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Abstract 
Adenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-stranded 

RNAs (dsRNAs). How the RNA sequence and structure (i.e., the cis-regulation) determine the editing 

efficiency and specificity is poorly understood, despite a compelling need towards functional 

understanding of known editing events and transcriptome engineering of desired adenosines. We 

developed a CRISPR/Cas9-mediated saturation mutagenesis approach to generate comprehensive 

libraries of point mutations near an editing site and its editing complementary sequence (ECS) at the 

endogenous genomic locus. We used machine learning to integrate diverse RNA sequence features 

and computationally predicted structures to model editing levels measured by deep sequencing and 

identified cis-regulatory features of RNA editing. As proof-of-concept, we applied this integrative 

approach to three editing substrates. Our models explained over 70% of variation in editing levels. The 

models indicate that RNA sequence and structure features synergistically determine the editing levels. 

Our integrative approach can be broadly applied to any editing site towards the goal of deciphering the 

RNA editing code. It also provides guidance for designing and screening of antisense RNA sequences 

that form dsRNA duplex with the target transcript for ADAR-mediated transcriptome engineering.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/840884doi: bioRxiv preprint 

https://doi.org/10.1101/840884


	

Introduction 
RNA editing is an important mechanism that greatly diversifies the transcriptome and proteome in 

higher eukaryotes1-5. In animals, the predominant type of RNA editing is the hydrolytic deamination of 

adenosine (A) to form inosine (I), catalyzed by adenosine deaminase acting on RNA (ADAR)6,7. 

Abnormal A-to-I RNA editing is strongly linked to autoimmune diseases, neurological disorders and 

cancers8,9. Humans have two catalytically active ADAR proteins, ADAR1 and ADAR2, responsible for 

the editing of millions of RNA editing sites10,11. Adenosines in perfect or nearly perfect dsRNA duplexes, 

formed mainly by inverted repeats, are promiscuously edited12; while in non-repetitive sequences that 

often form imperfect dsRNA structures, ADARs can efficiently edit specific adenosines13. How RNA 

editing is regulated to determine its efficiency and specificity is poorly understood. It is proposed that 

both the primary sequence and secondary structure (i.e., cis-acting regulatory elements) guide the 

preference and specificity of ADARs7,14-19. ADAR has a preferred sequence motif, in particular the 5’ 

and 3’ nearest neighboring positions (-1 and +1 nt) to the editing site14-19. Editing can be enhanced or 

suppressed by deviations from perfect base-pairing (i.e., mismatches, bulges and loops), suggesting 

complex structural contributions to editing specificity14-16. The quantitative trait loci (QTL) mapping 

approach has been used to identify genetic variants associated with variability in RNA editing in 

Drosophila and humans, demonstrating that many editing QTLs (edQTL) can act through changes in 

the local and distal secondary structure for edited dsRNAs, consistent with importance of RNA 

structure20,21. Nevertheless, few general properties have emerged across different substrates, 

suggesting complex structural contributions to editing specificity22. 

 

Previous studies are generally limited to small numbers of natural or engineered variants, thus lacking 

the systematic sequence and structure variation required for development of predictive models of 

editing, and a high-throughput, systematic mutagenesis approach is therefore called for. Predictive 

models derived through systematic mutagenesis would not only promote our understanding of the most 

prevalent type of RNA editing, but would also greatly advance the emerging field of ADAR-mediated 

transcriptome engineering, by informing the design of antisense RNA guides for therapeutic RNA 

editing. Prototypes of ADAR RNA guides were recently demonstrated to enable programmable RNA 

editing by forming dsRNA with target sites and recruiting endogenous ADAR proteins23-29. Improving the 

specificity and efficiency of programmable editing through rational design of guide/target duplexes will 

be critical as this new technology continues to be developed for clinical applications. 

 

Here we combined CRISPR engineering, next-generation sequencing, and machine learning to 

decipher predictive cis regulatory RNA sequence and structural elements that affect the efficiency and 
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specificity of ADAR1 mediated RNA editing. As proof-of-concept, we chose three representative RNA 

editing substrates and introduced hundreds of desired mutations at the endogenous loci in human cells 

using the CRISPR-mediated approach. We applied a supervised machine learning approach to build 

predictive models of substrate-specific RNA editing levels based on a variety of cis sequence and 

structural features. We identified general and idiosyncratic features that determine editing efficiency of 

individual substrates, highlighting the complexity of the cis-regulatory editing code. Our integrative 

approach, named predicting RNA editing using sequence and structure (PREUSS), lays the foundation 

for developing predictive models of RNA editing. 

 

Results 
CRISPR/Cas9-mediated mutagenesis to interrogate endogenous RNA editing 
To interrogate the effects of cis-regulatory elements of RNA editing, we applied the CRISPR/Cas9 

technology to introduce mutations at the endogenous loci of three known editing sites. The mutations 

were introduced both in the editing strand and the editing complementary sequence (ECS) that form 

dsRNA. Briefly, we designed guide RNAs (gRNAs) targeting regions of interest and oligonucleotide 

donors carrying mutations to directly knock-in mutations through the CRISPR/Cas9-mediated 

homology-directed repair (HDR) pathway30 (Fig 1a). To measure the RNA editing levels of the resulting 

variants, we performed targeted amplicon deep sequencing. Because the variant and the associated 

editing site are sequenced from the same read, there is no need to perform laborious clonal selection 

for homozygotes of the variants. Because each designed variant has a unique sequence, we 

successfully performed large scale multiplex mutagenesis and measured editing level without the aid of 

barcodes (see Methods for details). 

 

We selected three natural ADAR1 substrates (NEIL1, TTYH2, AJUBA) (Fig. 1b) for the mutagenesis 

studies based on the observations that (1) the editing sites for all three substrates are highly edited (30-

60%) in HEK293T cells, in which ADAR1 is expressed but ADAR2 is lowly expressed; (2) the editing 

sites are not edited when ADAR1 activity is abolished (data not shown); and (3) they represent three 

different types of dsRNA substrates. The NEIL1 editing site is in the coding region. The editing event 

leads to an amino acid change from Lysine (K) to Arginine (R), which has been shown to increase the 

enzymatic activity of the NEIL1 glycosylase31. The TTYH2 editing site is intronic and the AJUBA editing 

site is located in its 3’ UTR. The functional impact of these two editing sites is currently unknown.  

 

In a pilot experiment of degenerate mutagenesis for NEIL1 and TTYH2, we randomized the region from 

-3 to +3 positions of the editing strand for NEIL1 (Fig. 1c) and a 10 nt region on the ECS of TTYH2 
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(Supplementary Fig. 1a). These degenerate mutations provide a rapid means to evaluate the 

CRISPR/Cas9 knockin efficiency and the effects of mutations. We observed that 3 or more mutations 

almost always lead to an abolishment of editing events (Fig. 1d-1e, Supplementary Fig. 1b). 

Therefore, to study variants that lead to a wide range of editing levels, we next performed targeted 

mutagenesis using a pool of 200 to 300 donors with designed mutations, focusing on single- and 

double-mutations with larger mutagenesis regions around the editing site in the editing strand and the 

ECS (Fig. 1b, Fig. 2a, Supplementary Fig. 2a-2c). For NEIL1 and TTYH2, we designed saturation 

single mutations both in the editing strand and the ECS (with the exception of –1 and +1 positions for 

NEIL where A to G mutations were eliminated as they would be indistinguishable from A-to-I editing). 

For AJUBA, we only designed mutations in the editing strand. We selectively designed double 

mutations (11% all possible double mutations) that can disrupt base-pairing at the mutation position. 

For NEIL1, because the ECS and editing site are close in sequence space, we were able to use donor 

oligos to introduce compensatory mutation variants which theoretically maintain base-pairing. 

Additionally, we designed indel variants to study the effects of selected secondary structure features of 

NEIL1, such as the bulge, internal loop, and stem length. Overall, between 10 and 20% of the 

sequenced RNAs carried mutations in the interrogated region, similar to previously reported knock-in 

efficiency30. We were able to reliably detect >90% of our designed variants after using stringent quality 

control filters. The knock-in results and editing measurements were highly reproducible (Fig. 1f, 
Supplementary Fig. 1c-1k). Interestingly, we discovered that using dsDNA as donor yielded similar 

results as using ssDNA oligonucleotides (Supplementary Fig. 1j-1k). Using dsDNA donors (e.g. PCR 

products) greatly simplifies the procedures and reduce the cost of the experiments. 

 

Intertwined effects of primary sequence and secondary structure on editing levels 
We compared the effects of single and double mutations in terms of the mutation type and mutation 

locations across all three RNA substrates (Fig. 2, Supplementary Fig. 2).  We used computationally 

predicted secondary structure of each RNA variant to understand the associations between mutations 

and structure. We observed a wide range of effects from different variants of different substrates.  

 

NEIL1. For NEIL1, most single mutations had minor effects on editing (-1 < z-score < 0), with the 

largest effects observed at positions +1 and +2 relative to the editing site (Fig. 2c, Fig 3b). Exceptions 

from this pattern were the large effects (z-score < -1) of G mutations downstream from the editing site 

in the ECS strand. This observation may suggest formation of alternative structures in these G-mutants 

(e.g. in Fig. 3a). Some RNA variants have the same predicted RNA structure but different editing level, 

suggesting a primary sequence effect (Fig. 2b). To decouple sequence and structural effects at each 
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position, we also categorized the single mutations into four types (Fig. 2f). We observed that (1) there 

were large effects (z-score < -2) for the transversion mutations (change between purine and pyridine) 

that also disrupted base-pairing (transversion+break) at positions in close vicinity to the editing site (-5 

to -1, +1 to +3, +9), and at the 3’ side of the editing site (*+1, *+5, *+7, *+8); and (2) at some positions 

(*+2, *+3) the primary sequence had larger effects than the disruption of base-pairing as demonstrated 

by larger effect of the transversion (z-score < -2) than the transversion+break mutations. Double 

mutations in the editing strand of NEIL1 had overall pronounced effects on editing (Fig. 2d). We 

observed different effects of these mutations according to their locations: (1) the strongest effects (z-

score <- 2) were observed when at least one of the mutations was in close proximity to the editing site 

(positions –6 and +2); (2) the effect was generally smaller (z-score > -2) if one of the mutations was in a 

non-base-paired region (+4, +5, +11) (Fig. 2d). 

 

TTYH2. Contrary to NEIL1, a larger proportion of TTYH2 single mutations increased editing efficiency 

(z-score > 0) (Supplementary Fig. 2a-2b). TTYH2 has a lower WT editing level (30%) than NEIL1 

(64%). Similar to NEIL1, the closer the single mutations were to the editing site (-2 to +1, *-3 to *+4), 

the larger their effects (z-score < -1) were on editing levels (Supplementary Fig.3a). Interestingly, 

several single mutations located both upstream (-6 to -3) and downstream (+6 to +8, *+6) of the editing 

site increased editing levels (z-score > 0). For TTYH2 double mutations, the effects were most negative 

when at least one mutation was located in –2 to +6 in the editing strand and *-3 to *+5 in the ECS.  

   

AJUBA. Editing level of WT AJUBA is 35%. In contrast to NEIL1 and TTYH2, many single mutations of 

AJUBA were sufficient to disrupt editing. Also, all double mutations abolished editing regardless of 

positions (Supplementary Fig. 2c). Most of the transversion single mutations disrupted base-pairing 

and the transversion+break mutations had larger effects (z-score < -1) when located closer to the 

editing site (Supplementary Fig. 3b). Contrary to NEIL1 and TTYH2, the AJUBA single mutations with 

largest effects (z-score < -2) were transitions (change within purine or pyrimidine) and 

transition+breaks, suggesting that primary sequence might have a larger influence on editing of the 

AJUBA RNA. This difference between editing targets may be explained by much lower predicted 

thermodynamic stability of the AJUBA secondary structure (free energy of -71 kcal/mol for AJUBA vs. -

87 kcal/mol for TTYH2 of similar length), which would make the relative effects of a mismatch in AJUBA 

larger than those in RNAs with more stable structures. 
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Taken together, these observations indicate that RNA primary sequence and structure are intertwined 

in terms of mediating effects of mutations on editing efficiency for different substrates. These effects 

also vary among the three different RNA substrates, suggesting substrate-specific cis-regulation rules.  

 

Structural features of the editing site, 5’ stem and 3’ non-stem elements, and RNA stability affect 
editing levels 
Next, we systematically explored the effects of changes to secondary structure on RNA editing levels. 

We found that compensatory mutations in NEIL1 that did not affect secondary structure resulted in only 

minor reduction of editing levels (Fig. 3c), implying that mutations may need to impact secondary 

structure to have major effects on RNA editing efficiency. To further investigate how a specific structural 

feature affects editing efficiency, we designed several indels to alter secondary structures of NEIL1 

(Fig. 3d). The 5’ stem length is critical for NEIL1, as both shortening it and breaking the base-pairing 

abolished editing, and increasing the stem length by 2-bp did not increase editing efficiency either (Fig. 
3d, Supplementary Fig. 3c). The 3’ base-pairing is also critical because breaking it led to nearly 

complete disruption of editing (Supplementary Fig. 3c). When we replaced the downstream 3’ internal 

loop with either a canonical base-pair or wobble base-pair, the editing efficiency decreased by ~50% 

(Fig. 3d, Supplementary Fig. 3c). Enlarging the loop with additional nucleotides resulted in mild (-1< 

z-score <0) reductions in editing levels (Fig. 3d). These data suggest that a duplexed 5’ stem is 

important for ADAR1 editing and a non-stem feature downstream at the 3’ is also required for efficient 

editing. Additionally, editing site structures containing an A:C mismatch (also named as a 1:1 internal 

loop) exhibited higher editing levels on average than when the editing site resided in a larger loop (P < 

0.0001, Supplementary Fig. 3d), consistent with previous structural and biochemical studies29. 

However, several editing site structures harboring non-A:C mismatches also showed strong editing 

levels for NEIL1 and TTYH2 (Fig. 3b and Supplementary Fig. 3d), indicating that additional factors 

affect editing efficiency. 

 

We reasoned that features affecting RNA thermodynamics could also affect editing efficiency18. We 

observed significant differences in the Free Energy (Fig. 4a) and All Stem Length (Fig. 4b) between 

highly (highest 25 percentile of editing level in each RNA library) and lowly (lowest 25 percentile) edited 

NEIL1 (P < 0.0001) and AJUBA (P < 0.001) variants, suggesting RNA stability is important in 

determining editing activity for these two RNA substrates. No statistically significant difference was 

observed for TTYH2 variants. We also hypothesized that RNA variants that are structurally more similar 

to the WT would result in editing levels similar to WT. We quantified structural similarity using two 

measures: “Similarity Score” that indicates the degree to which the structure of a variant is similar to the 
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structure of the WT and “Probability of Active Conformation” that indicates the probability of forming 

wild type secondary structure in the structure ensemble in each RNA variant. We found significant 

differences (P < 0.0001) of similarity score between highly and lowly editing variants only for NEIL1 but 

not for the other two substrates (Fig. 4c). A higher probability of active conformation was observed in 

the highly edited variants compared to lowly edited variants for all three substrates (P < 0.0001, Fig. 
4d). Taken these two results, the WT structure is not necessarily the only active but one of the more 

preferred conformations. However, when we considered all variants across the entire editing spectrum, 

instead of highly vs. lowly edited variants, no significant correlations were observed between these 

features and RNA editing levels (Supplementary Fig. 4). These results show that individual sequence, 

structure and stability features of variants only have limited predictive association with quantitative 

editing levels. Therefore, we decided to integrate multiple RNA sequence and structure features to 

model quantitative editing levels via machine learning.  

 

Machine learning models accurately predict substrate-specific RNA editing levels from 
sequence and structure features 
Given the observation that no single property of the RNA substrates correlated strongly and 

consistently with editing efficiency, we turned to machine learning models to capture the complex 

relationship between editing levels and multiple RNA sequence and structure features. A set of 122 

features were derived to annotate the RNA variants (see Methods and Supplementary Tables 2-4 for 

feature annotations for all variants of NEIL1, TTYH2, and AJUBA respectively). The sequence features 

summarized various properties of the primary RNA sequence of each variant at and around the vicinity 

of the editing site. We used the bpRNA32 tool to assign all residues in each variant to diverse structural 

elements such as hairpin loops, bulges, internal loops, stems, multi-loops and closing pairs (Fig. 5a). 

Structure features were derived at the editing site and adjacent regions up to 3 bpRNA structural 

elements upstream and downstream from the editing site (Fig. 5b), as these regions within the RNA 

substrate fully encompass the interaction site with the ADAR deaminase domain (Fig. 5c)33,34. The 122 

features were further grouped into nine major categories for purposes of feature interpretation 

(Supplementary Fig. 1). Gradient boosted trees (GBTs) were trained via the XGBoost algorithm35.  We 

trained and tuned GBTs on distinct subsets of RNA variants to map their feature annotations to 

corresponding real-valued editing levels or binarized labels obtained by thresholding editing levels into 

two classes (edited vs. not-edited).  

 

First, we evaluated the prediction performance of our model for each substrate. We trained and tuned 

models on a subset of variants and then tested model performance on a held-out test set of variants of 
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the same substrate. For NEIL1, the models accounted for 86% of the variance (R2) in ADAR editing 

levels for variants in the held-out test set, with a Spearman correlation (Rs) of 0.91 between observed 

and predicted editing levels. Binary editing status was also predicted accurately (Area under precision-

recall curve, auPR = 0.99). Similarly, high test set predictive performance was obtained for TTYH2 

variants (R2 = 0.71, Rs = 0.89, auPR = 0.98) and AJUBA variants (R2 = 0.75, Rs = 0.90, auPR = 0.96). 

Augmenting the training set for each substrate with variants from the other substrates did not result in 

any significant improvements in model performance (Supplementary Table 5, Supplementary Fig. 6). 

These results indicate that it is possible to predict RNA editing levels of new mutations in a substrate 

with high accuracy from sequence and structure features using integrative machine learning models 

trained on a subset of mutations from the same substrate (Fig. 5c). 

 

Next, we tested whether models trained on variants of one or more substrate could predict editing 

effects of mutations in a different substrate. We observed a significant drop in model performance for 

cross-substrate prediction of RNA editing (Supplementary Fig. 6, Supplementary Table 8). For 

example, a model trained on NEIL1 variants yielded lower performance on AJUBA variants (R2 < 0.05, 

Rs = 0.56, auPR = 0.82) and TTYH2 variants (R2 < 0.05, Rs = 0.51, auPR = 0.65) as compared to a 

model trained and tested on NEIL1 variants (R2 = 0.86, Rs = 0.91, auPR = 0.99). Similarly, a model 

trained on all NEIL1 and TTYH2 variants also yielded lower predictive performance when tested on 

AJUBA variants (R2 = 0.22, Rs = 0.53, auPR = 0.86), albeit higher than the model trained on either 

substrate independently. The same held true for all models trained on two of the substrates and 

evaluated on the third – lower performance compared to within-substrate training and evaluation. An 

attempt to normalize numerical feature values for variants of all three substrates relative to the wild type 

(WT) did not significantly improve the model’s performance on the test sets (Supplementary Table 8, 
Methods). 

 

The inability of our current models to accurately generalize predictions to new substrates is not entirely 

surprising considering the diversity of the substrates and the small number (three) of distinct substrates 

available for model training. It is likely that the challenge of cross-substrate training may be solved by 

training on a larger number of variants from a database of diverse substrates, and future efforts will 

focus on this task. However, given the success of our substrate-specific models in predicting editing 

effects for unseen mutations within each substrate, we decided to interpret these models to investigate 

the features that may be predictive of RNA editing levels. 
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Model interpretation provides insights into common and substrate-specific features associated 
with RNA editing efficiency 
For each of the three substrate-specific models, we used the TreeExplainer SHAP (SHapley Additive 

exPlanations) algorithm to quantify the contributions (or importance) of all features to the RNA editing 

predictions of each variant in the test sets35. The SHAP importance score of a feature with a specific 

value for a variant of a substrate estimates how much the feature contributes to pushing the model's 

output from a baseline editing level to the predicted RNA editing level for the variant. The baseline 

editing level is defined as the average editing level across all variants in the test set. Examples of how 

SHAP scores illuminate feature importance are illustrated in Fig. 5d and 5e. Figure 5d illustrates the 

SHAP scores for the 5 most important features for the NEIL1 test variant (RNA ID 92, 31UtoG) with the 

highest observed editing level (0.69). The NEIL1 model predicts an editing level of 0.59 for this variant. 

For the NEIL1 test set, the baseline (mean) predicted editing value is 0.25. We display the 

contribution of all feature values for this variant in pushing the prediction from the baseline of 0.25 to 

the predicted output value of 0.59. The feature “num_mutations=1”, which encodes the number of 

mutations in the RNA equal to 1, is estimated to have the highest importance and increases the 

prediction by 0.09 from the baseline. The contribution of the editing site taking on an A:C mismatch 

pushes the prediction up by approximately 0.05, and so on. Conversely, Figure 5e illustrates how 

feature values unfavorable to ADAR editing result in a predicted editing level of -0.01 for another variant 

(ID 142, 41GtoC,45CtoG) of the NEIL1 substrate relative to the baseline level of 0.25. This variant has 

two mutations in the substrate (num_mutations=2). This feature has a SHAP score of -0.05, indicating 

that a higher number of mutations in the RNA is unfavorable to editing. There is no A:C mismatch at the 

editing site, and this feature value has a SHAP score of -0.06. These and other highlighted feature 

values serve to drive the prediction down by 0.26 from the baseline value.  

 

To understand the directionality of predictive association of the features with RNA editing levels, we 

plotted the SHAP scores of the top 20 features for all test-set variants of the three substrates (Fig. 5f). 
We also summarized the relative importance of features for each of the three substrates by computing 

the percent contribution from each feature to the mean of absolute SHAP values across all examples in 

the test sets of each substrate (Fig. 6a).  

 

Seven features were illuminated as most important for driving model predictions across substrates. 

Number of mutations (“num_mutations”) was the strongest contributor for AJUBA (47.69%) and NEIL1 

(19.18%) and in the top 6 most important features for TTYH2 (4.51%) (Fig. 6a). Increasing number of 

mutations had a negative influence on editing levels (Fig. 5f). This effect supports the proposal that 
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RNA structure plays a big role in editing activity because in our library design the more mutations 

(single vs double) the larger changes occur in the structure (Supplementary Fig. 2e).  An A:C 

mismatch at the editing site (“site_1_1:A:C”) had a high relative contribution for NEIL1 (18.03%) and 

TTYH2 (15.95%) but contributed less to AJUBA editing levels (0.31%). The presence of A:C mismatch 

was strongly positively correlated with editing levels, consistent with previous proposals that it facilitates 

the flipping-out of the adenosine for ADAR editing33,34 (Fig. 5f). The probability of the active 

conformation (“probability_active_conf”) accounted for a mean of 8.8% relative contribution across 

substrates. A G:C closing pair at the 3’ end of a bulge structure downstream of the editing site 

(“d2_3prm_cp_bulge:G:C”) was highly specific to the TTYH2 substrate, with the strongest relative 

contribution of 20.14% for that substrate. However, this feature was not present in the NEIL1 and 

AJUBA substrates, as the d2 structure in these was not a bulge. More negative free energy 

(“free_energy”) had a positive influence on editing levels (Fig. 5f). The structure-similarity score of 

variants compared to WT feature (“sim_nor_score”) was positively correlated with editing levels. These 

four features corroborate with previous results that the overall structural stability of RNA substrate is 

positively correlated with the editing activity18. The seventh ranking feature was the position of the 

mutation along the RNA molecule (“mut_pos”). “Mut_pos” values are numbered beginning at the 5’ end 

of the RNA molecule, so higher values indicate positions further from 5’ and closer to 3’. This result 

indicates that the nucleotides adjacent to the editing site in the structure is the hot spot dictating activity. 

Though the “mut_pos” feature had a strong impact on editing level, the directionality varied across 

substrates, reflecting the interplay of the mutation position with other structural features.       

 

In addition to top individual features, a sparse set of features collectively contribute to the accurate 

predictions made by the models. For the NEIL1 substrate, 90% of the explained variance could be 

attributed to the 26 top features, compared with the 32 top features for TTYH2 and 23 top features for 

AJUBA (Supplementary Table 9). To illustrate the contributions of different types of features and to 

draw biological insights, we looked at feature groups and subgroups. We categorized the group of all 

structure and sequence features excluding the ones related to mutation-related features to 4 subgroups 

(Fig. 6b, full list of feature groups and subgroups in Supplementary Table 1). Overall, the 

thermodynamics and the editing site structure have the largest contributions, consistent with prior 

proposals that the overall RNA stability and the structure of the editing site dictate the editing 

efficiency14,18. Notably, upstream and downstream structure features are also important, such as the 

downstream features in TTYH2. The -1 and +1 nt sequence motif (termed site_prev_nt” and 

“site_next_nt” in Fig. 5g and Supplement Table 1) also contributes to the prediction albeit to a lesser 

extent. This is likely due to the fact that the motif preference was identified from previous analysis on 
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well-controlled RNA secondary structure14, while our approach encompasses comprehensive sequence 

and structure features.   

 

This systematic interpretation of our models not only reveal several biologically relevant features that 

are globally predictive across the three substrates, but also some that are highly predictive for specific 

substrates. These results showcase the promise of predictive cis-regulatory models of RNA editing but 

also highlight the need for much larger datasets spanning diverse substrates to learn more 

generalizable models of RNA editing. 

 

Discussion 
The ultimate goal in understanding the cis-regulation of RNA editing is to develop a model that 

accurately predicts the ADAR editing efficiency in vivo, namely an “editing code”. Unlike protein-DNA or 

protein-ssRNA interactions, where the primary cis-sequence largely dictates the interaction, ADAR 

substrates are required to bear double-stranded secondary structure. The difficulty of associating RNA 

sequence and secondary structure features to editing activity is a major challenge in studying the cis-

regulation of RNA editing. We integrated high-throughput measurements of ADAR1 editing with 

computational analysis of more than 100 RNA sequence and structure features simultaneously. The 

CRISPR/Cas9 engineering allowed us to study the cis-regulation of RNA editing in vivo due to its 

minimal manipulation of the RNA editing process. Substrate-specific machine learning models that 

integrated diverse sequence and structural features explained over 71% of the variance in held-out 

variant test sets and enabled prediction of editing levels on unseen variants (Fig. 5). These models also 

provided insights into the contributions of different predictive features to ADAR editing (Fig. 6). Our 

approach is more biologically relevant compared to approaches using synthetic oligo library to mimic 

dsRNA substrates because RNA variants engineered by CRISPR/Cas9 are introduced to endogenous 

genomic loci. A lot of progress has been made in recent years in deciphering the splicing code36-40. 

However, the ADAR-mediated RNA editing code likely harbors more complex regulation via RNA 

secondary structure. 

 

Our approach opens several new lines of inquiry. Measuring the structure of RNA variants in cells41-43 at 

native endogenous loci (vs. relying on predicted structure) would greatly enhance the information 

content. Further, while we focused on cis elements immediately adjacent to the editing site, longer-

range interactions may be important for editing and can be investigated using our approach. Other 

factors that can be evaluated in the future include the regions in the RNA substrates that may be bound 

by the dsRNA binding domains (such as illustrated in Fig. 5c)44, long-range cis elements such as the 
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editing inducer elements45, and trans regulators such as RNA binding proteins46. While our current 

results give rise to models with substantial predictive power for individual substrates, their 

generalizability remains low (Supplementary Fig. 6). This tendency to overfit will be mitigated by 

expanding the training set to include more RNA substrates, allowing the model to learn the shared 

properties of RNA substrates.  

 

Several systems were recently developed to recruit ADAR enzymes to specific sites for site-directed 

RNA editing23-29, providing novel tools to study biological function and a safer and reversible alternative 

to gene therapy23,47-49. These RNA engineering approaches use antisense RNA oligoribonucleotides as 

guide RNAs (gRNAs) to recruit either engineered or endogenous ADAR enzymes. Currently, the RNA 

engineering methods utilizing ADAR enzymes usually use guide RNAs (gRNA) that perfectly duplex 

with the target region except for an A:C mismatch at the editing site9–14. Our results provide new 

possible designs to mimic the highly selective and efficient editing observed in some natural ADAR 

substrates with complex non-perfect duplex structures. Such features include relatively short 5’ 

(upstream) stem required for ADAR117 compared to ADAR2 and specific non-stem 3’ (downstream) 

structure, where the internal loops at the 3’ likely contribute to the ADAR1 selectivity22. Notably, each of 

the three RNA substrates we tested has substrate-specific features that dictate the editing efficiency 

(Fig. 5f). This showcases that a screen of possible designs of gRNA would be a valuable and cost-

effective strategy to learn the best features that lead to the most specific and efficient editing for each 

different target site. In this regard, our experimental methods and computational pipeline are readily 

applicable, identifying features important for editing and predicting editing levels around a particular site 

of interest. This will increase the repertoire of strategies that could lead to more precise and efficient 

editing of target adenosine sites in the transcriptome, which are highly desirable for safely correcting 

disease-related mutations at the RNA level.  

 

Building on our work using the PREUSS pipeline, ADAR editing can be further investigated in larger 

scale and in different cell types, tissues and disease states to explore the full spectrum of cis regulation. 

Ultimately, establishing this “editing code” will help us better understand the underlying rules of RNA 

editing, which will facilitate efficient and precise transcriptome engineering for studying RNA biology 

and treating human disease. 
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Methods  
Cell culture and transfection  
HEK293T cells were cultured in Dulbecco’s modified Eagle medium (Life Technologies) supplemented 

with 10% FBS (Gibco, Thermo Fisher) and penicillin streptomycin (Life Technologies). Cells were 

maintained at 70%-90% confluency. One day before transfection, around 700,000 cells were split to 6 

wells. The next day, 500 ng of Cas9-sgRNA construct in the px330 backbone  

(https://www.addgene.org/42230/)  was co-transfected with 500 ng of the DNA donor using 

lipofectamine 2000 (Invitrogen). Cells were maintained at 50%-90% confluency for 5 days.   

 

Design of the CRISPR/KI donor oligos  
Two types of CRISPR knockin (KI) donors were designed in this study: the degenerate donor and the 

fixed donor. For the degenerate donor oligos, a single stranded DNA oligo was synthesized in which 

degenerate sequences were introduced at the interrogated regions.  In the NEIL1 donor, -3 to -1 and 

+1 to +3 were interrogated and equal molar of 4 nucleotides were introduced at these positions during 

DNA synthesis. To avoid cutting by the Cas9, a point mutation was also introduced at the PAM 

sequence. In the TTYH2 donor, a 10 nt region in the editing complementary sequence was studied, and 

equal molar of C or T was introduced. The PAM sequence was also mutated along with a 

compensatory mutation to maintain the secondary structure.  

 

For donors used for targeted mutagenesis, individual DNA sequences were designed to carry desired 

mutation(s). Briefly, a 15-20nt region around the target editing site and the corresponding region on the 

opposite strand were subject to mutagenesis. All possible nucleotide at any single position was tested, 

with exceptions where A-to-G mutation was avoided in the +1 and -1 nt of NEIL1 because it potentially 

becomes indistinguishable with A-to-I editing in RNA-seq results.  Combination mutations at two 

positions were also designed, in which each of the positions is mutated to the nucleotide in the opposite 

strand to disrupt the original structure. In addition, individual donors with altered length for interrogation 

of specific features of the RNA substrate were included.   

  

Generation of the CRISPR/KI donor pool  
For NEIL1 donors, 80mer oligos were purchased from IDT and pooled at equal molar ratio. Oligo pairs 

NEIL1_leftarm/NEIL1_rightarm, or asymmetrical labeled primer pairs 

NEIL1_leftarm_biotin/NEIL1_rightarm and NEIL1_leftarm/NEIL1_rightarm_biotin were used separately 

to add additional sequences to obtain 200mers in PCR reactions using Phusion polymerase. Around 

400ul PCR products were purified using MinElute PCR purification kit (Qiagen) to obtain the dsDNA 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/840884doi: bioRxiv preprint 

https://doi.org/10.1101/840884


	

donor pool which was verified by agarose gel electrophoresis.  For single-stranded donors, 100ul 

MyOne Streptavidin Dynabeads (Thermo Fisher) were added to the purified products that were 

amplified with asymmetrical biotin label and then the mixtures were denatured at 95 C for 10min and 

chilled on ice immediately. The unbound single stranded oligos were collected from the supernatant 

and then purified with column MinElute PCR Purification Kit (Qiagen) to obtain the ssDNA donors. For 

TTYH2 and AJUBA donors, 100 to 120-mer pooled oligos were purchased from Agilent and amplified 

using individual primers (Supplementary Table 6). Primers donor_F and donor_R of each target gene 

were used to specifically amplify the oligo library from the oligo chip. A second PCR using Donor_F_70 

and Donor_R_70 was performed to elongate the homologous arms of each donor. The PCR products 

were purified using MinElute PCR purification kit (Qiagen) and used as dsDNA donors later. 

NEIL1_degenerate_donor and TTYH2_degenerate donors were synthesized as Ultramer by IDT and 

used directly in the transfection.  

 

Guide RNA design and cloning  
Guide RNA was predicted by the web-based software CRISPR.mit.edu.  The higher ranked guide RNA 

with a PAM sequence close to the interrogation region was selected. For the TTYH2 and AJUBA loci, 

different sets of guide RNAs were designed for the KI regions in two opposite strands. To construct 

guide RNA plasmids, two reverse complementary single stranded oligos with overhangs were 

synthesized by IDT and annealed on a thermocycler (Bio-Rad) before ligation to BbsI-linearized PX330 

backbone. The ligation mix was transformed into Stbl3 chemical competent cells (Invitrogen) and single 

clones were sequence verified by Sanger sequencing.   

  

CRISPR mutagenesis and library construction  
We used 600 ng single stranded oligo donor library or 1200 ng double stranded oligo donor library 

along with 500 ng guide RNA construct to co-transfect into 1 million HEK293T cells using lipofectamine 

2000 (Invitrogen). For degenerate donor mediated knock in, 1ul of 10uM degenerate donor was used. 

1uM L755507 (Sigma Aldrich) was added to the media one day after transfection to enhance the HDR 

efficiency as reported previously50. Two biological replicates were included for each assay. The 

transfected cells were grown for 5 days before they were seeded onto 10 cm dishes for an additional 

two days. 10% of the cells were harvested for genomic DNA using Quick-DNA kits (Zymo Research). 

The remaining cells were used for nuclear extraction using the Nuclear/Cytosolic Fractionation Kit (Cell 

Biolabs) following the manual. Nuclear RNA was purified from the nuclear extract using the Trizol 

method. Genomic DNA was removed from the RNA samples using the TURBO DNase (Thermo Fisher 

Scientific). RT was performed using SuperScript III kit (Thermo Fisher Scientific) and the gene specific 
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primers. All RT products were used in total of 300 ul (50 uL x 6)  PCR reaction with Phusion 

polymerase (Thermo Fisher Scientific) and gene specific primers with Fluidigm mmPCR adaptor 

sequences51. Genomic DNA library was amplified using similar approach except for the different primer 

set. All first round of PCR products were size selected on 1.5% Agarose gel and purified using Gel 

purification Kit (Qiagen). Diluted PCR product (1:50) was used in second round of PCR to add the 

Illumina sequencing adapter and individual barcode sequences using 

Fludigm_universal_F/fludigm_barcode_R51. The library was size selected and purified as in the 

previous step.   

  

Next-generation sequencing and data analysis  
All libraries were sequenced on a NextSeq 550. NEIL1 libraries were sequenced for 75 cycles paired 

end and TTYH2 and AJUBA libraries 150 cycles paired end. To map the variants of the target gene, a 

reference genome was first built using the GMAP package, where designed mutations were included as 

SNPs. Briefly, GSNAP was used to detect variants with mismatches inside the interrogated region but 

not INDELs.  The mapped reads were separated into individual variants based on the unique mutations 

carried in the region except for the editing site and RNA editing was called and measured for each 

variant as described in previous report. The indel variants were mapped individually.  The z-score of 

each variant is calculated for each RNA library as: 

𝑧" =
$%&	(	$%)*

+
; where 𝑆 = -∑ (0&(0)23

&45
6(7

; 𝐸𝐿 = 𝑒𝑑𝑖𝑡𝑖𝑛𝑔	𝑙𝑒𝑣𝑒𝑙; 𝑥" = 𝐸𝐿" − 𝐸𝐿DE; 𝑥 = mean editing level for a 

given library.  

 

RNA secondary structure prediction  
The sequence used for WT NEIL1, TTYH2 and AJUBA are shown in Supplemental Table 7 and Fig. 
1b. For AJUBA, we chose sequence for the region near the editing site by omitting 524 nt sequences in 

lieu of the full length (>800 bp). The secondary structures (with the minimum free energy) of the RNA 

variants for all three RNAs are calculated from the Vienna RNAfold 2.4.14 using default parameters42. 

 

Calculating the probability of forming wild type secondary structure 
The probability of forming wild type-like RNA secondary structure was calculated with Vienna RNAfold 

version 2.1.9. The probability of forming the wild type secondary structure was calculated as: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	
𝑒L
($_DN
OE P

𝑍
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Where kT = 0.6 kcal at temperature T = 37 ºC. Z is the unconstrained partition function (calculated with 

RNAfold -p). E_wt is the energy of the state with the wild type-like secondary structure, calculated using 

the following constraints in RNAfold, where ‘>’ indicates that the given base must be paired with a 

residue that comes before it (5’) in the sequence and ‘.’ indicates no constraint for the given base: 

NEIL1: 

.........................................>>>>>.>>....>>>...>>>>...>>>...>>>...  

TTYH2: 

.............................................................>>>>>>>>>>>>>>>>>>>>>>.>>.>>>.>>>>>>>>>>>>>>>>>>>>..

.. 

AJUBA: 

...........................................................>>>>.>>>>>>>>>.>>.>>>>>>.>>>>>>>>.>>>>>>>>>>>>>>>. 

Z is the unconstrained partition function (calculated with RNAfold -p). An additional penalty was added 

if base pairs could not be formed in the core region of the RNA. T is 310.15 kelvin (37 ºC) For NEIL1, 

the probability was divided by the number of non-canonical base pairs that would be formed in the core 

of the wild type secondary structure, according to the following secondary structure, to roughly account 

for the additional energetic penalty that these base pairs should incur. Such reference information used 

for each RNAs are shown below. 

NEIL1 

.......................(((((.(((.(((((......))))).)))..))))).....................      

TTYH2: 

.....................((((((.((.((((((((((((............................)))))))))))).)).))))))...................... 

AJUBA: 

(((((((((((((((.((((((((.((((((.((.(((((((((.((((..........)))).))))))))).)).)))))).)))))))).))))))))))))))). 

 

Modeling the 3D structure of ADAR1 bound to NEIL1 
A homology model of human ADAR1 deaminase was built using Phyre252. The conformation of the 

core RNA residues (nucleotides corresponding to NEIL1 residues 30-39 and 44-53) was taken from the 

previously solved structure of human ADAR2 bound to double-stranded RNA (PDB ID: 5HP3). The 

RNA was positioned relative to the protein by aligning the previously solved ADAR2 structure (in 

complex with dsRNA) to the homology model of ADAR1, then copying the RNA coordinates from the 

ADAR2-dsRNA structure. Protein residues in the ADAR1 homology model that clashed with the RNA 

were removed (the final residues included in the model were: 823-973, 996-1003, and 1010-1223). The 

remaining NEIL1 RNA nucleotides were modeled using the Rosetta RNP-denovo method53 with the 

following command line: 
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rna_denovo -fasta fasta.txt  -secstruct_file secstruct.txt -s 

ADAR1_homology_model_and_core_RNA_from_5hp3.pdb RNA_helix_1.pdb RNA_helix_2.pdb 

RNA_helix_3.pdb RNA_helix_4.pdb RNA_helix_5.pdb -new_fold_tree_initializer true -minimize_rna true 

-minimize_protein_sc false -out:file:silent build_full_wt_neil1.out -rna_protein_docking true -

rnp_min_first false -rnp_pack_first false -cycles 10000 -rnp_high_res_cycles 0 -minimize_rounds 2 -

nstruct 2000 -ignore_zero_occupancy false -convert_protein_CEN false -FA_low_res_rnp_scoring true 

-ramp_rnp_vdw true -dock_each_chunk_per_chain false -use_legacy_job_distributor true -no_filters 

  

where RNA_helix_1.pdb, RNA_helix_2.pdb, etc. are ideal A-form helices for base-paired regions of 

Neil1. Possible placements of the double stranded RNA binding domains were visualized by aligning 

the previously solved structure of the ADAR2 dsRNA binding motif bound to dsRNA (PDB ID: 2L2K) to 

our model of NEIL1 bound to ADAR1. 

 

Machine learning models of RNA editing levels 
All feature extraction and model training code is available to access on github: 

https://github.com/kundajelab/adar_editing 

Feature extraction  
Boot-strapped and inferred structures for NEIL1, AJUBA, and TTYH2 were annotated with the bpRNA 

algorithm30. The bpRNA annotations were in turn utilized to extract structural and positional features for 

each variant. A feature matrix with structure-specific features, sequence-specific features, and stability-

specific features (Supplementary Table 1) was engineered for each substrate and included a total of 

122 features (Supplementary Tables 2, 3, 4).  

Model training  
The XGBoost44 Python library (v. 0.81 ) was used to train gradient boosted regression trees to predict 

Adar editing levels from feature matrices described above. Training was performed both within-

substrate and across substrates. The following approaches were utilized:  

● Train on NEIL1, predict on NEIL1.  

● Train on TTYH2, predict on TTYH2.  

● Train on AJUBA, predict on AJUBA.  

● Train on NEIL1 and TTYH2, predict on AJUBA.  

● Train on NEIL1 and AJUBA, predict on TTYH2.  

● Train on TTYH2 and AJUBA, predict on NEIL1.  

● Train on TTYH2, AJUBA, NEIL1. Predict on TTYH2, AJUBA, NEIL1.  
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● Train on NEIL1, predict on AJUBA, TTYH2  

● Train on TTYH2, prediction on NEIL1, AJUBA  

● Train on AJUBA, predict on NEIL1, TTYH2  

 

The dataset was randomly separated into 3 splits: training on 70% of variants, model validation on 

15%, and testing on the remaining 15%. To avoid train/test contamination, base pair positions along the 

RNA molecules were assigned to one of the 3 splits (training, tuning, or test). All features associated 

with a given base pair position were assigned to the corresponding split. Any feature that was null or 

non-varying across all variants in a given training splits was removed from analysis. Any variant that 

had more than one mutation was included in the feature matrix twice -- the features in each entry for 

the variant were calculated specifically for one of the mutations.  

 

XGBoost was trained for a maximum of 1000 iterations, with early stopping after 10 subsequent rounds 

with no reduction in root mean square error (RMSE) on the validation split. Default parameters were 

used.  

 

In addition to models trained on computed feature values as indicated in Supplementary Tables 2 -4, 

a separate set of models were also trained across substrates using ratios of numerical feature values 

relative to the wild type feature values.  Ratios of feature values relative to the WT feature values within 

the same substrate were computed for the following feature set: 'editing_value', 'free_energy', 

'sim_nor_score', 'probability_active_conf', ‘all_stem_length','site_length', 

'site_length_internal_es','site_length_internal_ecs', 'u_count', 'u_all_stem_length', 'u_hairpin_length', 

'u1_distance', 'u1_length', 'u2_distance','u2_length', 'u3_distance','u3_length', 

'd_count','d_all_stem_length', 'd1_distance','d1_length', 'd2_distance','d2_length', 

'd2_length_internal_ecs', 'd3_distance', 'd3_length'. Ratios were also calculated for substrate-specific 

features such as the length of hairpin vs stem vs bulge for the upstream and downstream structural 

features.  

 

The R^2 value was calculated on the test set to determine the percent of total variance explained by 

the feature matrix31. Other metrics to measure model performance included:  

● Spearman correlation from the scipy.stats Python library  

● Pearson correlation the scipy.stats Python library  

● Mean absolute error (MAE) from sklearn.metrics Python library  

● Mean absolute percent error (MAPE)  
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● Root mean square error (RMSE) from sklearn.metrics Python library  

● Area under the precision recall curve (auPRC) from sklearn.metrics Python library  

● Area under the receiver operating characteristic (auROC) from sklearn.metrics Python library  

Feature importance analysis  
Feature importance analysis was performed to identify the subset of features most informative in 

predicting Adar editing levels. The XGBoost “plot_importance” function was used to calculate the F 

score for each feature. The TreeSHAP algorithm31 was applied to interpret feature importance from the 

XGBoost model. SHAP summary values were computed for each feature as a measure of feature 

importance using the “shap_values” function within the “TreeExplainer” class. Pairwise interaction 

values from TreeShap were also calculated to identify highly correlated feature values.  

 

SHAP values were applied to calculate the combined relative importance of feature subsets. Feature 

subsets (Supplementary Table 1) were defined as follows; some features were parts of multiple 

subsets:  

● Structure features: stem length, free energy, probability of active conformation.  

● Number of mutations in the variant. 

● Mutation-specific sequence features: mutation position, mutation site reference allele, mutation 

site alternate allele, distance of mutation site from edited base.  

● Mutation-specific structure features: bpRNA structure designation for the mutation site, bpRNA 

structure designation for the adjacent upstream site, bpRNA structure designation for the 

adjacent downstream site, boolean indication of whether or not the mutation is part of the same 

structure as the editing site.  

● “Other” mutation-specific features: Type of mutation (indel, SNP), presence/absence of mutation 

(WT/ mutated) in the variant   

● Editing site sequence features  

● Editing site structure features  

● Characterization of the 3 structural features upstream of the editing site  

● Characterization of the 3 structural features downstream of the editing site  

 

For each feature subset, the mean absolute SHAP values across variants were calculated. These were 

in turn summed across all features in the subset and compared to the total sum of mean absolute 

SHAP values across all features.  
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Overall feature rankings were computed by calculating the mean absolute value of SHAP values for 

each feature across the test set samples. These mean(|SHAP|) values were summed across all 

features and the percent contribution to the total was obtained for each feature. These percent 

contributions for each feature were averaged across substrates to determine features that were ranked 

as high importance consistently across all substrates.  

 

Data availability 
The RNA-seq data are deposited in the following repository: Repository/DataBank Accession: GEO; 

AccessionID: GSE138860. Databank URL: http://www.ncbi.nlm.nih.gov/geo/. Bioinformatics codes for 

RNA editing call are available upon request. Codes for the PREUSS computational pipeline is available 

on GitHub URL: https://github.com/kundajelab/adar_editing.  
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Legend for Main Figures 
Figure 1: CRISPR/Cas9-mediated mutagenesis in endogenous RNA to dissect RNA editing by 
ADAR1 in cells. a) Overview of the experimental methods and computational pipeline. CRISPR/Cas9 

mediated homology-directed repair is applied to mutagenesis of endogenous RNA in HEK293T cells. A 

supervised machine learning method (a gradient boosted tree, XGBoost) was applied to develop 

quantitative models that predict how cis elements such as RNA sequence and secondary structure 

determine RNA editing level. b) Sequence and secondary structure of the three RNAs, NEIL1, TTYH2 

and AJUBA, for targeted mutagenesis. The residues subjected to mutations are highlighted in red and 

the specific editing site is in blue. For AJUBA, partial sequences from the genomic sequences are taken 

to focus on the region of interest. Therefore, the G59 and U60 shown in (b) is 524 nt apart in the 

genomic region.  c) Degenerate donor oligos are designed for the -3 to +3 nt region around the specific 

editing site in the NEIL1 substrate. The mutagenized region is highlighted in red and the editing site in 

blue. d) The distribution of editing level by the number of mutations from the results of the degenerate 

NEIL1 library from (c). e) Examples of how the number of mutations affect the RNA secondary structure 

of NEIL1. f) Reproducible editing measurement of the two replicates of the targeted mutagenesis library 

of NEIL1.  

 

Figure 2: RNA editing results from the targeted mutagenesis experiments. a) Number of the types 

of mutations made in each targeted-mutagenesis library. b) Distributions of editing levels for each 

targeted-mutagenesis library, colored by editing level quantile in each RNA library. Heatmap of editing 

levels from c) single- and d) double-mutations in the editing strand of NEIL1. e) Heatmap of editing 

levels from single-mutation in the editing complementary sequence (ECS) of NEIL1. Editing level of WT 

NEIL1 is 0.64. The z-score is calculated as described in Methods and the WT editing level z-score is 0. 

c-e share the same heatmap scale shown in e). f) Position-specific effects of NEIL1 single mutations. 

The single mutations were grouped into four types: sequence change (transition and transversion) and 

the sequence change that also resulted in structural effects (break=disrupted the original WT base-pair 

at the position). 

 

Figure 3: Examples of RNA secondary structure changes of NEIL1 variants. a-b) Single-mutation 

at different locations lead to different editing level. c) Compensatory mutations generally maintain high 

editing level. d) Alterations in the 5’ stem and 3’ non-stem structure elements affect editing level.  

 

Figure 4: Cis regulatory features explain differences of editing levels among RNA variants. 
Comparing the difference of a) Free Energy, b) All Stem Length, c) Similarity Score, and d) Probability 
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of Active Conformation in the highly edited (75 to 100 percentile in editing level in the library) with the 

lowly edited (0 to 25 percentile) variants in each RNA library. ****, P < 0.0001 in t-test. 

 

Figure 5: Quantitative model predicts editing level by combining complex RNA sequence and 
structure features. a) Structural features annotated by bpRNA and included in featurization of RNA 

variants. b) High-level feature groups for input to XGBoost analysis. u1= structural element immediately 

upstream of editing site; u2= structural element upstream of u1; site=structural element within which the 

editing site is found; d1= structural element downstream of site; d2= structural element downstream of 

d1; d3= structural element downstream of d2.  c) Illustration of a putative model for binding of the 

NEIL1 RNA (cyan) to the ADAR1. The ADAR1 deaminase domain (silver) and modeled from ADAR2 by 

Phyre2. The dsRNA binding domains (pink) are modeled in one possible conformation as described in 

the Methods. The editing site 1:1 internal loop on NEIL1 is shown in red and the editing A shown as 

space filled. The upstream (purple and light purple) and downstream (yellow, orange and light orange) 

immediately adjacent to the editing site are colored according to shown in (b). d) XGBoost editing level 

predictions for variants of NEIL1 (orange), TTYH2 (purple), and AJUBA (green) within the test split 

(15% random split of positions). R2 is a measure of the % variance explained. Spearman R indicates 

correlation between observed and predicting editing values. e) SHAP annotation of feature 

contributions for the NEIL1 test split variant with the highest observed editing level. Features with 

positive SHAP scores (drive the prediction over the dataset base value) are indicated in pink; features 

with negative SHAP values (drive the prediction below the dataset base value) are indicated in blue. 

Base value refers to the mean predicted editing level across the test split. Output value refers to the 

XGBoost prediction on this example. The four features with the highest absolute value SHAP scores 

are shown.  f) SHAP annotation of feature contributions for the NEIL1l1 test split variant with the lowest 

observed editing level. g) SHAP values for the 20 most important features driving XGoost editing level 

predictions on the test split for NEIL1, TTYH2, and AJUBA. Each dot indicates a variant in the test split. 

Features (y-axis) are ranked from top (most significant) to bottom (least significant) by predictive 

importance.  

 

Figure 6: Cis regulatory features synergistically contribute to model prediction. a) Percent 

contributions of individual features to model prediction ranked by averaging normalized SHAP values. 

Higher ranking with smaller standard errors indicates that these features are commonly among the 

highest contributor to model prediction in all three RNAs. b) Contributions of different feature groups to 

the prediction of editing levels for each RNA library. The group of individual features included in each 

feature group are listed in Supplementary Table 1.  
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Legend for Supplementary Figures 
Supplementary Figure 1: Performance of targeted-mutagenesis RNA substrates. a) Degenerate 

donor oligos are designed for a 10 nt region of the ECS in the TTYH2 substrate. The mutagenized 

region is highlighted in red and the editing site in blue. b) The distribution of editing level by the number 

of mutations from the results of the degenerate TTYH2-ECS library from (a). c to f) Reproducibility of 

the editing level measurement in different substrates. Each dot represents one designed variant. 

Editing level of each variant is compared. c) Two biological replicates for NEIL1. d) Two biological 

replicates targeting the TTYH2 edit strand. e) Two biological replicates targeting TTYH2 ECS. f) Two 

biological replicates targeting AJUBA edit stem. g to h) Donor type effect on CRISPR knock-in 

efficiency and RNA expression of NEIL1 variants. i) Abundance of designed NEIL1 variants detected 

from genomic DNA. Watson (sense) strand DNA oligo library or double stranded DNA library were used 

in the CRISPR mediated knock-in assay. Each dot represents one designed NEIL1 variant coverage in 

either experiment. j to k). Editing level measurement reproducibility using different versions of NEIL1 

donors, comparison between Watson strand donor and double stranded donor (j) and Watson strand 

donor and Crick strand donor (k).  
 

Supplementary Figure 2: Editing levels from targeted-mutagenesis libraries.  a) Heatmap of 

editing levels from single- and double-mutations in the editing strand of TTYH2. b) Heatmap of editing 

levels from single mutations in the editing complementary sequence (ECS) of TTYH2. Editing level of 

WT TTYH2 is 0.31. c) Heatmap of editing levels from single- and double-mutations in the editing strand 

of AJUBA. Editing level of WT TTYH2 is 0.35. The z-score is calculated for each RNA library as 

described in Methods and the WT editing level z-score is 0. d) Comparing editing levels of variants with 

the mutation type. e) Comparing the normalized similarity score of the variants with mutation type.  *, P 

< 0.05; ****, P < 0.0001; in t-test. 

 

Supplementary Figure 3: Selected examples of variants of NEIL1, TTYH2 and AJUBA. a-b) 
Position-specific effects of TTYH2 (a) and AJUBA (b) single mutations. c) Effects of compound 

mutations that break the base pairing in the 5’ and 3’ structure of NEIL1 (WT NEIL1 editing level is 

0.64). d) Comparing the editing levels of variants with different editing site structure. “Others” means 

the editing site A is located in a structure other than the 1:1 mismatch internal loop. The A:A mismatch 

was not presented in our RNA library.  
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Supplementary Figure 4: Correlation of cis regulatory features to editing levels of all variants of 
NEIL1, TTYH2, and AJUBA. a) Normalized Similarity Score. b) Free Energy. c) Probability of Active 

Conformation. d) All Stem Length. e) 5’ Stem Length. 

 

Supplementary Figure 5: Joint training and testing across substrates. a) Test set XGBoost 

predictions for each substrate from a model trained jointly on NEIL1, TTYH2, and AJUBA. b) SHAP 

values for the 20 most important features driving test set predictions. Features are ranked in order of 

predictive importance from most important (top) to least important (bottom). c) SHAP values for the 

variants with highest and lowest editing levels for each substrate. d) Percent contribution to XGBoost 

test set predictions from each feature subset. Feature subset composition is defined in Supplementary 

Table 1. e) Spearman and Pearson correlation between observed and XGBoost-predicted editing levels 

for NEIL1, TTYH2, and AJUBA variants within the test set. f) Mean absolute error (MAE), mean 

absolute percent error (MAPE), and root mean square error (RMSE) for XGBoost predictions on test 

set variants of NEIL1, TTYH2, AJUBA. g) Area under the precision recall curve (auPRC) and area 

under the receiver operating characteristic curve (auROC) for test set variants of NEIL1, TTYH2, and 

AJUBA.  

 

Supplementary Figure 6: XGBoost model performance across training sets. Spearman correlation 

between observed and predicted Adar editing levels in the held-out test set, as well as the percent of 

variance explained in the held-out test set, is illustrated for all combinations of training and test sets 

examined. Filled-in circles indicate that the particular substrate was included in a given training/test 

split.  
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Legend for Supplementary Tables 
Supplementary Table 1: Feature engineering for machine learning. Sheet 1: Features used with 

XGBoost for prediction of editing level; Sheet 2: List of of each feature sub-group with the features that 

comprise it.  

 

Supplementary Table 2: NEIL1 feature matrix. Sheet 1 includes the degenerate variant feature 

values. Sheet 2 includes the computational variant feature values.  

 

Supplementary Table 3: TTYH2 feature matrix. Sheet 1 includes the degenerate variant feature 

values. Sheet 2 includes the computational variant feature values.  

 

Supplementary Table 4: AJUBA feature matrix.  Computational variant feature values are shown.   

 

Supplementary Table 5: XGBoost prediction performance on the training, validation, and test 
splits.  
 

Supplementary Table 6: Oligonucleotides for CRISPR/Cas9-mediated mutagenesis. Sheet 1 is the 

guide RNA sequence. Sheet 2 and 3 contains sequences of donor oligos for CRISPR. Sheet 4 contains 

sequences of PCR primers. 

 

Supplementary Table 7: RNA sequence, mutation name, editing level and computationally 
predicted RNA secondary structure. Sheet 1 is NEIL1. Sheet 2 is TTYH2. Sheet 3 AJUBA. 

 

Supplementary Table 8:  Comparison of training jointly on all substrates with numerical feature 
values computed directly versus numerical feature value ratios relative to wild type.  
 
Supplementary Table 9:  Normalized SHAP and F1 scores for each feature used to train the 
substrate-specific AJUBA, NEIL1, and TTYH2 models. Relative feature contributions are normalized 

to sum to 1 for the full set of features. A value of "NA" indicates that the feature was not used to train a 

given model due to a lack of training and/or validation examples for that feature/substrate combination. 
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