
 1

Abstract—Researchers use large federated clinical data

networks that connect dozens of healthcare organizations to access

data on millions of patients. However, because patients often

receive care from multiple sites in the network, queries frequently

double-count patients. Using the probabilistic streaming

algorithm HyperLogLog and adding obfuscation, we developed a

scalable method for estimating the number of distinct lives that

match a query, which balances accuracy and privacy in a

“tunable” way.

Index Terms—algorithms; sketches; medical records;

bioinformatics; privacy

I. INTRODUCTION

idespread adoption of electronic health records has

generated vast amounts of data, which are increasingly

being used in clinical research, epidemiological studies, and

public health applications [Jensen, et al., 2012]. Data from

multiple healthcare organizations are often needed in order to

increase statistical power or to access diverse patient

populations and geographic regions. However, HIPAA and

other patient privacy laws generally prevent data from different

sites from being combined into a central repository for analysis.

Therefore, several federated clinical data research networks

have been developed that broadcast queries to multiple sites,

run analyses locally, and then combine the results. Two of the

largest in the United States are the PCORNet network for

patient-centered outcomes research [Fleurence 2014] and the

NIH-funded Accrual for Clinical Trials (ACT) network [Weber

2009, McMurry 2013, Visweswaran 2018], both of which

connect dozens of healthcare organizations across the country

and include health data on nearly 100 million Americans.

 Because patients often receive care at more than one

clinical site, the data for a patient at any one site might not be

complete, and the same information about a patient might be

duplicated at different sites. This can lead to queries returning

incorrect results. A similar situation arises when patients’ data

are intentionally separated for technical reasons, such as when

large amounts clinical data (e.g., diagnoses and medications)

and genomic data are stored in different locations, and it is not

feasible to merge them into a single database. In both cases,

computation must be performed in a distributed fashion, but the

Y. W. Yu is with the Department of Mathematics, University of Toronto,

ON, Canada M5S 2E4 and the Department of Computer and Mathematical
Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4.

E-mail: ywyu@math.toronto.edu

challenge is that an individual patient’s data may be spread

across multiple databases.

Various methods to addressing this problem have been

described in the literature, but they have different tradeoffs in

terms of accuracy, privacy, scalability and computational

complexity. We group these into three broad categories

(aggregate counts, hashed patient identifiers, and privacy-

guaranteed methods) and introduce a new, better balanced

approach. To compare these methods, we developed a

generalizable benchmarking framework and software that

simulates queries of large federated data networks.

Aggregate counts. Federated queries in PCORNet and ACT

ask sites to return the number of patients in their local databases

who match some set of criteria, such as having both

hypertension and diabetes. The networks present the user with

the aggregate count from each site; and, no attempt is made to

link patients across sites or de-duplicate records. This can lead

to large overestimates of the number of distinct patients who

match a query if the counts from each site are naively summed

[Weber 2013]. To protect patient privacy, the networks mask

small counts by displaying “<10 patients”. However, the results

from multiple queries can be combined to reveal information

about individual patients (see Methods for details). Sites

participating in these networks are aware of this privacy risk,

which they mitigate through institutional agreements that

require sites to audit researchers’ queries and monitor their use

of the network.

Hashed Patient Identifiers. The most accurate and semi-

secure way to de-duplicate the results in a federated query is for

each site to return the full list of patients who match the query.

Privacy is the main concern since data on every patient

matching the query (potentially many millions of people) must

be shared. Patient identifiers (e.g., name and date of birth) are

typically encrypted using a one-way hash function, such as

SHA-1 [Eastlake 2001]. The same patient at two sites will be

hashed to the same value if the same hash function is used (and

there are no inconsistencies in the underlying demographic

data). Unfortunately, hash functions are vulnerable to

“dictionary attacks”, where an adversary who knows the

encryption method can simply generate a “rainbow table” of the

hashes of every possible patient identifier (e.g., all 9-digit social

security numbers) and then use this to re-identify the list of hash

G. M. Weber is with the Department of Biomedical Informatics, Harvard

Medical School, Boston, MA, USA 02115.
Email: weber@hms.harvard.edu

Federated queries of clinical data repositories:

balancing accuracy and privacy

Yun William Yu, PhD and Griffin M Weber, MD, PhD

W

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

mailto:ywyu@math.toronto.edu
mailto:weber@hms.harvard.edu
https://doi.org/10.1101/841072

 2

values returned by a site [Oechslin 2003].

Privacy-guaranteed methods. Secure multi-party

computation (MPC) and homomorphic encryption techniques

enable true privacy guarantees in a federated network (see

Methods), and have recently been introduced for distributed

genome-wide association studies [Cho, 2018] and

pharmacological collaboration [Hie & Cho, 2018]. The

limitation of these algorithms is computational complexity.

Protocols that securely determine the number of shared patients

between two sites [Kolesnikov 2017, de Cristofaro 2012,

Weber 2013, Swamidass 2015] are impractical for large

networks since the number of pairwise and multi-way

comparisons grows exponentially with the number of sites.

Other approaches that avoid exponential comparison either

require sharing gigabytes of data [Fenske 2017], making

numerous rounds of back-and-forth communication [Dong

2017], or using trusted 3rd parties [Yigzaw 2017]. These are also

problematic because, as we have previously shown [Weber

2015], large federated clinical data networks are fragile, with

multiple sites typically failing to respond even to aggregate

count queries.

II. RESULTS

In this paper we propose a new method based on the

HyperLogLog (HLL) probabilistic sketching algorithm

[Flajolet 2007]. Although HLL is widely used in many

applications, such as internet search engines, to our knowledge

it has not been applied to federated queries of health data. The

basic idea behind HLL (and other k-minimum value sketches

[Bar-Yossef 2002]) is that the minimum of a collection of

random numbers between 0 and 1 is inversely proportional to

how many numbers are present. For example, a single random

number between 0 and 1 has expected value 0.5, but if we have

99 random numbers, the minimum has expected value 0.01. By

using a hash function that maps patients to a random number

between 0 and 1, we can estimate the number of patients who

match a query by keeping track of just the minimum hash value.

Note that the smallest of these values is also the minimum of all

the patients hashes across all sites. If each site returns its

minimal hash value, we can estimate the number of distinct

patients in the whole network that match the query from the

smallest value. While it may seem unintuitive that the network

minimum hash is the same as the hash for one hospital, which

hospital that minimum hash corresponds to changes when you

use multiple hash functions, allowing the estimator to be

accurate.

HLL improves the accuracy of this method by efficiently

dividing the patients into k partitions and returning the

minimum value of in each partition. HLL also returns the base-

2 order of magnitude of the minimum values rather than the

actual values, which greatly reduces the risk of re-identification

from a dictionary attack. For k partitions, the relative error of

HLL is approximately 1/sqrt(k). For example, asking sites to

share a HLL sketch with only 100 values, the number of distinct

TABLE I

Qualitative comparison of approaches to determining the number of distinct patients in a federated network who match a query.

“Risk-Hub” is the risk to patient privacy if an adversary gains access to only the hub. “Risk-Hub+Site” is the risk if the

adversary also gains access to one of the sites in the network. An asterisk (“*”) means obfuscation does not change the value.

For example, Count and Count+MPC have the same error. “HLL7+MPC” means the value is the same as “HLL7+MPC” without

shuffling. Blue, green, yellow and orange correspond to zero, (very) small, medium, and (very) large, respectively. “(-)” means

the value gets smaller when more patients match a query, and “(+)” means the value gets larger.

Method Obfuscation
Approximation

Error
Runtime

Wait Risk-Hub Risk-Hub+Site

Count None large very small medium(-) medium(-)

Mask large very small zero zero

MPC * medium zero zero

HLL7 None medium small medium(+) medium(+)

Shuffle * * small(+) *

Rehash * medium(+) zero *

Mask medium(+) medium(-) zero zero

MPC * large small(+) small(+)

Shuffle+MPC * HLL7+MPC very small(+) HLL7+MPC

HLL15 None small medium large(+) large(+)

Shuffle * * small(+) *

Rehash * medium(+) zero *

Mask large(+) medium(-) zero zero

HashedIDs None zero medium(+) very large(+) very large(+)

Rehash * * zero *

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 3

patients can be estimated with a 10% relative error. Error can

be reduced by increasing k. Although higher k increases the risk

of re-identification, the risk is quantifiable and predictable,

enabling networks to define policies that maximizes accuracy

while reducing risk to an acceptable level. Using various

obfuscation techniques, such as masking the sketches of certain

sites (HLL+Mask), using different cryptographic “salt” for each

query (HLL+Rehash), and scrambling the order of the values in

the sketch (HLL+Shuffle), we can further reduce risk. Even if

re-identification is possible, then information on only k patients

is revealed, not every patient who matches the query.

To quantitatively measure privacy loss, we use an adapted m-

anonymity model of privacy [Sweeney 2002; El Emam 2008]

(see Methods: Privacy Risk), and run benchmarks for runtime,

accuracy, and privacy-loss on shared hashed identifiers, sharing

aggregate counts, and our proposed HLL approach. Existing

privacy guaranteed methods do not scale well and are infeasible

for running on large datasets, with either extremely high

runtime or error, so we only compare our algorithm

qualitatively to those three.

To do so, we developed software for generating simulated

networks containing up to 100 sites and 100 million distinct

patients and running queries using aggregate counts (Count and

Count+Mask), shared hash values (HashedIDs), secure MPC,

and HLL with and without obfuscation. HLL is implemented

using k=21=2 (HLL1), k=24=16 (HLL4), k=27=128 (HLL7), and

k=215=32,768 (HLL15). We provide all code in GitHub

(https://github.com/yunwilliamyu/secure-distributed-union-

cardinality).

Experimental details and theoretical proofs are provided in

the Methods section, and raw results are furnished in the

Supplement Tables 1-10. Here, Table 1 provides qualitative

summary comparisons of the relative run times, accuracy, and

privacy risk of the different methods. We use an adapted m-

anonymity model of privacy, whereby the privacy risk is

defined to be the number of revealed data points that correspond

to fewer than 10 patients (Methods: Privacy risk score). HLL

with obfuscation is significantly more accurate than aggregate

counts, lower risk than sharing hash values of all matching

patients, and more scalable than privacy guaranteeing

algorithms. Figure 1 illustrates the accuracy-risk tradeoff

between the algorithms quantitatively when each patient’s data

are at two sites on average. Counts and hash values form the

bounds of the graph, forcing networks to make extreme choices

between accuracy and privacy. Variations of HLL fill in the

remaining space, enabling networks to “tune” the method to

achieve a more desirable balance for a given application.

III. DISCUSSION

Here, we have surveyed and benchmarked a range of

methods, exploring the trade-offs in privacy, accuracy, and

speed. We explicitly do not endorse a single one-size-fits-all

method, as different applications and institutions will have

different needs. Indeed, we envision that in practice, queries

will be first run using a fast, private method (such as the

currently standard aggregate counts, perhaps combined with

MPC); given those rough results and the needs of the

researcher, one of the more accurate HLL-based methods can

then be used if more accuracy is desired. In the final stage of

research (e.g. in preparation for a full clinical trial), institutions

can then sign the necessary data use agreements to share raw

identifiable information. We believe that as federated data

networks expand to include more institutions and data types

(clinical, genomic, environmental, etc.), researchers will

increasingly depend on fast, accurate and secure query tools to

get the greatest possible scientific value from the networks.

Fig. 1. Quantitative graphical comparison of the query accuracy / privacy risk trade-off based on simulations of a network with 100 sites and 100 million

patients. HashedIDs and Count bound the graph, while HLL-based methods enable a more balanced approach. (HLL+MPC is only shown for 10 million patients,

and the values for HLL7+MPC and HLL15+MPC are theoretical rather than experimental.) HLL+MPC reduces the HLL risk by 1/s, where s is the number of sites
in the network. HLL+Shuffle reduces the HLL risk by 1/k, where k is the number of values in the HLL sketch.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://github.com/yunwilliamyu/secure-distributed-union-cardinality
https://github.com/yunwilliamyu/secure-distributed-union-cardinality
https://doi.org/10.1101/841072

 4

IV. METHODS

We consider several variants of the base methods (hashed IDs,

aggregate count, secure sharing, and HLL) that further protect

patient privacy. Below, we first describe each algorithm for

querying the network. Then, we define a privacy risk score and

provide details on how we benchmark the algorithms using

simulated hospital networks.

A. Query Method + obfuscation details

Here, we describe in detail the protocols we compared, as well

as several that we did not directly compare against for reasons

that will be explained. The basic model will assume that the

researcher sending the query goes through one of the

participating hospitals in the network, and asks a query of the

form: “how many patients have condition X across the hospital

network?”

1) Count

The query is sent from a hospital to the hub. The hub broadcasts

out that query to each hospital. Each hospital runs the query

locally, producing a count, which is then sent back to the hub.

The hub returns two numbers to the originating hospital: (1) the

maximum count from a hospital and (2) the sum of counts from

all hospitals. The former corresponds to a lower bound on the

result, because even in the event of significant overlapping

patients between hospitals, there are at least as many unique

patients across the network as there are at a single hospital. The

latter summation is obviously an upper bound, though it might

be a substantial overestimate when there is significant overlap

between hospitals.

2) Count + Mask

The procedure is identical to Count, except that if the actual

count of a hospital is between 1 through 9 inclusive, the hospital

returns 10 to the hub instead. This masking procedure ensures

that no non-zero number corresponds to fewer than 10 patients,

ensuring 10-anonymity. Both the PCORNet and ACT networks

use Count + Mask. ACT further obfuscates the result by adding

a small random number between -10 and +10 to the actual count

[Murphy 2002]; though, we ignore this in our analyses.

3) Count + MPC

This protocol is based on the ElGamal cryptosystem [ElGamal

1985] using a distributed private key to ensure that no one party

can decrypt intermediate data, secure in the Honest But Curious

even if all hospitals but one and the hub are compromised. The

major disadvantage is that the MPC requires all hospitals to

respond before any answer can be given. In large networks, it is

likely that some hospitals will either be slow to respond or not

respond at all [Weber 2015], which limits this protocol to only

small networks in practice.

We take advantage of the multiplicatively homomorphic

property of ElGamal encryption, which means that given an

encryption function 𝐸 and decryption function 𝐷, 𝐷(𝐸(𝑎𝑏)) =

𝑎𝑏. It is secure in the semi-honest framework assuming the

difficult of the discrete logarithm problem. The algorithm has

three parts (key generation, encryption, and decryption), which

requires two rounds of communication between the hospitals

and the hub.

Key generation. We use a fixed 1024-bit prime 𝑝 and

appropriate generator 𝑔 as the basis of all our cryptographic

keys (see Supplementary Information: ElGamal constants). All

arithmetic will be performed in that prime field defined by 𝑝

(i.e. will be performed modulus 𝑝).

Given 𝑝 and 𝑔, a private/public keypair consists of a random

number 𝑥 ∈ [2, 𝑝 − 1] as the private key, and 𝑦 = 𝑔𝑥. We wish

to ensure that no one party ever has access to 𝑥, so we use a

distributed key generation protocol. Each hospital 𝑖 generates a

random 𝑥𝑖 and produces the corresponding 𝑦𝑖 = 𝑔𝑥𝑖 , which it

sends to the central hub. The hub then computes 𝑦 = ∏𝑦𝑖. Note

Fig. 2. We classify methods for merging distributed queries into three groups: (1) sending full hashed patient identifiers, (2) sharing aggregate counts, and (3)

generating obfuscated bytestrings that can be merged together. Sending hashedIDs gives an exact answer, but has a high privacy risk as each hash is associated

with an individual patient. Sharing aggregate counts is relatively private, but has a high level of uncertainty and error in the answer. Obfuscated bytestring methods

can range from probabilistic sketches to cryptographically secure MPC. They can provide privacy, but generally at the cost of computational complexity. In this
paper, we provide much faster versions of obfuscated bytestring methods using HyperLogLog as a base.

Hashed patient IDs
cf8fc1ed

6512afec

01ab4f3a

1c4f60ca

1c73d813

.

.

.

28a82b96

Aggregate count
100,000

100,000
patients

100,000
individual
HashedIDs

Secure sharing
0aa52a1eeffb622

b9fb00134f7c71a

ae99c0d54a796a7

4d58d95b927bfd4

73aae99136aa1fe

436b370d51e3c53

f697a348e7ce2db

2e38bd840c1b90e

Obfuscated
bytestring
not easily
connected

to individual
patients

Hospital 1

Hospital 2
HashedIDs
3abc3819

7493c912

…

829f030a

Hospital 3
HashedIDs
a3bc6383

cf8fc1ed

…

7493c912

Hospital 2
Count
80,000

Hospital 3
Count
50,000

Hospital 2
bytestring
1a02ac6d83b

9aaefef7481

9461fda72d8

7caa8708e8c

fc5a20677d4

3b6ffcc522d

Hospital 3
bytestring
38c451ff716

c0c9da2e1af

460e6d544ea

32b9ddbac65

70feababd59

33c359d7332

Count of
patients

Upper bound (sum)
230,000

Lower bound (max)
100,000

Unique HashedIDs
cf8fc1ed

3abc3819

a3bc6383

1c4f60ca

1c73d813

.

.

.

829f030a

Merged bytestrings
ab8337e8ed4a972

c108b0806a52698

c31c2e76f39ea5a

57b0c0358259d52

f9699044dc30417

020623ed419a746

a2f78b9b88db704

2feae002973c48a

168,133
unique

HashedIDs

Estimate
and error

depend on
method

used (MPC,
HLL, etc.)

Estimate
between

100,000 and
230,000

Matching patient SSNs
000-34-6943

000-56-8663

000-93-8645

000-59-1212

000-01-9168

.

.

.

000-88-8668

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 5

that 𝑦 = ∏𝑔𝑥𝑖 = 𝑔∑𝑥𝑖 , so 𝑦 is the public key corresponding to

the private key 𝑥 = ∑𝑥𝑖 , but no hospital actually knows the

summed value 𝑥. The hub returns the public key 𝑦 to each

hospital.

Encryption. The standard ElGamal encryption function

𝐸(𝑚) = (𝑔𝑧 , 𝑚𝑦𝑧), where 𝑧 in a random integer in the field.

Note that ElGamal has the nice property that the same plaintext

message will be encrypted to a many possible encrypted

ciphertexts because of 𝑧. This is essential to defeating

dictionary attacks on the ciphertext. As a technical note, in order

to have provable security, the message 𝑚 must be a quadratic

residue of the field, which we will ensure the in the protocol

described.

Decryption. The standard ElGamal decryption function

𝐷((𝑐1, 𝑐2)) = (𝑐1
𝑥)𝑝−2 ⋅ 𝑐2. Note that we can do a distributed

decryption for a ciphertext by sending each hospital 𝑐1, and

asking the hospitals to return 𝑐1
𝑥𝑖 , which when multiplied

together give 𝑐1
𝑥.

Round 1: encryption and summation. Each hospital runs the

query locally, producing a count 𝑎𝑖, and then sends the value

𝐸(4𝑎𝑖) back to the hub (we use 4𝑎𝑖 because it is a quadratic

residue). The hub computes ∑𝐸(4𝑎𝑖) = 𝐸(4∑𝑎𝑖).

Round 2: decryption. The encrypted sum is decrypted using

the distributed decryption protocol described above, giving

4∑𝑎𝑖 . Of course, performing discrete logarithms is hard (or else

ElGamal encryption would not be secure), but we can

precompute a discrete log table for powers of 4 relatively easily.

Using that lookup table, the hub produces ∑𝑎𝑖 as the final

response for the query.

4) HyperLogLog

Upon receiving the query, a hospital generates a list of patient

IDs that match the query. Each hospital needs to use the same

ID for the same patient. Because there is no universal patient

identifier (UPI), the ID should be based on information likely

to be unique to the patient and available at all hospitals, such as

the concatenation of the patient’s first name, last name, and date

of birth [Grannis 2002]. (See “Supplementary Information:

Generating Patient IDs” for additional details and limitations of

generating a patient ID.)

The hospital runs all of the patient IDs through SHA-1,

producing a 160-bit pseudorandom number. The first 64-bits

are interpreted as an integer 𝐵, and the patient is put into bucket

𝐵 % 𝑘, where 𝑘 is the number of buckets. The hospital then

finds the position 𝑉 of the first bit set to 1 in bits 65-128 of the

SHA1- string. Within each bucket, the hospital stores the largest

value 𝑉 corresponding to a patient. The list of bucket values is

the HLL sketch from that hospital.

The hospitals send those HLL sketches to the central hub.

The hub combines the sketches by taking the maximum within

each bucket across hospital sketches, generating the sketch of

the union. The hub then estimates the cardinality 𝐶 of the union

sketch using the standard HLL estimator [Flajolet, 2007]. The

hub also provides a 95% confidence interval by using the fact

that the standard deviation of the estimate is around
1

√𝑘
, so

𝐶 (1 ±
1.96

√𝑘
) gives the lower and upper bounds of a 95%

confidence interval.

 Note that although we described the full procedure above as

a linear process starting with the receipt of the query, the

hospital can precompute the buckets 𝐵 and values 𝑉 for all of

their patients, reducing the time needed to generate the HLL

sketch for given query.

5) HyperLogLog + Mask

This procedure is identical to HLL, except that the hospital

precomputes a list of bucket values that are less than 10-

anonymous. If after generating the HLL sketch corresponding

to the query, a hospital sees that there is a bucket that is not 10-

anonymous, the hospital aborts and reverts to the count + Mask-

10 algorithm, where only a single (possibly masked) aggregate

count is returned.

 The hub thus receives a combination of sketches and masked

counts. The hub combines together the sketches using the HLL

cardinality estimator to get an estimate of the count of the union

of all the hospitals that sent sketches with appropriate 95% error

bounds. From that, the hub goes through something similar to

the Count-procedure. The hub returns two numbers: the sum of

all raw hospital counts plus the 95% confidence interval

maximum for the HLL union count, which gives an upper

bound, and the maximum of the set of raw counts or the 95%

confidence interval minimum for the HLL union, which gives a

lower bound.

6) HyperLogLog + Shuffle

When a hospital sends a query to the hub, it sends both a query,

and a random string encrypted with public keys of each of the

other hospitals in the network (using any kind of standard off-

the-shelf asymmetric key encryption, as used in protocols like

RSA, HTTPS, etc.). The hub forwards the query to all the

hospitals, plus the encrypted random string, which the hub itself

cannot decrypt. Each hospital then uses an ordinary HLL

sketch, but shuffles the ordering of the buckets using the

random string to determine the sort order, and then sends the

shuffled sketch to the hub.

Because every hospital performs the same permutation, the

sketches can still be combined and the normal estimators used.

However, the hub, without knowing the random string, cannot

know which bucket was which. Normally, an HLL bucket is

less than 10-anonymous if that value + bucket pair corresponds

to fewer than 10 individuals at the hospital. With shuffling, an

HLL bucket is less than 10-anonymous only if that value

corresponds to fewer than 10 individuals at the hospital. On

average, this decreases the risk by dividing the risk score by the

number of buckets. In other words, the buckets partition the

patient population into smaller, more identifiable groups. By

shuffling the buckets, it is no longer known which partition the

value came from, which makes the value less identifiable.

7) HyperLogLog + Rehash

This procedure is similar to that of HyperLogLog + Shuffle.

However, instead of using the random string to shuffle buckets,

the hospitals completely regenerate the HLL sketch while

prepending that random string to the patient IDs before hashing

using SHA-1. This procedure takes more time, but also means

that the hub cannot use a dictionary attack at all, because it does

not know the random string. Thus, all patients are guaranteed

10-anonymity if the random string is not revealed to the hub.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 6

Fig. 3. (top) HyperLogLog method. Given patient identifiers (e.g. SSN), we first hash them to a bitstring. The first several bits are used to bucket the values,

and then within each bucket we store the position of the leading one indicator of the minimum value. (middle) HLL + Mask. We count the number of hashes that

match the leading 1-indicator for each bucket; if that number is less than 10, the bucket is not 10-anonymous, so we do not send the HLL, but only a masked
aggregate count of patients matching the query instead. (bottom). HLL + Shuffle. We do a coordinated random shuffling so the central server does not know what

the original bucket leading 1-indicators were.

000-23-1313
000-64-8912
000-61-8721
000-11-3754
000-65-9687
000-87-5414
000-37-5814
000-57-9987
000-12-3453
000-82-2008
000-07-8921
000-18-1829
000-02-8111
000-57-2381
000-78-8818
000-92-9223
000-99-2947
000-32-9456
000-98-8056
000-37-9818

Patient SSN
Buckets

00000110…
10100011…
11011111…
10010010…
01001110…
00100010…
00001101…
00100100…
01111111…
11010111…
00011000…
11110001…
01001101…
10011001…
00010001…
10011100…
01111111…
11001001…
01111001…
11110001…

Hashed values
00000110…
00100010…
00001101…
00100100…
00011000…
00010001…

01001110…
01111111…
01001101…
01111111…
01111001…

10100011…
10010010…
10011001…
10011100…

11011111…
11010111…
11110001…
11001001…
11110001…

Minimum Values

01001101…

3

10010010…

2

11001001…

3

00000110…

4

HLL Sketch

00: 4
01: 3
10: 2
11: 3

HLL Sketch Matching hashes at hospital (not just in query)

00: 4
01: 3
10: 2
11: 3

000001101, 000001000, 000001111, 000001000
010011101, 010010101, 010011111
100110100, 100100001, 100101100, 100111000
110011111, 110010000

m-anonymity
of bucket

00: 4
01: 3
10: 4
11: 2

If any bucket <
10-anonymous,

send only
masked count

HyperLogLog

HLL + Mask

HLL + Shuffle
Hosp 1 HLL

00: 4
01: 3
10: 2
11: 3

Hosp 2 HLL

00: 1
01: 2
10: 3
11: 2

Coordinated
Random
Shuffle

00→ 10
01→ 11
10→ 01
11→ 00

Hosp 1 Shuffled HLL

00: 3
01: 2
10: 4
11: 3

Hosp 2 Shuffled HLL

00: 2
01: 3
10: 1
11: 2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 7

8) HyperLogLog + MPC

Like Count + MPC, this method is based off of the ElGamal

homomorphic cryptosystem, and we use the same primitives as

in that method (with the same security guarantees). We

additionally take inspiration from a previous paper applying

MPC to a Flajolet-Martin style approximate counter [Dong

2017]. The key setup and exchange are identical to Count +

MPC, as well as the encryption and decryption routines, so we

only describe the following rounds:

Round 1: encryption and merging. Each hospital begins by

generating an HLL sketch of the query. We then unroll each

bucket 𝐵𝑗 = 𝑣𝑗 of the sketch into a binary string of length 32

with 𝑣𝑗 1’s and 32 − 𝑣𝑗 0’s. i.e. if 𝑣𝑗 = 10, the binary string

would be “11111111110000000000000000000000”. However,

ElGamal homomorphic encryption is only secure when using

non-zero quadratic residues of the prime field. So we turn that

string into a vector, replacing 1’s with 4’s and 0’s with 1’s,

resulting in a vector of length 32, [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1,

…, 1]. The hospital then encrypts each of these unrolled bucket

vectors into [𝐸(4), … , 𝐸(4), 𝐸(1), … 𝐸(1)], and send them to

the hub. Note that we rely the fact that ElGamal encryption is

probabilistic, so each of the 4’s encrypts to a different

ciphertext, and so do each of the 1’s. Thus, the encrypted vector

does not reveal any information about the underlying binary

bitstring.

 The hub receives the encrypted HLL sketches from each

hospital, and then takes the product across hospitals of each

position in the unrolled bucket vectors, giving a product vector

[∏𝑥1,𝑖 , … , ∏𝑥32,𝑖]. Because ElGamal is multiplicatively

homomorphic, ∏𝑥1,𝑖 = 𝐸(1) if and only if all 𝑥𝑗,𝑖 = 𝐸(1).

Were we to decrypt this vector, it would reveal the maximum

bucket value for this bucket, because the vector would be equal

to 1 at all indices above that value. However, this leaks

information because the other indices would have some value

4𝑦, where 𝑦 is the number of times a hospital had a value of at

least that index.

 To resolve this information leakage, we use a private equality

test [Jakobsson & Juels, 2000]. Given two ciphertexts (𝑐1, 𝑐2)

and (𝑐1
′ , 𝑐2

′), 𝑇 = ((
𝑐1

′

𝑐1
)

𝑧

, (
𝑐2

′

𝑐2
)

𝑧

) = ((𝑐1
′ ⋅ 𝑐1

𝑝−2
)

𝑧
, (𝑐2

′ ⋅

𝑐2
𝑝−2

)
𝑧
), where 𝑧 is a random integer, is a private equality test.

More precisely, 𝐷(𝑇) = 1 if and only if 𝐷((𝑐1, 𝑐2)) =

𝐷((𝑐1
′ , 𝑐2

′)). More importantly, 𝐷(𝑇) is a random integer

(different from 𝑧) if the two ciphertexts were not equal in the

plaintext space. The hub thus does a private equality test of all

the combined encrypted bucket values, testing if they are equal

to 1, and masking the result if they are not equal to 1. Those

new masked vectors do not leak any information, revealing only

the maximum value of the bucket across hospitals.

Round 2: decryption. We now run the distributed decryption

protocol on each of those masked vector elements. Because

each element is independent, they can be decrypted in parallel

in only one round of communication. For each bucket, the hub

then looks at the maximum index that is not equal to 1, which

corresponds to the maximum bucket value across hospitals; this

procedure allows the hub to reconstruct the merged HLL

sketch. Once given a merged HLL sketch, the hub can then

follow the rest of the standard procedure for the HyperLogLog

method.

9) HyperLogLog + Shuffle + MPC

This procedure is simply a combination of HyperLogLog +

Shuffle and HyperLogLog + MPC. Each hospital simply

shuffles their buckets according to the random string prior to

performing encryption. The rest of the procedure is identical to

HyperLogLog + MPC.

10) HashedIDs

The query is sent from a hospital to the hub. The hub broadcasts

out that query to each hospital. Each hospital runs the query

locally, producing a list of matching patient IDs. (Patient IDs

are generated the same way as in HyperLogLog. See

Supplementary Information.). The patient IDs are then hashed

via SHA-1. That list of hashed IDs is then sent back to the hub.

The hub then deduplicates the list (e.g. via a hash table), and

counts the number of unique individuals matching the query

across the entire hospital system. That count is returned as the

(exact) answer to the query.

 Note that the list of hashed IDs can be precomputed, just as

in HyperLogLog, because each patient’s hashed ID will not

change. This also means of course that a dictionary attack by

the hub has a high likelihood of success.

11) HashedIDs + Rehash

This is identical to HashedIDs, except that the originating

hospital also sends a random string encrypted with the public

keys of each of the other hospitals. Each hospital rehashes all

the patients, prepending the random string before running it

through SHA-1. By doing so, because the hub does not know

the random prefix string, it cannot do a dictionary attack to

reverse the hash function, and thus all patients get 10-

anonymity. Of course, rehashing all patients takes additional

computational time.

12) Secure methods that are not scalable to large networks

Above, we described protocols that we quantitatively

benchmark in this study, including two secure MPC protocols

we implemented. Count + MPC is just a straight-forward

implementation of secure MPC summation, but HLL + MPC is

a protocol we developed ourselves, inspired by Dong, et al

[2017]. The reason we developed that protocol instead of using

existing protocols from the cryptographic literature is that most

such methods are impractically slow, due to bad scaling of

communication and computation requirements. Here, we

describe a few secure MPC protocols that provide privacy

guarantees without the need for a trusted 3rd party. However,

because secure MPC and homomorphic encryption are

computationally complex, they could take on the order of days

to weeks for a single query in a large network. This makes them

impractical except for very small networks. As a result, we do

not include them in our benchmarking simulations.

One MPC approach is to use a pairwise private intersection

protocol [Kolesnikov 2017, de Christofaro 2012], which

securely determines the number of shared patients between two

sites. Subtracting this from the sum of the counts from each site

gives the total number of distinct patients. However, the number

of required pairwise and multi-way comparisons grows

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 8

exponentially with the number of sites, making this impractical

for large networks. Patient partitioning [Weber 2013] and

cryptosets [Swamidass 2015] are related non-MPC methods

that have similar scalability problems due to the number of

patient slices. A recent approach using counting Bloom filters

is able to solve the deduplication problem without pairwise

comparisons, but due to the nature of Bloom filters scales

linearly in the number of patients and requires at least two

trusted data custodians even in a semi-honest framework

[Yigzaw 2017].

Other work in the MPC literature has produced algorithms

for directly computing unions and deduplications of sets

without the problem of exponential comparisons.

Unfortunately, this comes at the cost of either significantly

more computation time and communication bandwidth

requirements, which can be on the order of gigabytes of shared

data for a single query, with linear communication complexity

and super-linear time-complexity in the number of patients

[Fenske 2017]. A more recent approach combines a Flajolet-

Martin style estimator with a secure MPC protocol [Dong

2017]. The algorithm has logarithmic space complexity, in that

the number of bits needed scales logarithmically with respect to

the number of patients who match the query. However, the

trade-off is that it requires numerous back-and-forth

communication---on the order of log 𝑁 rounds, where 𝑁 is the

total patient population---between all the hospitals in the

network to execute the protocol. As mentioned above though,

our HLL + MPC protocol is heavily based off of Dong, et al.

The root of the issue is that in the context of a federated

network of hospitals, if each hospital acts as a computing party

for an MPC protocol, then each hospital can guarantee to itself

that at least it itself is not malicious. This feature is desirable for

hospitals, because it means they do not have to trust anyone but

themselves. However, most MPC methods scale badly in the

number of computing parties; using semi-trusted dedicated

compute parties can help, but that still requires trusting those

compute parties to not collude. In recent years, more scalable

secure MPC protocols have been introduced to solving

distributed genome-wide association studies [Cho, 2018] and

pharmacological collaborations [Hie & Cho, 2018], but these

protocols are not practical for the near-real-time results that

clinical researchers expect (indeed, in that context, it is

considered fast to get results in weeks). For this reason, we only

compared against the two MPC protocols we ourselves

implemented, which are designed to be scalable at the level we

need for clinical queries.

B. Privacy risk score – 𝑚-anonymity

We define a piece of aggregate information, or statistic, as less

than 𝑚-anonymous if it includes at least 1 individual and could

have been generated by fewer than 𝑚 individuals in some

background population. As long as patients have 2-anonymity,

they have not been fully revealed. However, in practice,

hospitals are usually more conservative. One study

recommended 5-anonymity for hospitals [Emam 2008], but the

national PCORNet and ACT networks go even higher,

requiring 10-anonymity. For purposes of this paper, we will use

10-anonymity throughout our analysis to be consistent with

these existing networks. We will define the privacy risk for a

release of data as the number of statistics revealed to the

adversary that are not 10-anonymous.

For the background population we use the patient population

at a hospital, because the hub generally knows when a piece of

information comes from a particular hospital. In the case where

we use MPC to merge data across the network, however, the

background population can be taken to be the patient population

across the entire network, as no one party sees the information

from a single hospital.

In the case of a single count from a hospital, whether or not

that count is 10-anonymous is easy to determine: if the count is

between 1 and 9 inclusive, then it is not 10-anonymous; else, it

is. Note that this is not a perfect proxy, because while a single

count may be 10-anonymous, multiple counts from the same

hospital might not be. For example, if the count of male patients

is 10 and the count of male + female patients is 11, then two

counts, while individually 10-anonymous, can together be

combined to reveal that there is only 1 female patient. Although

here we analyze only the privacy risk from revealing a single

count from a hospital, so we do not worry about that, it is still

worth remembering that even aggregate counts >10 are not

perfect 10-anonymity.

For a hashed value generated from a patient ID, we consider

it 10-anonymous if the adversary cannot reverse the hash

function to figure out the original patient ID to within 10

patients. Luckily, cryptographic hash functions are one-way,

meaning that the function cannot be directly reversed.

Unfortunately, since the space of patient IDs (e.g. social

security numbers) is constrained, an adversary can simply

create a rainbow table of the hashed values of every possible

patient ID, and then simply do a lookup. Thus, a hashed value

is only 10-anonymous if at least 10 patients in the background

population hash to that particular value. Unfortunately, for

hashed IDs that are sufficiently large to do deduplication of

patients (e.g. 32- or 64-bits), the very property that allows

deduplication also ensures that close to none of the hashed IDs

are 10-anonymous.

HyperLogLog buckets can be thought of as a much shorter

hashed ID. Whereas we might use a 64-bit hash when using

Hashed IDs, the HyperLogLog bucket stores only the position

of the first 1 bit in that 64-bit hash. This increases the number

of collisions considerably. An HLL bucket with value 𝑥 is 10-

anonymous if at least 10 patients in the background population

have hashes where the leading 1-indicator indicator is in

position 𝑥, which happens much more often. Additionally, there

are generally many fewer HLL buckets than patient IDs, so

fewer potentially risky statistics are revealed to begin with.

As an aside, our privacy risk analysis differs considerably

from Desfontaines, et al (2018), who argue that “cardinality

estimators do not preserve privacy.” However, their threat

model includes an adversary who has incremental access to the

sketches as they are being generated, rather than only a single

sketch per hospital for a query. Were a hospital compromised

to the point where their internal systems were constantly

revealing incremental sketch updates, the privacy loss from

HyperLogLog would be the least of their worries.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

 9

C. Benchmarking

1) Simulating a geographic hospital network

Because of patient privacy, we cannot test the algorithms using

actual hospital data. We therefore built a simulation of a set of

hospitals spread geographically with highly varying sizes and

overlap.

 First we model geographic spread by placing 100 cities

uniformly randomly in a 2D unit square. City sizes are often

modeled to have lognormal distributions [Berry 1961], with

probability density function

𝑝(𝑥) =
1

𝜎𝑥√2𝜋
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2
),

where 𝜇 and 𝜎 are respectively the mean and standard deviation

of the underlying normal distribution.

Each of the 100 hospitals in our network is assumed to draw

primarily from one of those cities. We randomly sample 100

numbers from a lognormal distribution with 𝜇 = 0 and 𝜎 = 1.2,

and then scale up all the numbers such that the sum is 100

million total unique patients. Each patient is assigned a number

between 1 and 100 million, and is then placed in one of the 100

hospitals as their home hospital, according to the scaled up

lognormal size distribution computed earlier.

 For each patient, we draw a random integer from a binomial

distribution 𝐵 (9,
1

9
), which will denote the number of

additional hospitals patients are assigned to. Here the intuition

is that most patients are only at a single hospital, but some

patients are admitted to many hospitals. However, by choosing

those parameters of the binomial distribution, we ensure that on

average, patients are admitted to 2 hospitals (their home

hospital, and one additional one as the mean of the binomial

distribution is 1).

 Then we assume that patients who are admitted to multiple

hospitals are more likely to go to nearby ones, according to the

hospital locations in the unit square we assigned earlier. We

assume that the probability that a patient chooses a particular

additional hospital is inversely proportional to the square of the

distance between the new hospital and the patient’s home

hospital. Using this probability distribution, we assign each

patient to their additional hospitals.

 By using this procedure, we generate hospitals that start with

lognormal sizes, following city size distributions, but with some

smoothing of the sizes because some patients will go to multiple

hospitals.

2) Benchmarking methodology

All benchmarks were run using Python code available at

https://github.com/yunwilliamyu/secure-distributed-union-

cardinality. The benchmarks were run on an 8-core AMD

Ryzen 1700 CPU with 16 GiB of RAM running Ubuntu 18.04.2

LTS. We measured wall-clock time for each pipeline

component for time-complexity, and serialized bytestrings in

each communication round for transmission space-complexity.

Methods analyzed were aggregate counts, HyperLogLog (HLL)

sketches, and hashed IDs, paired with various obfuscation

techniques of masking, rehashing, shuffling, and MPC. Note

that we explore different values for the number of buckets, and

title the method by the number of bits used for that bucket (so

HLL-7 means we use 27 = 128 buckets). We simulate hospital

networks with 100 million total unique patients, distributed

across 100 geographically separated hospitals, with each patient

on average appearing at 2 hospitals (though individual patients

might appear at more or fewer hospitals), and being more likely

to appear at nearby hospitals (as specified in the previous

section).

In Supplementary Table 1, we give the computational and

communication costs. We give the empirical scalings of

runtime and transmission bandwidth from the experiments we

run. By combining the two, we can provide an upper bound on

the added CPU and transmission costs from using the various

query methods and obfuscations.

We then run queries matching 1, 10, 100, 1 thousand, 10

thousand, 100 thousand, 1 million, 10 million, or 100 million

patients using the different methods. Mean wait time is the

average hospital computation time + hub computation time.

Max wait time is the maximum hospital computation time for a

run + hub computation time. To measure accuracy, we provide

95 percent confidence intervals based off 100 simulated

experiments and compared them against the true number of

patients matching the query. To measure privacy, we count the

number of statistics (i.e. a count, HLL bucket, or hash) without

10-anonymity revealed to either the hub, or the hub colluding

with a hospital (Supplementary Tables 2-10).

V. ACKNOWLEDGMENT

This study was supported by National Institutes of Health (NIH)

Big Data to Knowledge (BD2K) awards U54HG007963 from

the National Human Genome Research Institute (NHGRI) and

U01CA198934 from the National Cancer Institute (NCI).

Y.W.Y. was also supported by training grant T15LM007092

from the NIH NLM.

VI. AUTHOR CONTRIBUTIONS

G.M.W. and Y.W.Y. conceived the project and wrote the

manuscript. Y.W.Y. designed and implemented the software,

and also performed the mathematical analyses. G.M.W. guided

the direction of the research and provided critical advice on the

constraints of the task.

REFERENCES

[1] Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D. and Trevisan, L.,
2002, September. Counting distinct elements in a data stream. In

International Workshop on Randomization and Approximation

Techniques in Computer Science (pp. 1-10). Springer, Berlin, Heidelberg.

DOI: 10.1007/3-540-45726-7_1

[2] Barth-Jones, D., 2012. The're-identification'of Governor William Weld's

medical information: a critical re-examination of health data identification
risks and privacy protections, then and now. Then and Now (July 2012).

[3] Berry, B.J., 1961. City size distributions and economic

development. Economic development and cultural change, 9(4, Part 1),
pp.573-588.

[4] Cho, H., Wu, D.J. and Berger, B., 2018. Secure genome-wide association

analysis using multiparty computation. Nature biotechnology, 36(6),
p.547.

[5] De Cristofaro, E., Gasti, P. and Tsudik, G., 2012, December. Fast and

private computation of cardinality of set intersection and union. In
International Conference on Cryptology and Network Security (pp. 218-

231). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-35404-5_17

[6] Desfontaines, D., Lochbihler, A. and Basin, D., 2018. Cardinality
Estimators do not Preserve Privacy. arXiv preprint arXiv:1808.05879.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://github.com/yunwilliamyu/secure-distributed-union-cardinality
https://github.com/yunwilliamyu/secure-distributed-union-cardinality
https://doi.org/10.1101/841072

 10

[7] Dong, C. and Loukides, G., 2017. Approximating Private Set
Union/Intersection Cardinality with Logarithmic Complexity. IEEE

Transactions on Information Forensics and Security, 12(11), pp.2792-

2806.
[8] Eastlake 3rd, D. and Jones, P., 2001. US secure hash algorithm 1 (SHA1)

(No. RFC 3174).

[9] El Emam, K. and Dankar, F.K., 2008. Protecting privacy using k-
anonymity. Journal of the American Medical Informatics

Association, 15(5), pp.627-637.

[10] ElGamal, T., 1985. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information

theory, 31(4), pp.469-472.

[11] Fenske, E., Mani, A., Johnson, A. and Sherr, M., 2017, October.
Distributed Measurement with Private Set-Union Cardinality. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (pp. 2295-2312). ACM. DOI:
10.1145/3133956.3134034

[12] Flajolet, P., Fusy, É., Gandouet, O. and Meunier, F., 2007, June.

Hyperloglog: the analysis of a near-optimal cardinality estimation
algorithm. In AofA: Analysis of Algorithms (pp. 137-156). Discrete

Mathematics and Theoretical Computer Science.

[13] Fleurence, R.L., Curtis, L.H., Califf, R.M., Platt, R., Selby, J.V. and
Brown, J.S., 2014. Launching PCORnet, a national patient-centered

clinical research network. Journal of the American Medical Informatics

Association, 21(4), pp.578-582. PMID: 24821743
[14] Grannis SJ, Overhage JM, McDonald CJ. Analysis of identifier

performance using a deterministic linkage algorithm. Proc AMIA Symp.
2002:305-9.

[15] Hie, B., Cho, H. and Berger, B., 2018. Realizing private and practical

pharmacological collaboration. Science, 362(6412), pp.347-350.
[16] Jakobsson, M. and Juels, A., 2000, December. Mix and match: Secure

function evaluation via ciphertexts. In International Conference on the

Theory and Application of Cryptology and Information Security (pp. 162-
177). Springer, Berlin, Heidelberg.

[17] Jensen, P.B., Jensen, L.J. and Brunak, S., 2012. Mining electronic health

records: towards better research applications and clinical care. Nature
Reviews Genetics, 13(6), p.395. PMID: 22549152

[18] Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M. and Trieu, N., 2017,

October. Practical multi-party private set intersection from symmetric-
key techniques. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (pp. 1257-1272). ACM.

[19] McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW,
Orechia J, Bickel J, Wattanasin N, Gilbert C, Trevvett P, Churchill S,

Kohane IS. SHRINE: enabling nationally scalable multi-site disease

studies. PLoS One. 2013;8(3):e55811. doi:
10.1371/journal.pone.0055811. Epub 2013 Mar 7.

[20] Murphy SN, Chueh HC. A security architecture for query tools used to

access large biomedical databases. Proc AMIA Symp. 2002:552-6.
[21] Murphy, S.N., Weber, G., Mendis, M., Gainer, V., Chueh, H.C.,

Churchill, S. and Kohane, I., 2010. Serving the enterprise and beyond with

informatics for integrating biology and the bedside (i2b2). Journal of the
American Medical Informatics Association, 17(2), pp.124-130. PMID:

20190053

[22] Oechslin, P., 2003, August. Making a faster cryptanalytic time-memory
trade-off. In Annual International Cryptology Conference (pp. 617-630).

Springer, Berlin, Heidelberg.

[23] Swamidass, S.J., Matlock, M. and Rozenblit, L., 2015. Securely
measuring the overlap between private datasets with cryptosets. PloS

one, 10(2), p.e0117898.

[24] Sweeney, L., 2002. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 10(05), pp.557-570.

[25] Weber, G.M., Murphy, S.N., McMurry, A.J., MacFadden, D., Nigrin,
D.J., Churchill, S. and Kohane, I.S., 2009. The Shared Health Research

Information Network (SHRINE): a prototype federated query tool for

clinical data repositories. Journal of the American Medical Informatics
Association, 16(5), pp.624-630. PMID: 19567788

[26] Weber, G.M., 2013. Federated queries of clinical data repositories: the

sum of the parts does not equal the whole. Journal of the American
Medical Informatics Association, 20(e1), pp.e155-e161. PMID:

23349080

[27] Weber, G.M., 2015. Federated queries of clinical data repositories:
Scaling to a national network. Journal of biomedical informatics, 55,

pp.231-236. PMID: 25957825

[28] Yigzaw, K.Y., Michalas, A., and Bellika, J.G. Secure and scalable
deduplication of horizontally partitioned health data for privacy-

preserving distributed statistical computation. BMC Medical Informatics

and Decision Making, 17(1), p. 1.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841072doi: bioRxiv preprint

https://doi.org/10.1101/841072

