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Abstract—Researchers use large federated clinical data 

networks that connect dozens of healthcare organizations to access 

data on millions of patients. However, because patients often 

receive care from multiple sites in the network, queries frequently 

double-count patients. Using the probabilistic streaming 

algorithm HyperLogLog and adding obfuscation, we developed a 

scalable method for estimating the number of distinct lives that 

match a query, which balances accuracy and privacy in a 

“tunable” way. 

 
Index Terms—algorithms; sketches; medical records; 

bioinformatics; privacy 

 

I. INTRODUCTION 

idespread adoption of electronic health records has 

generated vast amounts of data, which are increasingly 

being used in clinical research, epidemiological studies, and 

public health applications [Jensen, et al., 2012]. Data from 

multiple healthcare organizations are often needed in order to 

increase statistical power or to access diverse patient 

populations and geographic regions. However, HIPAA and 

other patient privacy laws generally prevent data from different 

sites from being combined into a central repository for analysis. 

Therefore, several federated clinical data research networks 

have been developed that broadcast queries to multiple sites, 

run analyses locally, and then combine the results. Two of the 

largest in the United States are the PCORNet network for 

patient-centered outcomes research [Fleurence 2014] and the 

NIH-funded Accrual for Clinical Trials (ACT) network [Weber 

2009, McMurry 2013, Visweswaran 2018], both of which 

connect dozens of healthcare organizations across the country 

and include health data on nearly 100 million Americans. 

 Because patients often receive care at more than one 

clinical site, the data for a patient at any one site might not be 

complete, and the same information about a patient might be 

duplicated at different sites. This can lead to queries returning 

incorrect results. A similar situation arises when patients’ data 

are intentionally separated for technical reasons, such as when 

large amounts clinical data (e.g., diagnoses and medications) 

and genomic data are stored in different locations, and it is not 

feasible to merge them into a single database. In both cases, 

computation must be performed in a distributed fashion, but the 
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challenge is that an individual patient’s data may be spread 

across multiple databases.  

Various methods to addressing this problem have been 

described in the literature, but they have different tradeoffs in 

terms of accuracy, privacy, scalability and computational 

complexity. We group these into three broad categories 

(aggregate counts, hashed patient identifiers, and privacy-

guaranteed methods) and introduce a new, better balanced 

approach. To compare these methods, we developed a 

generalizable benchmarking framework and software that 

simulates queries of large federated data networks. 

Aggregate counts. Federated queries in PCORNet and ACT 

ask sites to return the number of patients in their local databases 

who match some set of criteria, such as having both 

hypertension and diabetes. The networks present the user with 

the aggregate count from each site; and, no attempt is made to 

link patients across sites or de-duplicate records. This can lead 

to large overestimates of the number of distinct patients who 

match a query if the counts from each site are naively summed 

[Weber 2013]. To protect patient privacy, the networks mask 

small counts by displaying “<10 patients”. However, the results 

from multiple queries can be combined to reveal information 

about individual patients (see Methods for details). Sites 

participating in these networks are aware of this privacy risk, 

which they mitigate through institutional agreements that 

require sites to audit researchers’ queries and monitor their use 

of the network. 

Hashed Patient Identifiers. The most accurate and semi-

secure way to de-duplicate the results in a federated query is for 

each site to return the full list of patients who match the query. 

Privacy is the main concern since data on every patient 

matching the query (potentially many millions of people) must 

be shared. Patient identifiers (e.g., name and date of birth) are 

typically encrypted using a one-way hash function, such as 

SHA-1 [Eastlake 2001]. The same patient at two sites will be 

hashed to the same value if the same hash function is used (and 

there are no inconsistencies in the underlying demographic 

data). Unfortunately, hash functions are vulnerable to 

“dictionary attacks”, where an adversary who knows the 

encryption method can simply generate a “rainbow table” of the 

hashes of every possible patient identifier (e.g., all 9-digit social 

security numbers) and then use this to re-identify the list of hash 
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values returned by a site [Oechslin 2003]. 

Privacy-guaranteed methods. Secure multi-party 

computation (MPC) and homomorphic encryption techniques 

enable true privacy guarantees in a federated network (see 

Methods), and have recently been introduced for distributed 

genome-wide association studies [Cho, 2018] and 

pharmacological collaboration [Hie & Cho, 2018]. The 

limitation of these algorithms is computational complexity. 

Protocols that securely determine the number of shared patients 

between two sites [Kolesnikov 2017, de Cristofaro 2012, 

Weber 2013, Swamidass 2015] are impractical for large 

networks since the number of pairwise and multi-way 

comparisons grows exponentially with the number of sites. 

Other approaches that avoid exponential comparison either 

require sharing gigabytes of data [Fenske 2017], making 

numerous rounds of back-and-forth communication [Dong 

2017], or using trusted 3rd parties [Yigzaw 2017]. These are also 

problematic because, as we have previously shown [Weber 

2015], large federated clinical data networks are fragile, with 

multiple sites typically failing to respond even to aggregate 

count queries. 

II. RESULTS 

In this paper we propose a new method based on the 

HyperLogLog (HLL) probabilistic sketching algorithm 

[Flajolet 2007]. Although HLL is widely used in many 

applications, such as internet search engines, to our knowledge 

it has not been applied to federated queries of health data. The 

basic idea behind HLL (and other k-minimum value sketches 

[Bar-Yossef 2002]) is that the minimum of a collection of 

random numbers between 0 and 1 is inversely proportional to 

how many numbers are present. For example, a single random 

number between 0 and 1 has expected value 0.5, but if we have 

99 random numbers, the minimum has expected value 0.01. By 

using a hash function that maps patients to a random number 

between 0 and 1, we can estimate the number of patients who 

match a query by keeping track of just the minimum hash value. 

Note that the smallest of these values is also the minimum of all 

the patients hashes across all sites. If each site returns its 

minimal hash value, we can estimate the number of distinct 

patients in the whole network that match the query from the 

smallest value. While it may seem unintuitive that the network 

minimum hash is the same as the hash for one hospital, which 

hospital that minimum hash corresponds to changes when you 

use multiple hash functions, allowing the estimator to be 

accurate. 

HLL improves the accuracy of this method by efficiently 

dividing the patients into k partitions and returning the 

minimum value of in each partition. HLL also returns the base-

2 order of magnitude of the minimum values rather than the 

actual values, which greatly reduces the risk of re-identification 

from a dictionary attack. For k partitions, the relative error of 

HLL is approximately 1/sqrt(k). For example, asking sites to 

share a HLL sketch with only 100 values, the number of distinct 

 
TABLE I 

Qualitative comparison of approaches to determining the number of distinct patients in a federated network who match a query. 

“Risk-Hub” is the risk to patient privacy if an adversary gains access to only the hub. “Risk-Hub+Site” is the risk if the 

adversary also gains access to one of the sites in the network. An asterisk (“*”) means obfuscation does not change the value. 

For example, Count and Count+MPC have the same error. “HLL7+MPC” means the value is the same as “HLL7+MPC” without 

shuffling. Blue, green, yellow and orange correspond to zero, (very) small, medium, and (very) large, respectively. “(-)” means 

the value gets smaller when more patients match a query, and “(+)” means the value gets larger. 

 

Method Obfuscation 
Approximation 

Error 
Runtime 

Wait Risk-Hub Risk-Hub+Site 

Count  None large very small medium(-) medium(-) 

Mask large very small zero zero 

MPC * medium zero zero 

HLL7  None medium small medium(+) medium(+) 

Shuffle * * small(+) * 

Rehash * medium(+) zero * 

Mask medium(+) medium(-) zero zero 

MPC * large small(+) small(+) 

Shuffle+MPC * HLL7+MPC very small(+) HLL7+MPC 

HLL15  None small medium large(+) large(+) 

Shuffle * * small(+) * 

Rehash * medium(+) zero * 

Mask large(+) medium(-) zero zero 

HashedIDs  None zero medium(+) very large(+) very large(+) 

Rehash * * zero * 
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patients can be estimated with a 10% relative error. Error can 

be reduced by increasing k. Although higher k increases the risk 

of re-identification, the risk is quantifiable and predictable, 

enabling networks to define policies that maximizes accuracy 

while reducing risk to an acceptable level. Using various 

obfuscation techniques, such as masking the sketches of certain 

sites (HLL+Mask), using different cryptographic “salt” for each 

query (HLL+Rehash), and scrambling the order of the values in 

the sketch (HLL+Shuffle), we can further reduce risk. Even if 

re-identification is possible, then information on only k patients 

is revealed, not every patient who matches the query. 

To quantitatively measure privacy loss, we use an adapted m-

anonymity model of privacy [Sweeney 2002; El Emam 2008] 

(see Methods: Privacy Risk), and run benchmarks for runtime, 

accuracy, and privacy-loss on shared hashed identifiers, sharing 

aggregate counts, and our proposed HLL approach. Existing 

privacy guaranteed methods do not scale well and are infeasible 

for running on large datasets, with either extremely high 

runtime or error, so we only compare our algorithm 

qualitatively to those three. 

To do so, we developed software for generating simulated 

networks containing up to 100 sites and 100 million distinct 

patients and running queries using aggregate counts (Count and 

Count+Mask), shared hash values (HashedIDs), secure MPC, 

and HLL with and without obfuscation. HLL is implemented 

using k=21=2 (HLL1), k=24=16 (HLL4), k=27=128 (HLL7), and 

k=215=32,768 (HLL15). We provide all code in GitHub 

(https://github.com/yunwilliamyu/secure-distributed-union-

cardinality). 

Experimental details and theoretical proofs are provided in 

the Methods section, and raw results are furnished in the 

Supplement Tables 1-10. Here, Table 1 provides qualitative 

summary comparisons of the relative run times, accuracy, and 

privacy risk of the different methods. We use an adapted m-

anonymity model of privacy, whereby the privacy risk is 

defined to be the number of revealed data points that correspond 

to fewer than 10 patients (Methods: Privacy risk score). HLL 

with obfuscation is significantly more accurate than aggregate 

counts, lower risk than sharing hash values of all matching 

patients, and more scalable than privacy guaranteeing 

algorithms. Figure 1 illustrates the accuracy-risk tradeoff 

between the algorithms quantitatively when each patient’s data 

are at two sites on average. Counts and hash values form the 

bounds of the graph, forcing networks to make extreme choices 

between accuracy and privacy. Variations of HLL fill in the 

remaining space, enabling networks to “tune” the method to 

achieve a more desirable balance for a given application. 

III. DISCUSSION 

Here, we have surveyed and benchmarked a range of 

methods, exploring the trade-offs in privacy, accuracy, and 

speed. We explicitly do not endorse a single one-size-fits-all 

method, as different applications and institutions will have 

different needs. Indeed, we envision that in practice, queries 

will be first run using a fast, private method (such as the 

currently standard aggregate counts, perhaps combined with 

MPC); given those rough results and the needs of the 

researcher, one of the more accurate HLL-based methods can 

then be used if more accuracy is desired. In the final stage of 

research (e.g. in preparation for a full clinical trial), institutions 

can then sign the necessary data use agreements to share raw 

identifiable information. We believe that as federated data 

networks expand to include more institutions and data types 

(clinical, genomic, environmental, etc.), researchers will 

increasingly depend on fast, accurate and secure query tools to 

get the greatest possible scientific value from the networks. 

 
Fig. 1.  Quantitative graphical comparison of the query accuracy / privacy risk trade-off based on simulations of a network with 100 sites and 100 million 

patients. HashedIDs and Count bound the graph, while HLL-based methods enable a more balanced approach. (HLL+MPC is only shown for 10 million patients, 

and the values for HLL7+MPC and HLL15+MPC are theoretical rather than experimental.) HLL+MPC reduces the HLL risk by 1/s, where s is the number of sites 
in the network. HLL+Shuffle reduces the HLL risk by 1/k, where k is the number of values in the HLL sketch. 
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IV. METHODS 

We consider several variants of the base methods (hashed IDs, 

aggregate count, secure sharing, and HLL) that further protect 

patient privacy. Below, we first describe each algorithm for 

querying the network. Then, we define a privacy risk score and 

provide details on how we benchmark the algorithms using 

simulated hospital networks. 

A. Query Method + obfuscation details 

Here, we describe in detail the protocols we compared, as well 

as several that we did not directly compare against for reasons 

that will be explained. The basic model will assume that the 

researcher sending the query goes through one of the 

participating hospitals in the network, and asks a query of the 

form: “how many patients have condition X across the hospital 

network?” 

 

1) Count 

The query is sent from a hospital to the hub. The hub broadcasts 

out that query to each hospital. Each hospital runs the query 

locally, producing a count, which is then sent back to the hub. 

The hub returns two numbers to the originating hospital: (1) the 

maximum count from a hospital and (2) the sum of counts from 

all hospitals. The former corresponds to a lower bound on the 

result, because even in the event of significant overlapping 

patients between hospitals, there are at least as many unique 

patients across the network as there are at a single hospital. The 

latter summation is obviously an upper bound, though it might 

be a substantial overestimate when there is significant overlap 

between hospitals. 

 

2) Count + Mask 

The procedure is identical to Count, except that if the actual 

count of a hospital is between 1 through 9 inclusive, the hospital 

returns 10 to the hub instead. This masking procedure ensures 

that no non-zero number corresponds to fewer than 10 patients, 

ensuring 10-anonymity. Both the PCORNet and ACT networks 

use Count + Mask. ACT further obfuscates the result by adding 

a small random number between -10 and +10 to the actual count 

[Murphy 2002]; though, we ignore this in our analyses. 

 

3) Count + MPC 

This protocol is based on the ElGamal cryptosystem [ElGamal 

1985] using a distributed private key to ensure that no one party 

can decrypt intermediate data, secure in the Honest But Curious 

even if all hospitals but one and the hub are compromised. The 

major disadvantage is that the MPC requires all hospitals to 

respond before any answer can be given. In large networks, it is 

likely that some hospitals will either be slow to respond or not 

respond at all [Weber 2015], which limits this protocol to only 

small networks in practice. 

We take advantage of the multiplicatively homomorphic 

property of ElGamal encryption, which means that given an 

encryption function 𝐸 and decryption function 𝐷, 𝐷(𝐸(𝑎𝑏)) =

𝑎𝑏. It is secure in the semi-honest framework assuming the 

difficult of the discrete logarithm problem. The algorithm has 

three parts (key generation, encryption, and decryption), which 

requires two rounds of communication between the hospitals 

and the hub. 

Key generation. We use a fixed 1024-bit prime 𝑝 and 

appropriate generator 𝑔 as the basis of all our cryptographic 

keys (see Supplementary Information: ElGamal constants). All 

arithmetic will be performed in that prime field defined by 𝑝 

(i.e. will be performed modulus 𝑝). 

Given 𝑝 and 𝑔, a private/public keypair consists of a random 

number 𝑥 ∈ [2, 𝑝 − 1] as the private key, and 𝑦 = 𝑔𝑥. We wish 

to ensure that no one party ever has access to 𝑥, so we use a 

distributed key generation protocol. Each hospital 𝑖 generates a 

random 𝑥𝑖 and produces the corresponding 𝑦𝑖 = 𝑔𝑥𝑖 , which it 

sends to the central hub. The hub then computes 𝑦 = ∏𝑦𝑖. Note 

 
Fig. 2.  We classify methods for merging distributed queries into three groups: (1) sending full hashed patient identifiers, (2) sharing aggregate counts, and (3) 

generating obfuscated bytestrings that can be merged together. Sending hashedIDs gives an exact answer, but has a high privacy risk as each hash is associated 

with an individual patient. Sharing aggregate counts is relatively private, but has a high level of uncertainty and error in the answer. Obfuscated bytestring methods 

can range from probabilistic sketches to cryptographically secure MPC. They can provide privacy, but generally at the cost of computational complexity. In this 
paper, we provide much faster versions of obfuscated bytestring methods using HyperLogLog as a base. 
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that 𝑦 = ∏𝑔𝑥𝑖 = 𝑔∑𝑥𝑖 , so 𝑦 is the public key corresponding to 

the private key 𝑥 = ∑𝑥𝑖 , but no hospital actually knows the 

summed value 𝑥. The hub returns the public key 𝑦 to each 

hospital. 

Encryption. The standard ElGamal encryption function 

𝐸(𝑚) = (𝑔𝑧 , 𝑚𝑦𝑧), where 𝑧 in a random integer in the field. 

Note that ElGamal has the nice property that the same plaintext 

message will be encrypted to a many possible encrypted 

ciphertexts because of 𝑧. This is essential to defeating 

dictionary attacks on the ciphertext. As a technical note, in order 

to have provable security, the message 𝑚 must be a quadratic 

residue of the field, which we will ensure the in the protocol 

described. 

Decryption. The standard ElGamal decryption function 

𝐷((𝑐1, 𝑐2)) = (𝑐1
𝑥)𝑝−2 ⋅ 𝑐2. Note that we can do a distributed 

decryption for a ciphertext by sending each hospital 𝑐1, and 

asking the hospitals to return 𝑐1
𝑥𝑖 , which when multiplied 

together give 𝑐1
𝑥. 

Round 1: encryption and summation. Each hospital runs the 

query locally, producing a count 𝑎𝑖, and then sends the value 

𝐸(4𝑎𝑖) back to the hub (we use 4𝑎𝑖 because it is a quadratic 

residue). The hub computes ∑𝐸(4𝑎𝑖) = 𝐸(4∑𝑎𝑖). 

Round 2: decryption. The encrypted sum is decrypted using 

the distributed decryption protocol described above, giving 

4∑𝑎𝑖 . Of course, performing discrete logarithms is hard (or else 

ElGamal encryption would not be secure), but we can 

precompute a discrete log table for powers of 4 relatively easily. 

Using that lookup table, the hub produces ∑𝑎𝑖 as the final 

response for the query. 

 

4) HyperLogLog 

Upon receiving the query, a hospital generates a list of patient 

IDs that match the query. Each hospital needs to use the same 

ID for the same patient. Because there is no universal patient 

identifier (UPI), the ID should be based on information likely 

to be unique to the patient and available at all hospitals, such as 

the concatenation of the patient’s first name, last name, and date 

of birth [Grannis 2002]. (See “Supplementary Information: 

Generating Patient IDs” for additional details and limitations of 

generating a patient ID.)  

The hospital runs all of the patient IDs through SHA-1, 

producing a 160-bit pseudorandom number. The first 64-bits 

are interpreted as an integer 𝐵, and the patient is put into bucket 

𝐵 % 𝑘, where 𝑘 is the number of buckets. The hospital then 

finds the position 𝑉 of the first bit set to 1 in bits 65-128 of the 

SHA1- string. Within each bucket, the hospital stores the largest 

value 𝑉 corresponding to a patient. The list of bucket values is 

the HLL sketch from that hospital. 

The hospitals send those HLL sketches to the central hub. 

The hub combines the sketches by taking the maximum within 

each bucket across hospital sketches, generating the sketch of 

the union. The hub then estimates the cardinality 𝐶 of the union 

sketch using the standard HLL estimator [Flajolet, 2007]. The 

hub also provides a 95% confidence interval by using the fact 

that the standard deviation of the estimate is around 
1

√𝑘
, so 

𝐶 (1 ±
1.96

√𝑘
) gives the lower and upper bounds of a 95% 

confidence interval. 

 Note that although we described the full procedure above as 

a linear process starting with the receipt of the query, the 

hospital can precompute the buckets 𝐵 and values 𝑉 for all of 

their patients, reducing the time needed to generate the HLL 

sketch for given query. 

 

5) HyperLogLog + Mask 

This procedure is identical to HLL, except that the hospital 

precomputes a list of bucket values that are less than 10-

anonymous. If after generating the HLL sketch corresponding 

to the query, a hospital sees that there is a bucket that is not 10-

anonymous, the hospital aborts and reverts to the count + Mask-

10 algorithm, where only a single (possibly masked) aggregate 

count is returned. 

 The hub thus receives a combination of sketches and masked 

counts. The hub combines together the sketches using the HLL 

cardinality estimator to get an estimate of the count of the union 

of all the hospitals that sent sketches with appropriate 95% error 

bounds. From that, the hub goes through something similar to 

the Count-procedure. The hub returns two numbers: the sum of 

all raw hospital counts plus the 95% confidence interval 

maximum for the HLL union count, which gives an upper 

bound, and the maximum of the set of raw counts or the 95% 

confidence interval minimum for the HLL union, which gives a 

lower bound. 

 

6) HyperLogLog + Shuffle 

When a hospital sends a query to the hub, it sends both a query, 

and a random string encrypted with public keys of each of the 

other hospitals in the network (using any kind of standard off-

the-shelf asymmetric key encryption, as used in protocols like 

RSA, HTTPS, etc.). The hub forwards the query to all the 

hospitals, plus the encrypted random string, which the hub itself 

cannot decrypt. Each hospital then uses an ordinary HLL 

sketch, but shuffles the ordering of the buckets using the 

random string to determine the sort order, and then sends the 

shuffled sketch to the hub. 

Because every hospital performs the same permutation, the 

sketches can still be combined and the normal estimators used. 

However, the hub, without knowing the random string, cannot 

know which bucket was which. Normally, an HLL bucket is 

less than 10-anonymous if that value + bucket pair corresponds 

to fewer than 10 individuals at the hospital. With shuffling, an 

HLL bucket is less than 10-anonymous only if that value 

corresponds to fewer than 10 individuals at the hospital. On 

average, this decreases the risk by dividing the risk score by the 

number of buckets. In other words, the buckets partition the 

patient population into smaller, more identifiable groups. By 

shuffling the buckets, it is no longer known which partition the 

value came from, which makes the value less identifiable. 

 

7) HyperLogLog + Rehash 

This procedure is similar to that of HyperLogLog + Shuffle. 

However, instead of using the random string to shuffle buckets, 

the hospitals completely regenerate the HLL sketch while 

prepending that random string to the patient IDs before hashing 

using SHA-1. This procedure takes more time, but also means 

that the hub cannot use a dictionary attack at all, because it does 

not know the random string. Thus, all patients are guaranteed 

10-anonymity if the random string is not revealed to the hub. 
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Fig. 3.  (top) HyperLogLog method. Given patient identifiers (e.g. SSN), we first hash them to a bitstring. The first several bits are used to bucket the values, 

and then within each bucket we store the position of the leading one indicator of the minimum value. (middle) HLL + Mask. We count the number of hashes that 

match the leading 1-indicator for each bucket; if that number is less than 10, the bucket is not 10-anonymous, so we do not send the HLL, but only a masked 
aggregate count of patients matching the query instead. (bottom). HLL + Shuffle. We do a coordinated random shuffling so the central server does not know what 

the original bucket leading 1-indicators were. 
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Buckets

00000110…
10100011…
11011111…
10010010…
01001110…
00100010…
00001101…
00100100…
01111111…
11010111…
00011000…
11110001…
01001101…
10011001…
00010001…
10011100…
01111111…
11001001…
01111001…
11110001…

Hashed values
00000110…
00100010…
00001101…
00100100…
00011000…
00010001…

01001110…
01111111…
01001101…
01111111…
01111001…

10100011…
10010010…
10011001…
10011100…

11011111…
11010111…
11110001…
11001001…
11110001…

Minimum Values

01001101…

3

10010010…

2

11001001…

3

00000110…

4

HLL Sketch

00: 4
01: 3
10: 2
11: 3

HLL Sketch Matching hashes at hospital (not just in query)

00: 4
01: 3
10: 2
11: 3

000001101, 000001000, 000001111, 000001000
010011101, 010010101, 010011111 
100110100, 100100001, 100101100, 100111000
110011111, 110010000

m-anonymity
of bucket

00: 4
01: 3
10: 4
11: 2

If any bucket <
10-anonymous,

send only
masked count

HyperLogLog

HLL + Mask

HLL + Shuffle
Hosp  1 HLL

00: 4
01: 3
10: 2
11: 3

Hosp  2 HLL

00: 1
01: 2
10: 3
11: 2

Coordinated
Random
Shuffle

00→ 10
01→ 11
10→ 01
11→ 00

Hosp  1 Shuffled HLL

00: 3
01: 2
10: 4
11: 3

Hosp  2 Shuffled HLL

00: 2
01: 3
10: 1
11: 2
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8) HyperLogLog + MPC 

Like Count + MPC, this method is based off of the ElGamal 

homomorphic cryptosystem, and we use the same primitives as 

in that method (with the same security guarantees). We 

additionally take inspiration from a previous paper applying 

MPC to a Flajolet-Martin style approximate counter [Dong 

2017]. The key setup and exchange are identical to Count + 

MPC, as well as the encryption and decryption routines, so we 

only describe the following rounds: 

Round 1: encryption and merging. Each hospital begins by 

generating an HLL sketch of the query. We then unroll each 

bucket 𝐵𝑗 = 𝑣𝑗  of the sketch into a binary string of length 32 

with 𝑣𝑗 1’s and 32 − 𝑣𝑗  0’s. i.e. if 𝑣𝑗 = 10, the binary string 

would be “11111111110000000000000000000000”. However, 

ElGamal homomorphic encryption is only secure when using 

non-zero quadratic residues of the prime field. So we turn that 

string into a vector, replacing 1’s with 4’s and 0’s with 1’s, 

resulting in a vector of length 32, [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 

…, 1]. The hospital then encrypts each of these unrolled bucket 

vectors into [𝐸(4), … , 𝐸(4), 𝐸(1), … 𝐸(1)], and send them to 

the hub. Note that we rely the fact that ElGamal encryption is 

probabilistic, so each of the 4’s encrypts to a different 

ciphertext, and so do each of the 1’s. Thus, the encrypted vector 

does not reveal any information about the underlying binary 

bitstring. 

 The hub receives the encrypted HLL sketches from each 

hospital, and then takes the product across hospitals of each 

position in the unrolled bucket vectors, giving a product vector 

[∏𝑥1,𝑖 , … , ∏𝑥32,𝑖]. Because ElGamal is multiplicatively 

homomorphic, ∏𝑥1,𝑖 = 𝐸(1) if and only if all 𝑥𝑗,𝑖 = 𝐸(1). 

Were we to decrypt this vector, it would reveal the maximum 

bucket value for this bucket, because the vector would be equal 

to 1 at all indices above that value. However, this leaks 

information because the other indices would have some value 

4𝑦, where 𝑦 is the number of times a hospital had a value of at 

least that index. 

 To resolve this information leakage, we use a private equality 

test [Jakobsson & Juels, 2000]. Given two ciphertexts (𝑐1, 𝑐2) 

and (𝑐1
′ , 𝑐2

′ ), 𝑇 = ((
𝑐1

′

𝑐1
)

𝑧

, (
𝑐2

′

𝑐2
)

𝑧

) = ((𝑐1
′ ⋅ 𝑐1

𝑝−2
)

𝑧
, (𝑐2

′ ⋅

𝑐2
𝑝−2

)
𝑧
), where 𝑧 is a random integer, is a private equality test. 

More precisely, 𝐷(𝑇) = 1 if and only if 𝐷((𝑐1, 𝑐2)) =

𝐷((𝑐1
′ , 𝑐2

′ )). More importantly, 𝐷(𝑇) is a random integer 

(different from 𝑧) if the two ciphertexts were not equal in the 

plaintext space. The hub thus does a private equality test of all 

the combined encrypted bucket values, testing if they are equal 

to 1, and masking the result if they are not equal to 1. Those 

new masked vectors do not leak any information, revealing only 

the maximum value of the bucket across hospitals. 

Round 2: decryption. We now run the distributed decryption 

protocol on each of those masked vector elements. Because 

each element is independent, they can be decrypted in parallel 

in only one round of communication. For each bucket, the hub 

then looks at the maximum index that is not equal to 1, which 

corresponds to the maximum bucket value across hospitals; this 

procedure allows the hub to reconstruct the merged HLL 

sketch. Once given a merged HLL sketch, the hub can then 

follow the rest of the standard procedure for the HyperLogLog 

method. 

 

9) HyperLogLog + Shuffle + MPC 

This procedure is simply a combination of HyperLogLog + 

Shuffle and HyperLogLog + MPC. Each hospital simply 

shuffles their buckets according to the random string prior to 

performing encryption. The rest of the procedure is identical to 

HyperLogLog + MPC. 

 

10) HashedIDs 

The query is sent from a hospital to the hub. The hub broadcasts 

out that query to each hospital. Each hospital runs the query 

locally, producing a list of matching patient IDs. (Patient IDs 

are generated the same way as in HyperLogLog. See 

Supplementary Information.). The patient IDs are then hashed 

via SHA-1. That list of hashed IDs is then sent back to the hub. 

The hub then deduplicates the list (e.g. via a hash table), and 

counts the number of unique individuals matching the query 

across the entire hospital system. That count is returned as the 

(exact) answer to the query. 

 Note that the list of hashed IDs can be precomputed, just as 

in HyperLogLog, because each patient’s hashed ID will not 

change. This also means of course that a dictionary attack by 

the hub has a high likelihood of success. 

 

11) HashedIDs + Rehash 

This is identical to HashedIDs, except that the originating 

hospital also sends a random string encrypted with the public 

keys of each of the other hospitals. Each hospital rehashes all 

the patients, prepending the random string before running it 

through SHA-1. By doing so, because the hub does not know 

the random prefix string, it cannot do a dictionary attack to 

reverse the hash function, and thus all patients get 10-

anonymity. Of course, rehashing all patients takes additional 

computational time. 

 

12) Secure methods that are not scalable to large networks 

Above, we described protocols that we quantitatively 

benchmark in this study, including two secure MPC protocols 

we implemented. Count + MPC is just a straight-forward 

implementation of secure MPC summation, but HLL + MPC is 

a protocol we developed ourselves, inspired by Dong, et al 

[2017]. The reason we developed that protocol instead of using 

existing protocols from the cryptographic literature is that most 

such methods are impractically slow, due to bad scaling of 

communication and computation requirements. Here, we 

describe a few secure MPC protocols that provide privacy 

guarantees without the need for a trusted 3rd party. However, 

because secure MPC and homomorphic encryption are 

computationally complex, they could take on the order of days 

to weeks for a single query in a large network. This makes them 

impractical except for very small networks. As a result, we do 

not include them in our benchmarking simulations. 

One MPC approach is to use a pairwise private intersection 

protocol [Kolesnikov 2017, de Christofaro 2012], which 

securely determines the number of shared patients between two 

sites. Subtracting this from the sum of the counts from each site 

gives the total number of distinct patients. However, the number 

of required pairwise and multi-way comparisons grows 
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exponentially with the number of sites, making this impractical 

for large networks. Patient partitioning [Weber 2013] and 

cryptosets [Swamidass 2015] are related non-MPC methods 

that have similar scalability problems due to the number of 

patient slices. A recent approach using counting Bloom filters 

is able to solve the deduplication problem without pairwise 

comparisons, but due to the nature of Bloom filters scales 

linearly in the number of patients and requires at least two 

trusted data custodians even in a semi-honest framework 

[Yigzaw 2017]. 

Other work in the MPC literature has produced algorithms 

for directly computing unions and deduplications of sets 

without the problem of exponential comparisons. 

Unfortunately, this comes at the cost of either significantly 

more computation time and communication bandwidth 

requirements, which can be on the order of gigabytes of shared 

data for a single query, with linear communication complexity 

and super-linear time-complexity in the number of patients 

[Fenske 2017]. A more recent approach combines a Flajolet-

Martin style estimator with a secure MPC protocol [Dong 

2017]. The algorithm has logarithmic space complexity, in that 

the number of bits needed scales logarithmically with respect to 

the number of patients who match the query. However, the 

trade-off is that it requires numerous back-and-forth 

communication---on the order of log 𝑁 rounds, where 𝑁 is the 

total patient population---between all the hospitals in the 

network to execute the protocol. As mentioned above though, 

our HLL + MPC protocol is heavily based off of Dong, et al. 

The root of the issue is that in the context of a federated 

network of hospitals, if each hospital acts as a computing party 

for an MPC protocol, then each hospital can guarantee to itself 

that at least it itself is not malicious. This feature is desirable for 

hospitals, because it means they do not have to trust anyone but 

themselves. However, most MPC methods scale badly in the 

number of computing parties; using semi-trusted dedicated 

compute parties can help, but that still requires trusting those 

compute parties to not collude. In recent years, more scalable 

secure MPC protocols have been introduced to solving 

distributed genome-wide association studies [Cho, 2018] and 

pharmacological collaborations [Hie & Cho, 2018], but these 

protocols are not practical for the near-real-time results that 

clinical researchers expect (indeed, in that context, it is 

considered fast to get results in weeks). For this reason, we only 

compared against the two MPC protocols we ourselves 

implemented, which are designed to be scalable at the level we 

need for clinical queries. 

 

B. Privacy risk score – 𝑚-anonymity 

We define a piece of aggregate information, or statistic, as less 

than 𝑚-anonymous if it includes at least 1 individual and could 

have been generated by fewer than 𝑚 individuals in some 

background population. As long as patients have 2-anonymity, 

they have not been fully revealed. However, in practice, 

hospitals are usually more conservative. One study 

recommended 5-anonymity for hospitals [Emam 2008], but the 

national PCORNet and ACT networks go even higher, 

requiring 10-anonymity. For purposes of this paper, we will use 

10-anonymity throughout our analysis to be consistent with 

these existing networks. We will define the privacy risk for a 

release of data as the number of statistics revealed to the 

adversary that are not 10-anonymous. 

For the background population we use the patient population 

at a hospital, because the hub generally knows when a piece of 

information comes from a particular hospital. In the case where 

we use MPC to merge data across the network, however, the 

background population can be taken to be the patient population 

across the entire network, as no one party sees the information 

from a single hospital. 

In the case of a single count from a hospital, whether or not 

that count is 10-anonymous is easy to determine: if the count is 

between 1 and 9 inclusive, then it is not 10-anonymous; else, it 

is. Note that this is not a perfect proxy, because while a single 

count may be 10-anonymous, multiple counts from the same 

hospital might not be. For example, if the count of male patients 

is 10 and the count of male + female patients is 11, then two 

counts, while individually 10-anonymous, can together be 

combined to reveal that there is only 1 female patient. Although 

here we analyze only the privacy risk from revealing a single 

count from a hospital, so we do not worry about that, it is still 

worth remembering that even aggregate counts >10 are not 

perfect 10-anonymity. 

For a hashed value generated from a patient ID, we consider 

it 10-anonymous if the adversary cannot reverse the hash 

function to figure out the original patient ID to within 10 

patients. Luckily, cryptographic hash functions are one-way, 

meaning that the function cannot be directly reversed. 

Unfortunately, since the space of patient IDs (e.g. social 

security numbers) is constrained, an adversary can simply 

create a rainbow table of the hashed values of every possible 

patient ID, and then simply do a lookup. Thus, a hashed value 

is only 10-anonymous if at least 10 patients in the background 

population hash to that particular value. Unfortunately, for 

hashed IDs that are sufficiently large to do deduplication of 

patients (e.g. 32- or 64-bits), the very property that allows 

deduplication also ensures that close to none of the hashed IDs 

are 10-anonymous. 

HyperLogLog buckets can be thought of as a much shorter 

hashed ID. Whereas we might use a 64-bit hash when using 

Hashed IDs, the HyperLogLog bucket stores only the position 

of the first 1 bit in that 64-bit hash. This increases the number 

of collisions considerably. An HLL bucket with value 𝑥 is 10-

anonymous if at least 10 patients in the background population 

have hashes where the leading 1-indicator indicator is in 

position 𝑥, which happens much more often. Additionally, there 

are generally many fewer HLL buckets than patient IDs, so 

fewer potentially risky statistics are revealed to begin with. 

As an aside, our privacy risk analysis differs considerably 

from Desfontaines, et al (2018), who argue that “cardinality 

estimators do not preserve privacy.” However, their threat 

model includes an adversary who has incremental access to the 

sketches as they are being generated, rather than only a single 

sketch per hospital for a query. Were a hospital compromised 

to the point where their internal systems were constantly 

revealing incremental sketch updates, the privacy loss from 

HyperLogLog would be the least of their worries. 
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C. Benchmarking 

1) Simulating a geographic hospital network 

Because of patient privacy, we cannot test the algorithms using 

actual hospital data. We therefore built a simulation of a set of 

hospitals spread geographically with highly varying sizes and 

overlap. 

 First we model geographic spread by placing 100 cities 

uniformly randomly in a 2D unit square. City sizes are often 

modeled to have lognormal distributions [Berry 1961], with 

probability density function 

𝑝(𝑥) =
1

𝜎𝑥√2𝜋
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2
), 

where 𝜇 and 𝜎 are respectively the mean and standard deviation 

of the underlying normal distribution. 

Each of the 100 hospitals in our network is assumed to draw 

primarily from one of those cities. We randomly sample 100 

numbers from a lognormal distribution with 𝜇 = 0 and 𝜎 = 1.2, 

and then scale up all the numbers such that the sum is 100 

million total unique patients. Each patient is assigned  a number 

between 1 and 100 million, and is then placed in one of the 100 

hospitals as their home hospital, according to the scaled up 

lognormal size distribution computed earlier. 

 For each patient, we draw a random integer from a binomial 

distribution 𝐵 (9,
1

9
), which will denote the number of 

additional hospitals patients are assigned to. Here the intuition 

is that most patients are only at a single hospital, but some 

patients are admitted to many hospitals. However, by choosing 

those parameters of the binomial distribution, we ensure that on 

average, patients are admitted to 2 hospitals (their home 

hospital, and one additional one as the mean of the binomial 

distribution is 1). 

 Then we assume that patients who are admitted to multiple 

hospitals are more likely to go to nearby ones, according to the 

hospital locations in the unit square we assigned earlier. We 

assume that the probability that a patient chooses a particular 

additional hospital is inversely proportional to the square of the 

distance between the new hospital and the patient’s home 

hospital. Using this probability distribution, we assign each 

patient to their additional hospitals. 

 By using this procedure, we generate hospitals that start with 

lognormal sizes, following city size distributions, but with some 

smoothing of the sizes because some patients will go to multiple 

hospitals. 

 

2) Benchmarking methodology 

All benchmarks were run using Python code available at 

https://github.com/yunwilliamyu/secure-distributed-union-

cardinality. The benchmarks were run on an 8-core AMD 

Ryzen 1700 CPU with 16 GiB of RAM running Ubuntu 18.04.2 

LTS. We measured wall-clock time for each pipeline 

component for time-complexity, and serialized bytestrings in 

each communication round for transmission space-complexity. 

Methods analyzed were aggregate counts, HyperLogLog (HLL) 

sketches, and hashed IDs, paired with various obfuscation 

techniques of masking, rehashing, shuffling, and MPC. Note 

that we explore different values for the number of buckets, and 

title the method by the number of bits used for that bucket (so 

HLL-7 means we use 27 = 128 buckets). We simulate hospital 

networks with 100 million total unique patients, distributed 

across 100 geographically separated hospitals, with each patient 

on average appearing at 2 hospitals (though individual patients 

might appear at more or fewer hospitals), and being more likely 

to appear at nearby hospitals (as specified in the previous 

section). 

In Supplementary Table 1, we give the computational and 

communication costs. We give the empirical scalings of 

runtime and transmission bandwidth from the experiments we 

run. By combining the two, we can provide an upper bound on 

the added CPU and transmission costs from using the various 

query methods and obfuscations. 

We then run queries matching 1, 10, 100, 1 thousand, 10 

thousand, 100 thousand, 1 million, 10 million, or 100 million 

patients using the different methods. Mean wait time is the 

average hospital computation time + hub computation time. 

Max wait time is the maximum hospital computation time for a 

run + hub computation time. To measure accuracy, we provide 

95 percent confidence intervals based off 100 simulated 

experiments and compared them against the true number of 

patients matching the query. To measure privacy, we count the 

number of statistics (i.e. a count, HLL bucket, or hash) without 

10-anonymity revealed to either the hub, or the hub colluding 

with a hospital (Supplementary Tables 2-10). 
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