 (27/94)
Weibull 52.239 (35/67) 34.328 (23/67) 13.433 (9/67)
Generalized Pareto 2.970 (3/101) 64.356 (65/101) 32.673 (33/101)
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Table 41. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 20K dataset. We show the percentage of times a power law model (MPL), the alternative model
(MAlt ) or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 30.000 (24/80) 61.250 (49/80) 8.750 (7/80)
Truncated PL 50.000 (27/54) 35.185 (19/54) 14.815 (8/54)
Log normal 9.639 (8/83) 62.651 (52/83) 27.711 (23/83)
Weibull 57.407 (31/54) 35.185 (19/54) 7.407 (4/54)
Generalized Pareto 6.0 (6/100) 72.0 (72/100) 22.0 (22/100)

Table 42. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 50K dataset. We show the percentage of times a power law model (MPL), the alternative model
(MAlt ) or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 25.714 (18/70) 68.571 (48/70) 5.714 (4/70)
Log normal 13.235 (9/68) 67.647 (46/68) 19.188 (13/68)
Weibull 51.163 (22/43) 44.186 (19/43) 4.651 (2/43)
Generalized Pareto 6.024 (5/83) 72.289 (60/83) 21.687 (18/83)

Table 43. Likelihood ratio test results from comparing the best fit for alternative distributions with the best fit power
law distribution for the 80K dataset. We show the percentage of times a power law model (MPL), the alternative model
(MAlt ) or neither was favored.

Alternative MPL MAlt Inconclusive
Exponential 39.062 (25/64) 54.688 (35/64) 6.250 (4/64)
Weibull 62.500 (30/48) 37.500 (18/48) 0.000 (0/48)
Generalized Pareto 6.977 (6/86) 68.605 (59/86) 24.419 (21/86)
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