Genomic epidemiology of vancomycin resistant *Enterococcus faecium* (VR*Efm*) in Latin America: Revisiting the global VRE population structure

3

Rafael Rios¹, Jinnethe Reyes^{1,2}, Lina P. Carvajal¹, Sandra Rincon¹, Diana
Panesso^{1,2,3}, Paul J. Planet^{4,5}, Aura M. Echeverri¹, An Dinh^{2,3}, Sergios-Orestis
Kolokotronis ^{5,6}, Apurva Narechania⁵, Truc T. Tran^{2,3}, Jose M. Munita^{2,3,7,8}, Barbara
E. Murray^{2,3,9}, Cesar A. Arias^{1,2,3,8,9} and Lorena Diaz^{1,2,7*}

8

9 ¹ Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia. 10 11 ² Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA. 12 ³ Division of Infectious Diseases, Department of Internal Medicine, McGovern 13 Medical School, University of Texas Health Science Center, Houston, Texas, USA 14 ⁴ Department of Pediatrics, Perelman School of Medicine, University of 15 Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, USA 16 ⁵ Institute for Comparative Genomics, American Museum of Natural History, New 17 York, NY, USA 18 ⁶ Department of Epidemiology and Biostatistics, School of Public Health, SUNY 19

20 Downstate Health Sciences University, Brooklyn, NY, USA

- ⁷ Millennium Initiative for Collaborative Research On Bacterial Resistance
- 22 (MICROB-R), Santiago, Chile
- ⁸ Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana,
- 24 Universidad del Desarrollo, Santiago, Chile
- ⁹ Department of Microbiology and Molecular Genetics, McGovern Medical School,
- 26 University of Texas Health Science Center, Houston, Texas, USA
- 27
- 28 ^{*}Correspondence
- 29 Lorena Diaz, PhD
- 30 Molecular Genetics and Antimicrobial Resistance Unit, International Center for
- 31 Microbial Genomics, Universidad El Bosque
- 32 Av Cra 9 131a-02, Bogotá, Colombia.
- 33 Tel: +57 6489000 ext 1131
- 34 Email: diazsandra@unbosque.edu.co

35

36

- 37
- 38
- 39
- 40

42 Abstract

The prevalence of vancomycin-resistant *Enterococcus faecium* varies across 43 geographical regions yet little is known about its population structure in Latin 44 America. Here, we provide a complete genomic characterization of 55 45 representative Latin American VR Efm recovered from 1998-2015 in 5 countries. 46 We found that VREfm population in the region is structured into two main clinical 47 clades without geographical clustering. To place our regional findings in context, 48 we reconstructed the global population structure of VREfm by including 285 49 genomes from 36 countries from 1946-2017. Our results differ from previous 50 studies showing an early branching of animal related isolates and a further split of 51 52 clinical isolates into two sub-clades, all within clade A. The overall phylogenomic 53 structure was highly dependent on recombination (54% of the genome) and the 54 split between clades A and B is estimated to have occurred more than 3585 years 55 BP. Furthermore, while the branching of animal isolates and clinical clades was 56 predicted to have occur ~894 years BP, our molecular clock calculations suggest that the split within the clinical clade occurred around ~371 years BP. By including 57 isolates from Latin America, we present novel insights into the population structure 58 59 of VREfm and revisit the evolution of this pathogen.

- 60
- 61

62

63

64 Introduction

Enterococci are predominantly non-pathogenic gastrointestinal commensal bacteria that occasionally cause human infections. Among them, *Enterococcus faecalis* and *Enterococcus faecium* represent the species that account for most clinically relevant infections. In particular, *E. faecium* has been able to adapt to the hospital environment, emerging during the last few decades as a leading cause of health-care infections worldwide, and becoming the most challenging species to treat^{1,2}.

Genome plasticity, the presence of multiple antibiotic resistance determinants, and 72 73 the lack of the rapeutic options have contributed to the adaptation of *E. faecium* to hospital environments^{3,4}. Moreover, high recombination rates and the acquisition of 74 75 mobile elements in the genome of *E. faecium* also have driven this evolutionary process⁵. In addition, the enrichment of virulence determinants, such as surface 76 proteins and phosphotransferase systems (particularly PTS^{clin}, a putative factor 77 78 found to contribute to the intestinal colonization in a murine model) seems to provide an advantage to the hospital adaptive process^{3,6}. Furthermore, functional 79 gene groups, such as those involved in galactosamine metabolism, bile hydrolysis 80 and phosphorus utilization, are also abundant in *E. faecium* clinical strains 81 compared to non-clinical isolates, suggesting that specific metabolic factors have 82 also facilitated adaptation⁷. 83

In terms of antibiotic resistance, one of the most relevant antibiotic resistance traits
 acquired by enterococci is resistance to vancomycin due to the *van* gene clusters⁸.
 Furthermore, vancomycin-resistant *E. faecium* (VR*Efm*) frequently exhibits

resistance to ampicillin and high-level resistance to aminoglycosides ^{9,10} . Indeed,
the World Health Organization (WHO) has categorized VR Efm as a priority agent
for which the finding of new and effective therapeutic strategies is imperative ¹¹ .
VREfm is widely distributed in hospitals around the world, with the prevalence
varying according to geographical location. In US hospitals, VR Efm is an important
clinical pathogen, particularly in immunosuppressed and critically-ill patients ^{1,12} .
The National Health-Care Safety Network described that 82% of E. faecium
recovered from bloodstream infections in the US were vancomycin-resistant,
whereas only 9.8% of <i>E. faecalis</i> were resistant to vancomycin ¹² . In Europe,
prevalence rates of VR Efm vary widely by country, but according to the European
Centre for Disease and Control (ECDC) 2016 report, overall prevalence across
European countries was 30% ¹³ . Although data regarding VR <i>Efm</i> in Latin America
are scarce, a few studies have shed some light on the current situation. A
prospective multicentre study focusing on 4 countries in northern South America
(i.e. Colombia, Ecuador, Peru and Venezuela) found an overall prevalence of
VR <i>Efm</i> in clinical enterococcal isolates of 31% ¹⁴ . More recently, another study
performed in Brazil reported a VR <i>Efm</i> prevalence close to 60% ¹⁵ .
Tracking the population structure of <i>E. faecium</i> using conventional bacterial typing
techniques has been challenging ¹⁶ . Although wide genetic variability has been
observed among <i>E. faecium</i> strains causing clinical infections, a previously
described lineage (designated clonal complex CC17 by multi locus sequence
typing [MLST]), was initially recognized as globally distributed ¹⁷ . However, the

109 classification of this lineage by MLST has some important drawbacks when

analysing the population structure of *E. faecium*, since high rates of recombination 110 111 in the MLST loci often occurs in these organisms¹⁸. Additionally, some strains are not type able by MLST due to the lack of the locus pts¹⁹ leading to major 112 discrepancies compared to whole-genome sequencing (WGS) when it is used for 113 114 typing purposes²⁰. Whole-genome-based comparative phylogenomic analyses using E. faecium 115 116 recovered from different geographical regions have identified two clades, designated A and B. Clade A mostly contains isolates recovered in clinical settings 117 (including those from CC17)²¹, while clade B encompasses organisms isolated in 118 community settings, usually from healthy individuals ^{3,20,22–24}. A further subdivision 119 120 has been described within clade A, which groups isolates from animal origin in a 121 subclade (designated as A2), separating them from those recovered from human 122 infections or colonization (subclade A1). However, these analyses have been performed mostly with US and European 123 124 isolates, lacking geographical diversity particularly in areas such as Latin America. Indeed, studies on the molecular epidemiology of VREfm isolates from Latin 125 America are sparse, with one study suggesting that the CC17 lineage 126 127 predominates¹⁴. Furthermore, studies analysing the population structure of VR*Efm* in the region using high-resolution, WGS-based phylogenomic comparative 128 129 methods are limited. Here, we sought to characterize the population structure of VREfm lineages in a collection of isolates recovered between 1998-2015 in 130 prospective multicentre studies performed in selected Latin-American 131

From a collection of 207 VR Efm clinical isolates obtained between 1998 and 2015

- hospitals^{14,25,26} and revisit the global population structure and evolutionary history
- 133 of VR*Efm*.
- 134

137

135 Results

136 Genomic characterization of Latin American VR*Efm* clinical isolates

in five Latin American countries (Colombia, Ecuador, Venezuela, Peru and 138 Mexico), we selected 55 representative isolates for WGS. We included the first 139 140 VREfm (ERV1) reported in Colombia as the representative of 23 isolates with identical PFGE banding pattern, recovered from an outbreak in 1998-1999 and 141 affecting 23 patients in a single teaching hospital²⁵. Five isolates (out of 7 142 available) were selected from a national surveillance in Colombia during 2001-143 2002, which included 15 tertiary hospitals among 5 cities²⁶ and 16 (out of 35 144 145 available) were chosen from a subsequent surveillance study (2006-2008) performed in Colombia, Ecuador, Venezuela and Peru and the selected isolates 146 were chosen based on their different banding patterns¹⁴. The remaining 33 isolates 147 148 were obtained from sporadic isolates and outbreaks that occurred in Colombia and

- 149 Mexico (2002-2014). In order to characterize the VR*Efm* lineages circulating in
- Latin America, we reconstructed their phylogenetic history based on 1,674 genes
- 151 (groups of orthologous sequences; hereafter referred to as orthogroups) present in
- more than 90% of the genome sequences (core genome) from a total of 6735
- orthogroups (pan-genome) using a Bayesian approach (Figure 1A). We observed a

154	split into two main clades (Clade I and Clade II, marked in red and green,
155	respectively). Clade I included all the ST412 isolates, while Clade II had all the
156	ST17 isolates from our sample. We observe that the emergence of VR Efm in
157	Colombia was associated with Clade II, including the first VREfm (described in
158	1998) and representatives from the first national surveillance (2001 to 2002).
159	Additionally, ST412 was reported in 2005 and, since then, ST17 and ST412 seem
160	to be the most prevalent STs in the country. Our previous results showed that Peru
161	had the highest prevalence of VRE fm (48%) and our PFGE and MLST results
162	suggested higher diversity in Peruvian lineages compared to Colombia, Ecuador
163	and Venezuela with a predominant circulation of ST412 ¹⁴ . Indeed, the
164	representative VREfm isolates of the circulating lineages in Peru collected in the
165	two-year period (2006-2007) exhibited a marked genomic variability (Figure 1A and
166	В).

167 The resistome and virulome of Latin American VREfm

In order to characterize antibiotic resistance determinants, we built resistome 168 169 profiles by detecting acquired resistance genes and mutations known to confer resistance to linezolid, ciprofloxacin and daptomycin. All the VREfm isolates from 170 171 our collection were resistant to vancomycin (MIC₉₀ >256 µg/ml) and teicoplanin (MIC₉₀ 64 µg/ml) (Figure 1B). The presence of *vanA* was confirmed in all isolates 172 by PCR assays. Consistently, we confirmed the presence of the entire vanA cluster 173 in 54 out of the 55 sequenced genomes. Of note, the genome of ERV69 lacked the 174 two-component regulatory system *vanSR*, although still exhibiting MICs of >256 175

176	μ g/ml and 64 μ g/ml for vancomycin and teicoplanin, respectively. The deletion of
177	the two-component regulatory system has been previously reported ²⁷ .
178	High-level resistance to ampicillin was consistently found in all 55 E. faecium
179	isolates, a phenotype that was corroborated using comparisons of the PBP5
180	protein sequence using a machine-learning prediction model. This approach was
181	based on the amino acid changes present in the PBP5 protein across susceptible
182	and resistant isolates (see details in Methods).
183	High-level resistance to gentamicin was identified in 31% of the isolates of our
184	collection and, within the sequenced representatives, the presence of aac(6)-
185	aph(2") was detected in 49% of the genome sequences. High-level resistance to
186	streptomycin was identified in 39% of the Latin American VRE fm isolates with a
187	high prevalence of the ant(6)-la gene (89%; n=49) in the sequenced genomes.
188	Fluoroquinolone resistance is very common in <i>E. faecium</i> . All isolates in our
189	collection were fluoroquinolone-resistant and we were able to predict the presence
190	of substitutions in GyrA and ParC associated with this phenotype. The most
191	common substitution in GyrA was Ser84Arg (67%; n=37). All isolates exhibited
192	Ser82Arg (53%; n=29) or Ser82IIe (47%; n=26) substitutions in ParC.
193	The cat gene conferring resistance to chloramphenicol was present only in the
194	three Peruvian genomes. Interestingly, Peruvian isolates had the highest
195	resistance to this antibiotic (21%). All the isolates from this collection were
196	susceptible to linezolid; however, we detected the various genetic elements
197	previously associated with linezolid resistance. The gene, optrA, was detected in

198	one genome of a Colombian linezolid-susceptible isolate (ERV138). Also, we
199	identified the presence of <i>cfrB</i> , a recently reported variant of <i>cfr</i> ²⁸ , in a Mexican
200	isolate (ERV275). We predicted tetracycline resistance owing to the presence of
201	<i>tetM</i> (43.6%; n=24), <i>tetL</i> (16.3%; n=9) and <i>tetS</i> (1.8%; n=1) in the sequenced
202	genomes, but resistance to this group of antibiotics was not tested phenotypically.
203	Substitutions in LiaS (Thr120Ala) and LiaR (Trp73Cys), which have been strongly
204	associated with daptomycin resistance and tolerance ^{29,30} , were present in three
205	VREfm isolates, recovered before daptomycin was available in the region. Of note,
206	the three isolates showed MICs between 2-4 μ g/ml, considered now as
207	"daptomycin-susceptible dose-dependent", by the Clinical & Laboratory Standards
208	Institute (CLSI) ³¹ .
209	Latin American VRE isolates also harboured a high proportion of putative virulence
210	determinants (Figure 2). The vast majority had gene clusters related to pilus
211	formation, adhesins and microbial surface components recognizing adhesive
212	matrix molecules (MSCRAMMS). Interestingly, the notable exception was the
213	Clade I isolates, which often lacked fms22, swpC and hylEfm. Our results suggest
214	that the "virulome" of Latin-American VRE is similar to those from other regions in
215	the world ³² .

217 Global Phylogenetic Reconstructions of Latin American VRE

To place the genetic lineages of VR*Efm* isolates circulating in Latin America into a global context, we performed a WGS-based phylogenomic analysis. We included

285 E. faecium genomes (VRE and non-VRE) from the publicly available NCBI 220 221 collection aiming to incorporate a diverse set of sequences for comparisons. The included isolates were from colonizing, commensal, animal and clinical sources 222 223 and were collected between 1946-2017 from Europe, North America, Asia, Africa 224 and Australia (Supplementary Table 1). We constructed a pangenome (29,503) 225 orthogroups) and core genome (978 orthogroups). Using the core genome, we built 226 a phylogenomic tree of the species to show the evolutionary relationships among 227 isolates based on the variation of their genomic sequences. Figure 3 shows that, 228 as previously reported, we found a clear split into two main clades corresponding to the previously designated clades A and B^{3,22,24}. All Latin American isolates from 229 230 our clinical collection were in clade A. We compared the genomic characteristics among the two main clades and found similar findings as published previously 231 (Supplementary table 2)³. However, our data showed that the core genome was 232 larger in clade B as compared to clade A (1,466 vs 1,182 orthogroups, 233 234 respectively).

Considering the relevance of *E. faecium* as a cause of hospital-associated 235 infections and that all Latin American isolates were grouped within clade A, we 236 237 sought to dissect the population structure of this clade when adding the genomes of these isolates. Our first approach was based on a core genome (>90% 238 239 reconstruction), which contained 1,226 orthogroups and the isolate Com15, from 240 clade B, as the outgroup to root the tree. We observed two major subclades. The 241 first was composed of 52 genomes, most of which were from animal sources (57%, 242 n=30), related to the previously described subclade A2³. The second lineage

harboured 273 genomes, with 91% (n=228) corresponding to isolates obtained 243 244 from clinical sources (Supp. Figure 2A), and related to the subclade A1³. Previous studies have shown contradictory distributions of the subclades A1 and 245 A2 within clade A²⁰; suggesting that clade A2 is not in fact a clade, but rather 246 corresponds to the paraphyletic early branching lineages of clade A. To further 247 clarify the issue, we performed a phylogenomic analysis accounting for 248 249 recombination events within clade A. We used the variants found from paired 250 alignments of each genome against the chromosome of reference Aus0085 and 251 built a whole-genome multiple sequence alignment (WGMSA) of all genomes in the clade. We used this alignment to create a maximum likelihood tree, which is 252 253 required for determining recombinant regions using ClonalFrameML³³. The 254 average amount of recombination found in the 303 genomes belonging to clade A 255 was 19,539pb (Supp. figure 2C). The total recombinant regions found across 256 clinical isolates encompassed 1.6 Mb (54% of the length of WGMSA). Interestingly, 257 the exclusion of recombinant regions considerably altered the structure of the tree, 258 and showed 7 early-branching subclades that included 73 genomes (mostly from animal sources) rather than a split into clades A1 and A2. 259 260 Following these animal-related early branches, we observed a split into two main

subclades (Supp. Figure 2B). Overall, these subclades were related to clinical
sources, exhibiting a high similarity in terms of prevalence of antibiotic resistance
and virulence determinants (Supplementary table 3). We refer to them as clinicallyrelated clades I and II (CRS-I and CRS-II), containing 101 and 124 genomes
respectively. Latin American genomes from our collection were split between these

266	two CRS, showing that Clade I and Clade II (derived from the analysis of Latin
267	American VREfm, see above) belonged to CRS-I and CRS-II, respectively. Of
268	note, the genomes from our collection were distributed almost equally between
269	CRS-I (49%) and CRS-II (51%). Furthermore, despite the inclusion of a few
270	outbreak isolates and that VR Efm from Latin America originated in different
271	periods, cities and countries, our phylogenetic reconstruction showed 11
272	conserved clusters with four or more isolates from the same country (Figure 4). In
273	particular, three clusters had only Colombian genomes with the number of SNPs
274	among them, within the regions not showing recombination, ranging between 36
275	and 160. We also found clusters among isolates from Brazil ($n=3$), USA ($n=3$),
276	Denmark (n=1) and Sweden (n=1). The Danish cluster is situated in the animal-
277	associated branches, and their genomes were closely related (with an average of
278	43 SNPs among them). Of note, two of the USA clusters were related to each other
279	and to 5 other isolates, four of them from the UK and one from Colombia in our
280	collection (172 SNPs difference on average among them).
281	In CRS-I, there were 23 different STs, with ST412 and 78 the most frequent (34%
282	and 11%, respectively) (Figure 4). Importantly, we did not find a strong correlation
283	between MLST and the phylogenomic analysis, as isolates belonging to the same
284	ST were not all clustered in the same clades, and were distributed in different
285	groups in the phylogeny. In particular, 56% (n=9) of genomes from ST78 were in

- 286 CRS-I, while 37% (n=6) were in CRS-II. To further dissect this discrepancy, we
- 287 performed a phylogenetic reconstruction using only the sequences of the 7 MLST
- 288 loci and compared it against the phylogeny of Clade A. Our results showed that

289	many isolates from ST17, ST18, ST78, ST203, ST412 were in different clusters
290	and even formed subclades in the non-recombination reconstruction
291	(Supplementary Figure 3).
292	In relation to antibiotic resistance determinants, we found important differences
293	comparing the presence/absence of genomic elements associated with antibiotic
294	resistance between the CRSs and the animal branches. Indeed, the animal-
295	associated branches exhibited a lower prevalence of elements associated with
296	glycopeptide (34.2%), aminoglycoside (21.9%), ampicillin (9.5%) and
297	fluoroquinolone resistance (2.7%) compared to the CRS isolates, which harboured
298	these determinants in 78%, 85%, 95% and 99% of isolates, respectively. In
299	contrast, similar frequencies of determinants coding for resistance to macrolides
300	(>98%), tetracyclines (between 50-63%) and oxazolidinones (between 2-12%)
301	were found between animal and clinical clades (Supp. Table 3). Within the
302	subclades of clade A, only 9% of isolates within the animal-associated branches
303	exhibited resistance to ampicillin (7 out of 71 complete PBP5 sequences), while
304	99% of the clinically related subclades (100% in CRS-I and 98% in CRS-II)
305	harboured the predicted $pbp5-R$ allele ^{34,35} . Mutations associated with
306	fluoroquinolone resistance were also much more highly prevalent in clinical clades
307	(>98% for CRSs) vs animal branches (2.7%; p<0.001).
308	Genes encoding putative surface adhesin proteins (e.g., acm, scm, esp, sgrA,
309	fms6 and fms22) and two of the pilus-forming clusters were significantly more
310	common in the CRSs, (p-values below 0.001 in all cases) compared to animal
311	isolates (Supp. Table 3). We next compared the presence/absence of putative

312	mobile elements between animal branches vs. CRSs. On average, the number of
313	insertion sequences in the former were 5.7, whereas the clinical subclades had 6.9
314	(6.76 CRS-I and 7.06 for CRS-II). Of note, rep17 was notoriously overrepresented
315	in the CRSs (Supp. Table 3), located in the plasmid pRUM, which is a
316	representative member of rep17 family and has been associated with the
317	toxin/antitoxin system Txe/Axe ³⁶ .

319 Rates of evolution across the whole population of *E. faecium*

Using the sampling date of isolates within clade A, we performed molecular clock

analyses on the entire clade A and its subgroups (animal branches, CRS-I and

322 CRS-II). We found that the oldest split within clade A likely occurred ~3,585 years

ago (y.a.) (95% High Posterior Density Interval [HPDI]: [2626, 4690]). The

324 separation of the clinical subclades from the animal branches is predicted to have

325 occurred ~894 y.a. (95% HPDI: [649, 1171]) (Supplementary Figure 3). The most

recent split between CRS-I and CRS-II was dated ~371 y. a (95% HPDI: [272,

488]) (Supplementary Figure 4). The substitution rate across the clade A genomes

was 3.91E-7 (95% HPDI: [2.78E-7, 5E-7]), which translates to 0.53 SNPs per year

329 (using only non-recombinant regions or 1.17 SNPs if the WGSA is used). The

substitution rates within each subgroup of genomes were 3.02E-7 (95% HPDI:

331 [2,78E-7, 3,46E-7]) for animal branches, 4.7E-7 (95% HPDI: [4,01E-7, 4,98E-7]) for

332 CRS-I and 4.63E-7 (95% HPDI: [3.92E-7, 4.98E-7]) for CRS-II. These rates are

equivalent to 0.41, 0.64 and 0.63 SNPs per year for animal branches, CRS-I and

334 CRS-II, respectively. Our results support that clinically related clades are evolving335 faster than those of the animal branches.

336

337 **Discussion**

Our results indicate that VR Efm is widely present in Latin America but that their 338 339 frequency and population structure seem to vary from country to country. As multicentre analyses of VR *Efm* in the Latin American region are rare, our study is 340 341 unique in its dissection of the population structure of VR*Efm* in the region. Unlike 342 previous studies, we found two distinct populations of clinically-related isolates of VREfm. This subpopulation separation was also seen in our analyses of the global 343 population of *E. faecium*. The causes for the splitting of the population structure of 344 345 VRE (CRS-I and CRS-II) are not clear, but the findings were consistent when analysing the population structure in the presence or absence of recombinant 346 347 regions. Such a separation suggests that these lineages have been expanding 348 through Latin American countries and highlights the importance of establishing genomic surveillance studies for these multidrug-resistant organisms. Furthermore, 349 350 the distribution of the Latin American isolates across the tree does not suggest a 351 particular dominance of a specific lineage circulating in the region or country, 352 suggesting that the presence of VREfm in Latin America is associated with multiple 353 introductions of VREfm lineages that are circulating globally. Interestingly, some 354 South American countries such as Brazil (no isolates available for this study) have 355 reported VREfm since 1997³⁷, and their prevalence appears to be increasing 356 exhibiting a shift from *E. faecalis* to VR*Efm* since 2007¹⁵. Of interest, ST412

isolates reported in some regions of Brazil^{38,39} have also been detected in some
Caribbean countries⁴⁰ and this sequence type was also identified in our collection
in Colombia, Peru and Venezuela since 2005¹⁴, suggesting wide dissemination of
this genetic lineage.

Our VR*Efm* phylogenomic analysis, which includes a highly diverse sample 361 collection and excludes recombinant regions from the genome, guestions the 362 363 presence of a single animal clade. Our results suggest that the animal isolates 364 represent multiple lineages that diverged prior to the emergence of the clinical subclades in the clade A³. Importantly, animal-associated branches have 365 significantly lower predicted ampicillin resistance, fluoroquinolone resistance 366 367 mutations, virulence elements and average number of insertion sequences, similarly to what has previously reported⁴¹. Furthermore, the amount of 368 369 recombination in clade A genomes was greater than previous results. Importantly, 370 this difference (54% vs 44% found in previous studies^{18,42}) could be due to the fact 371 that previous analyses were based on the alignment of SNPs from a core genome 372 and neither included non-coding regions nor invariant sites to identify the recombinant DNA. Over the recombinant regions, we found partial sequences in 5 373 374 out of the 7 loci used by MLST (ddl, gyd, purK, gdh and adk), corroborating the 375 notion that the current *E. faecium* MLST scheme has major limitations to describe 376 the population structure of VR Efm. Interestingly, the exclusion of recombinant 377 regions considerably altered the structure of the tree, dissolving the animal-related 378 clade into a paraphyletic group and reducing the length of the branches across the tree (Supplementary Figure 2). Additionally, we found a lack of concordance 379

between MLST classification and the clades. The discrepancy is likely explained by
the presence of recombinant regions in the MLST genes, low variation in some of
the loci, and the absence of *pst* in many isolates^{19,20,43}

383 Previous studies estimated that the separation between clades A and B occurred 2776 ± 818 y.a.³, a time frame that is similar to our results. However, the previously 384 reported split between animal branches and the clinically-related subclades was 385 reported to occur 74 ± 30 y. a., which is much more recent than what we found. 386 387 Our findings showed at least a tenfold lower mutation rate from what has been previously reported^{3,18}. This finding could be associated with the larger genomic 388 region used in our analysis and the increase in the diversity of the sampled 389 390 genomes. Indeed, dating of the splits between the animal-associated branches and 391 the clinically-related subclades, and the lower mutation rates across clade A 392 correlates with lower number of SNPs per year. It has been estimated that the 393 *Enterococcus* as a genus arose around 500 million years ago⁴⁴ and ancient isolates of *E. faecium* have been found in permafrost over 20,000 y.a.⁴⁵, supporting 394 395 our findings that a more ancient branching between Clade A and B could have occurred. 396

Our study could be subject to sampling bias due to small sample size of genomes from Latin America, but we attempted to include as many and as diverse genomes as possible from our collection, based on phenotypic characteristics and PFGE typing of the strains. Also, we included all publicly available genomes from the region, provided that the associated demographic information was complete (source, year of sampling and geographical location), which also reiterates the low

number of previously sequenced genomes of *E. faecium* in Latin America at the
moment of sample selection. Nonetheless, our results supporting the existence of
two clinical subclades were maintained even after the inclusion of genomes from
other continents; that is, our conclusion holds beyond sample size, further
indicating that the population structure of the clinical related isolates is divided into
two main lineages within clade A.

409

410 **Conclusions**

411 We provide comprehensive insights into the genomic epidemiology of VREfm using available isolates from Latin America where previous studies are lacking. Our 412 results indicate that the population structure of VREfm in the region is diverse and 413 can be grouped into two main lineages (Clades I and II) that belong to the 414 previously reported clade A. A novel global reconstruction of the *E. faecium*, using 415 416 a wide and diverse sample of isolates from 36 countries and obtained from clinical, 417 animal, environmental and commensal samples, corroborates previous reports that recombination plays a major role in the evolution of this species. Our analyses also 418 419 indicate, contrary to previous results, that animal-associated genomes are not 420 monophyletic, and are instead a diverse collection of early-branching clades that 421 diverged prior to the emergence of the human clinical clade and its two subclades 422 (CRSI and CRSII).

- 423 The complex evolutionary dynamics of VR*Efm* highlight the importance of
- 424 employing phylogenomic approaches when studying the population structure of a
- 425 highly evolved hospital-associated pathogen.

426

427 Acknowledgments

- 428 This work was founded by Universidad El Bosque, grant PCI 2016-8865 to L.D.;
- grants from the National Institutes of Health K24-AI121296 and R01-AI134637 to
- 430 C.A.A. and grant FONDECYT regular Project No. 1171805, Ministry of Education,
- 431 Government of Chile and the Millennium Science Initiative, Ministry of Economy,
- 432 Development and Tourism, Chile to J.M.M.

433

434 Methods

435 Enterococcus faecium isolates

- 436 A total of 207 vancomycin-resistant Latin American *E. faecium* clinical isolates
- have been collected between 1998 and 2014 including those belonging to the first
- 438 outbreak of VRE infections in Colombia and isolates collected in two multicentre
- 439 surveillances^{14,25,26}. Isolates were recovered from patients in Colombia (n=177,
- 440 86%) Peru (n=14, 7%), Venezuela (n=6, 3%), Ecuador (n=5, 2%) and Mexico (n=5,
- 2%). The most common sources included blood (22%), urine (18%) and stools
- 442 (10%). For all the isolates, species (*E. faecium*) confirmation and the susceptibility
- ⁴⁴³ profiles determination were performed by PCR assays⁴⁶ and agar dilution,
- 444 respectively³¹.

445

446 Whole genome sequencing

From our VREfm characterized strains collection, we selected 55 representative 447 isolates based on distinct PFGE banding patterns. We included the first VRE 448 reported in Colombia as the representative of an outbreak of 23 infections at a 449 teaching hospital in 1998-1999²⁵. Five isolates were selected from a national 450 surveillance in Colombia during 2001-2002, which included 15 tertiary hospitals in 451 5 cities²⁶ and 16 chosen from surveillance performed in Colombia, Ecuador, 452 Venezuela and Peru in 2006-2008¹⁴. The remaining 33 isolates were sent to our 453 lab for the confirmation of resistance or outbreak studies in 2005-2014. All selected 454 isolates were recovered from clinical samples including blood (32%), urine (13%), 455 456 faeces (13%), surgical wound (10%), pleural liquid (5%), peritoneal liquid (5%) and other sources (22%). The isolates were subjected to whole genome sequencing on 457 the Illumina platform. Briefly, genomic DNA was extracted from overnight cultures 458 459 using the kit DNeasy Blood & Tissue Kit (Qiagen) after a lysozyme treatment. DNA libraries were prepared using Nextera XT kit (illumina) and sequenced on a MiSeq 460 instrument using a 300pb paired-end strategy. The obtained paired-end reads were 461 462 trimmed for quality and used for assemblies using SPAdes⁴⁷.

463

464 Global *E. faecium* genomic characterization

465 To place the population structure of Latin American VR*Efm* into global context, we 466 included 285 *E. faecium* genomes from the publicly available collection available at

NCBI. We aimed to incorporate a diverse set of sequences, including colonizing,
commensal, animal and clinical sources recovered between 1946 and 2017 in
Europe, North America, Asia, Africa, and Australia (Supplementary Table 1).
Accordingly to the source, the E. faecium genomes were grouped into different
categories: i) isolates from stools or rectal swabs of hospitalized patients (n=59), ii)
organisms from hospitalized patients (n=196), recovered from sources other than
faeces, including blood (n=113), urine (n=18) and other sources (n=65), iii) stools
from healthy individuals not in hospital settings (n=13), iv) animal isolates (n=47),
obtained from different animals, including pets, wild and farm animals, and ${f v})$
"others" (n=25), which included isolates recovered from food products, water, soil,
among other non-human and non-animal sources.
All sequences (340 <i>E. faecium</i> genomes) were annotated using RAST ⁴⁸ . The
sequence type (ST) was determined by MLST tools
(https://github.com/tseemann/mlst) and verified against PubMLST ⁴⁹ . Genomic
characterization was performed to identify genetic elements associated with
resistance using BLASTX ⁵⁰ searches against the ResFinder database ⁵¹ .
Additionally, we specifically interrogated the genomes for substitutions in GyrAB
and ParCE proteins associated to fluoroquinolone resistance, and mutations in
genes encoding 23S rRNA and L3 and L4 proteins associated with linezolid
resistance. Detection of mobile elements was performed with BlastN ⁵⁰ . Search for
rep families genes ^{52,53} and insertion sequences (IS) was carried out with BLASTN
searches and compared to the ISFinder database ⁵⁴ . Identification of virulence
elements was performed with BLASTX against a set of potential virulence proteins

490	in enterococci ^{4,55} . Identification of CRISPR and <i>cas</i> -systems was done using
491	CRISPRfinder ⁵⁶ and BLASTX searches using Cas system proteins ⁵⁷ as templates.
492	All BLASTX hits were selected if they had an identity percentage higher or equal to
493	95% and a coverage of at least 80% of the target sequence. For BLASTN
494	searches, hits were selected if they had an identity percentage higher than 90%
495	and a coverage of at least 80% of the target sequence. To identify statistically
496	significant differences across proportions of the evaluated characteristics among
497	pairs of clades found, a Z-test was performed (α =0.01).
498	

499 Ampicillin resistance prediction based on PBP5 sequences

500 The ampicillin resistance prediction model for *E. faecium* isolates consisted on a

random forest built upon a dataset of 250 PBP5 sequences from isolates with

known MIC of ampicillin (62 from susceptible isolates [MIC \leq 8 µg/ml] and 188

belonging to resistant ones [MIC \ge 16 µg/ml][Supplementary Table 4]). The model

was based on a multiple sequence alignment using the sequence of the PBP5 from

505 Com15 (GenBank accession: WP_002314979.1) isolate as reference (based on

506 previous studies of correlation of the amino acid sequence of this protein with the

resistant phenotype^{34,35}) with 110 positions harbouring amino acid changes

508 (Supplementary Table 4). These positions were used to create a random forest

model with 100 decision trees; using a training set of 42 isolates (17 susceptible

and 25 resistant with a range of MIC values). Based on this training set, forty

- amino acid changes were selected for the classification based on their
- 512 discrimination power using recursive elimination process of those with lower score.

513 Next, the model was tested on the whole dataset of PBP5 sequences and had a

- 514 100% specificity with 96% sensitivity, which resulted in 6 cases of major errors
- ⁵¹⁵ were the isolate was resistant but predicted to be susceptible.

516

517 **Phylogenetic analysis**

- 518 We built a phylogenetic tree based on the core genome of 55 representative
- genomes from our collection, including the genome Com15 as outgroup. The core
- 520 genome was obtained with Roary⁵⁸ and each of the orthogroups was aligned with
- 521 MUSCLE v3.8⁵⁹. A Maximum Likelihood (ML) guide tree was built with RAxML
- 522 8.2.11⁶⁰ using a GTR+Γ model. Using Bayesian approach, we estimated a
- 523 Maximum Clade Credibility (MCC) tree based on 20 million trees in BEASTv1.8⁶¹.
- 524 We employed a constant population size, a GTR+Γ+I substitution model, default
- 525 prior probability distributions, and a chain length of 100 million steps with a burn-in
- of 10 million and a 5000-step thinning and the ML as starting tree.
- 527 The phylogenetic tree for the whole population of *E. faecium* included all the
- 528 genomes (n=340) and two outgroups (*Enterococcus durans* BDGP3 [GenBank
- accession: CP022930.1] and *Enterococcus hirae* ATCC 9790 [CP003504.1]). This
- tree was based on the core genome (genes present in at least 90% of the studied
- genomes) obtained with Roary, each orthogroup was individually aligned with
- 532 MUSCLE and then concatenated to obtain a matrix. The alignment matrix was
- used for Bayesian phylogenetic reconstruction with BEAST. Model parameters

were the same as above with a chain length of 300 million steps, a burn-in of 80
million steps, and a random starting tree.

536	The second phylogenetic reconstruction included the genomes grouped into the
537	clade corresponding to the previously designed Clade A ³ . We realized pairwise
538	comparisons of the assemblies with Mummer 3.2362 against the reference genome
539	Aus0085 (CP006620.1). The identified variants and the reference sequence were
540	used to create a multiple whole genome alignment and, with it, we built a guide
541	tree with RAxML ⁶⁰ using the abovementioned parameters. This guide tree was
542	used later to obtain the recombinant regions in the alignment with
543	ClonalFrameML ³³ for each isolate. Those regions were further removed from the
544	alignment and then used to produce a MCC tree with BEAST. The same run
545	parameters as above were used with a 50-million step burn-in.
546	Finally, a strict molecular clock analysis was performed on clade A strains. We
547	dated the tips on the isolates accordingly to the sampling year. The analysis was
548	done with the non-recombinant regions of the whole genome alignment as matrix
549	and the MCC from the second analysis, as a guide tree. The analysis had a 300
550	million length chain and a burn-in of 30 million to obtain ESS numbers above 200.
551	All MCC trees were computed with a 0.3 posterior clade probability cut-off and
552	mean heights. To estimate the evolution rates across subclades, further
553	subgrouping of the isolates was performed and a similar molecular clock analysis
554	without guide tree were performed for each group using 100 million chain length
555	and 10% burn in. All BEAST runs were performed on the CIPRES Science
556	gateway servers ⁶³ .

557

558 Data Availability

- All genomic data is available at GenBank database, accession numbers for the
- sequenced genomes are listed in Supplementary Table 3. The datasets generated
- 561 during and/or analysed during the current study are available from the
- 562 corresponding author on reasonable request.

563

564 **Ethics declarations**

We declare no ethical competing interest. In our study, we did not perform any experiments with animals or higher invertebrates, neither performed experiments on humans and/or the use of human tissue samples. Our data have been originated from bacteria, not linked to clinical information, collected in previous studies and following full ethical approvals. Also, additional genomic data that we included for the analysis are available on public repositories (NCBI and published articles).

572 **References**

- 1. Arias, C. a. & Murray, B. E. The rise of the Enterococcus: beyond
- vancomycin resistance. *Nat. Rev. Microbiol.* **10**, 266–278 (2012).
- 575 2. Cattoir, V. & Giard, J.-C. Antibiotic resistance in *Enterococcus faecium*576 clinical isolates. *Expert Rev. Anti. Infect. Ther.* **12**, 239–248 (2014).
- 3. Lebreton, F. *et al.* Emergence of epidemic multidrug-resistant Enterococcus

578		faecium from animal and commensal strains. MBio 4, 1–10 (2013).
579	4.	Gao, W., Howden, B. P. & Stinear, T. P. Evolution of virulence in
580		Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr.
581		<i>Opin. Microbiol.</i> 41, 76–82 (2018).
582	5.	van Hal, S. J. et al. Evolutionary dynamics of Enterococcus faecium reveals
583		complex genomic relationships between isolates with independent
584		emergence of vancomycin resistance. Microb. genomics 2, (2016).
585	6.	Zhang, X. et al. Identification of a Genetic Determinant in Clinical
586		Enterococcus faecium Strains That Contributes to Intestinal Colonization
587		During Antibiotic Treatment. J. Infect. Dis. 207, 1780–1786 (2013).
588	7.	Kim, E. B. & Marco, M. L. Nonclinical and Clinical Enterococcus faecium
589		Strains, but Not Enterococcus faecalis Strains, Have Distinct Structural and
590		Functional Genomic Features. Appl. Environ. Microbiol. 80, 154–165 (2014).
591	8.	Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. Clin. Infect.
592		<i>Dis.</i> 42, 25–34 (2006).
593	9.	Rubinstein, E. & Keynan, Y. Vancomycin-resistant enterococci. Crit. Care
594		<i>Clin.</i> 29, 841–852 (2013).
595	10.	O'Driscoll, T. & Crank, C. W. Vancomycin-resistant enterococcal infections:
596		Epidemiology, clinical manifestations, and optimal management. Infect. Drug
597		<i>Resist.</i> 8, 217–230 (2015).
598	11.	Tacconelli, E. et al. Discovery, research, and development of new antibiotics:

599		the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet
600		Infect. Dis. 18, (2018).
601	12.	Weiner, L. M. et al. Antimicrobial-Resistant Pathogens Associated with
602		Healthcare-Associated Infections: Summary of Data Reported to the National
603		Healthcare Safety Network at the Centers for Disease Control and
604		Prevention, 2011-2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301
605		(2016).
606	13.	European Centre for Disease Prevention and Control. Surveillance of
607		antimicrobial resistance in Europe 2016. Annual report of the European
608		Antimicrobial REsistance Surveillance Network (EARS-Net). (2017).
609		doi:10.2900/296939
610	14.	Panesso, D. et al. Molecular epidemiology of vancomycin-resistant
611		Enterococcus faecium: A prospective, multicenter study in South American
612		hospitals. J. Clin. Microbiol. 48, 1562–1569 (2010).
613	15.	Sacramento, A. G. et al. Changed epidemiology during intra and interhospital
614		spread of high-risk clones of vanA-containing Enterococcus in Brazilian
615		hospitals. <i>Diagn. Microbiol. Infect. Dis.</i> 88, 348–351 (2017).
616	16.	van Schaik, W. & Willems, R. J. L. Genome-based insights into the evolution
617		of enterococci. Clin. Microbiol. Infect. 16, 527–532 (2010).
618	17.	Top, J., Willems, R. & Bonten, M. Emergence of CC17 Enterococcus
619		faecium: from commensal to hospital-adapted pathogen. FEMS Immunol.
620		Med. Microbiol. 52 , 297–308 (2008).

621	18.	Howden, B. P. et al. Genomic Insights to Control the Emergence of
622		Vancomycin-Resistant Enterococci. <i>MBio</i> 4 , 1–9 (2013).
623	19.	Carter, G. P. et al. Emergence of endemic MLST non-typeable vancomycin-
624		resistant Enterococcus faecium. J. Antimicrob. Chemother. 71, 3367–3371
625		(2016).
626	20.	Raven, K. E. et al. A decade of genomic history for healthcare-associated
627		Enterococcus faecium in the United Kingdom and Ireland. Genome Res. 26,
628		1388–1396 (2016).
629	21.	Leavis, H. L., Bonten, M. J. & Willems, R. J. Identification of high-risk
630		enterococcal clonal complexes: global dispersion and antibiotic resistance.
631		Curr. Opin. Microbiol. 9, 454–460 (2006).
632	22.	Galloway-Peña, J., Roh, J. H., Latorre, M., Qin, X. & Murray, B. E. Genomic
633		and SNP analyses demonstrate a distant separation of the hospital and
634		
		community-associated clades of enterococcus faecium. PLoS One 7, (2012).
635	23.	community-associated clades of enterococcus faecium. <i>PLoS One</i> 7 , (2012). van Schaik, W. <i>et al.</i> Pyrosequencing-based comparative genome analysis
635 636	23.	
	23.	van Schaik, W. et al. Pyrosequencing-based comparative genome analysis
636	23. 24.	van Schaik, W. <i>et al.</i> Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a
636 637		van Schaik, W. <i>et al.</i> Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. <i>BMC Genomics</i> 11 , 239 (2010).
636 637 638		van Schaik, W. <i>et al.</i> Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. <i>BMC Genomics</i> 11 , 239 (2010). Palmer, K. L., Schaik, W. Van, Willems, R. J. L. & Gilmore, M. S.

642	26.	Arias, C. A. et al. Multicentre surveillance of antimicrobial resistance in
643		enterococci and staphylococci from Colombian hospitals, 2001-2002. J.
644		Antimicrob. Chemother. 51, 59–68 (2003).
645	27.	Sung, K., Khan, S. A. & Nawaz, M. S. Genetic diversity of Tn 1546 -like
646		elements in clinical isolates of vancomycin-resistant enterococci. 31, 549-
647		554 (2008).
648	28.	Deshpande, L. M. et al. Detection of a New cfr -Like Gene , cfr(B), in
649		Enterococcus faecium Isolates Recovered from Human Specimens in the
650		United States as Part of the SENTRY Antimicrobial Surveillance Program.
651		Antimicrob. Agents Chemother. 59, 6256–6261 (2015).
652	29.	Diaz, L. et al. Whole-genome analyses of Enterococcus faecium isolates with
653		diverse daptomycin MICs. Antimicrob. Agents Chemother. 58, 4527-4534
654		(2014).
655	30.	Munita, J. M. et al. Correlation between mutations in liaFSR of Enterococcus
656		faecium and MIC of daptomycin: revisiting daptomycin breakpoints.
657		Antimicrob. Agents Chemother. 56, 4354–9 (2012).
658	31.	Clinical Laboratory Standards Institute. M100. Performance Standards for
659		Antimicrobial Susceptibility Testing, 29th Edition. (2019).
660	32.	Freitas, A. R., Tedim, A. P., Novais, C., Coque, T. M. & Peixe, L. Distribution
661		of putative virulence markers in Enterococcus faecium: towards a safety
662		profile review. J. Antimicrob. Chemother. 1–14 (2017).
663		doi:10.1093/jac/dkx387

664	33.	Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient Inference of
665		Recombination in Whole Bacterial Genomes. PLoS Comput. Biol. 11, 1-18
666		(2015).
667	34.	Pietta, E., Montealegre, M. C., Roh, J. H., Cocconcelli, P. S. & Murray, B. E.
668		Enterococcus faecium PBP5-S/R, the Missing Link between PBP5-S and
669		PBP5-R. Antimicrob. Agents Chemother. 58, 6978–6981 (2014).
670	35.	Galloway-Peña, J. R., Rice, L. B. & Murray, B. E. Analysis of PBP5 of early
671		U.S. isolates of Enterococcus faecium: Sequence variation alone does not
672		explain increasing ampicillin resistance over time. Antimicrob. Agents
673		Chemother. 55, 3272–3277 (2011).
674	36.	Grady, R. & Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin
675		system specified by a multidrug-resistant, clinical isolate of Enterococcus
676		faecium. Mol. Microbiol. 47, 1419–1432 (2003).
677	37.	Zanella, R. C. et al. First Confirmed Case of a Vancomycin-Resistant
678		Enterococcus faecium with vanA Phenotype from Brazil: Isolation from a
679		Meningitis Case in São Paulo. Microb. Drug Resist. 5, 159–162 (2009).
680	38.	Alves, G. da S., Pereira, M. F., Bride, L. de L., Nunes, A. P. F. & Schuenck,
681		R. P. Clonal dissemination of vancomycin-resistant Enterococcus faecium
682		ST412 in a Brazilian region. Brazilian J. Infect. Dis. 21, 656–659 (2017).
683	39.	da Silva, L. P. P., Pitondo-Silva, A., Martinez, R. & da Costa Darini, A. L.
684		Genetic features and molecular epidemiology of Enterococcus faecium
685		isolated in two university hospitals in Brazil. Diagn. Microbiol. Infect. Dis. 74,

686	267–271 (2012).
-----	-----------------

687	40.	Akpaka, P. E. et al. Genetic characteristics and molecular epidemiology of
688		vancomycin-resistant Enterococci isolates from Caribbean countries. PLoS
689		One 12, 1–11 (2017).
690	41.	Torres, C. et al. Antimicrobial Resistance in Enterococcus spp . of animal
691		origin. <i>Microbiol. Spectr.</i> 6, (2018).
692	42.	De Been, M., Van Schaik, W., Cheng, L., Corander, J. & Willems, R. J.
693		Recent recombination events in the core genome are associated with
694		adaptive evolution in Enterococcus faecium. Genome Biol. Evol. 5, 1524-
695		1535 (2013).
696	43.	Been, M. De et al. Core Genome Multilocus Sequence Typing Scheme for
697		High- Resolution Typing of Enterococcus faecium. J. Clin. Microbiol. 53,
698		3788–3797 (2015).
699	44.	Lebreton, F. et al. Tracing the Enterococci from Paleozoic Origins to the
700		Hospital. Cell 1–13 (2017). doi:10.1016/j.cell.2017.04.027
701	45.	Goncharov, A. et al. Draft Genome Sequence of Enterococcus faecium
702		Strain 58m, Isolated from Intestinal Tract Content of a Woolly Mammoth,
703		Mammuthus primigenius. Genome Announc. 4, 15–16 (2016).
704	46.	Dutka-Malen, S., Evers, S. & Courvalin, P. Detection of glycopeptide
705		resistance genotypes and identification to the species level of clinically
706		relevant enterococci by PCR. J. Clin. Microbiol. 33, 24–27 (1995).

707	47.	Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm and Its
708		Applications to Single-Cell Sequencing. J. Comput. Biol. 19, 455–477 (2012).
709	48.	Overbeek, R. et al. The SEED and the Rapid Annotation of microbial
710		genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42,
711		D206–D214 (2014).
712	49.	Jolley, K. a & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial
713		genome variation at the population level. BMC Bioinformatics 11, 595 (2010).
714	50.	Camacho, C. et al. BLAST plus: architecture and applications. BMC
715		<i>Bioinformatics</i> 10 , 1 (2009).
716	51.	Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J.
717		Antimicrob. Chemother. 67, 2640–2644 (2012).
718	52.	Jensen, L. B. et al. A classification system for plasmids from enterococci and
719		other Gram-positive bacteria. J. Microbiol. Methods 80, 25-43 (2010).
720	53.	Lozano, C. et al. Expansion of a plasmid classification system for gram-
721		positive bacteria and determination of the diversity of plasmids in
722		Staphylococcus aureus strains of human, animal, and food origins. Appl.
723		Environ. Microbiol. 78 , 5948–5955 (2012).
724	54.	Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder:
725		the reference centre for bacterial insertion sequences. Nucleic Acids Res.
726		34, D32–D36 (2006).
727	55.	Sillanpää, J., Prakash, V. P., Nallapareddy, S. R. & Murray, B. E. Distribution

728		of genes encoding MSCRAMMs and pili in clinical and natural populations of
729		Enterococcus faecium. J. Clin. Microbiol. 47, 896–901 (2009).
730	56.	Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify
731		clustered regularly interspaced short palindromic repeats. Nucleic Acids Res.
732		35, W52-7 (2007).
733	57.	Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas
734		systems. Nat. Rev. Microbiol. 9, 467–477 (2011).
735	58.	Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis.
736		Bioinformatics 31, 3691–3693 (2015).
737	59.	Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and
738		high throughput. Nucleic Acid Res. 32, 1792–1797 (2004).
739	60.	Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-
740		analysis of large phylogenies. Bioinformatics 30, 1312-1313 (2014).
741	61.	Drummond, A. J., Suchard, M. a, Xie, D. & Rambaut, A. Bayesian P
742		hylogenetics with BEAUti and the BEAST 1 . 7. Mol. Biol. Evol. 29, 1969–
743		1973 (2012).
744	62.	Kurtz, S. et al. Versatile and open software for comparing large genomes.
745		Genome Biol. 5, R12 (2004).
746	63.	Miller, M. A., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway:
747		enabling high-impact science for phylogenetics researchers with limited
748		resources. Proc. 1st Conf. Extrem. Sci. Eng. Discov. Environ. Bridg. from

749 *Extrem. to campus beyond* 1–8 (2012). doi:10.1145/2335755.2335836

750

751 Author contributions

- 752 R.R. performed experiments, carried out all statistical analyses, analysed results
- and wrote draft of the manuscript, L.D. and C.A.A conceived the study, analysed
- the results, and drafted and reviewed the manuscript, J.R. and D.P. conceived the
- study, interpreted data and analysed the results, P.J.P and SO.K. conceived
- experiments and provided key experimental suggestions, B.E.M. T.T.T and J.M.M
- interpreted and analyse data and helped to write the manuscript, L.P.C., S.R,
- A.M.E., A.D. and A.N. performed experiments and analysed data. All authors
- contributed to improve the manuscript and gave approval of the final version prior
- to submission.

761

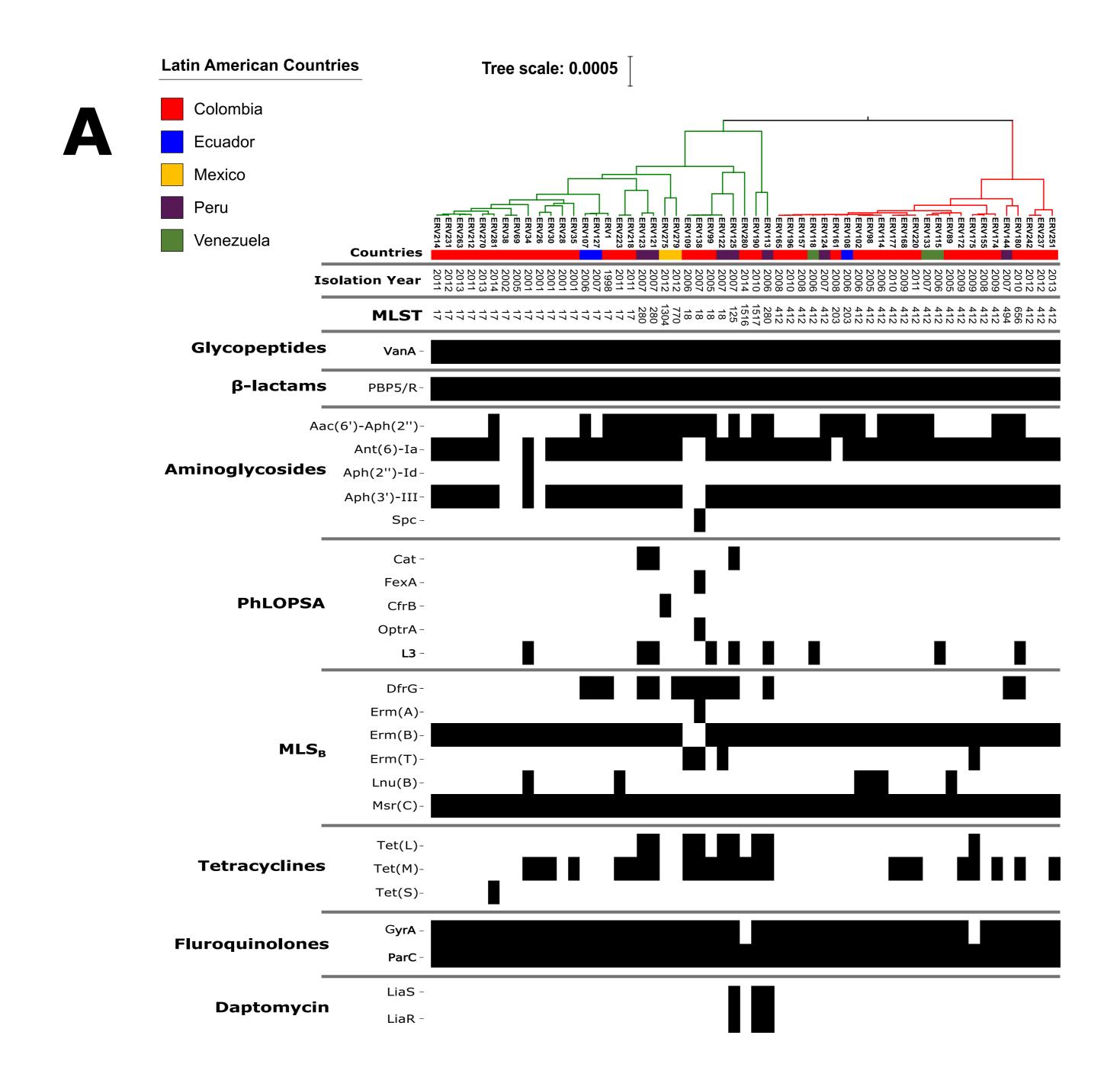
762 Additional Information

- 763 C.A.A has received grants funded by Merck Pharmaceuticals, MeMed Diagnostics
- Ltd and Entasis Therapeutics. B.E.M has received grants funded by Cubist/Merck,
- Forest/Actavis and is consultant of Paratek and Cempra.
- The other authors declare no competing interests.

767

768

770 Figure Legends


771 **Figure 1.** (A) Bayesian phylogenomic tree from the core genome and genomic characterization of resistance elements of 55 representative Latin American VREfm 772 773 strains; the presence of a genetic element is marked as a black box in the corresponding column of the isolate. (B) Phenotypic resistance profile of 207 clinical 774 isolates of VREfm from our Latin American collection for vancomycin (VAN), 775 776 teicoplanin (TEI), ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP), 777 linezolid (LNZ), high-level resistance to gentamicin (HLR-GE) and high-level 778 resistance to streptomycin (HLR-STR).

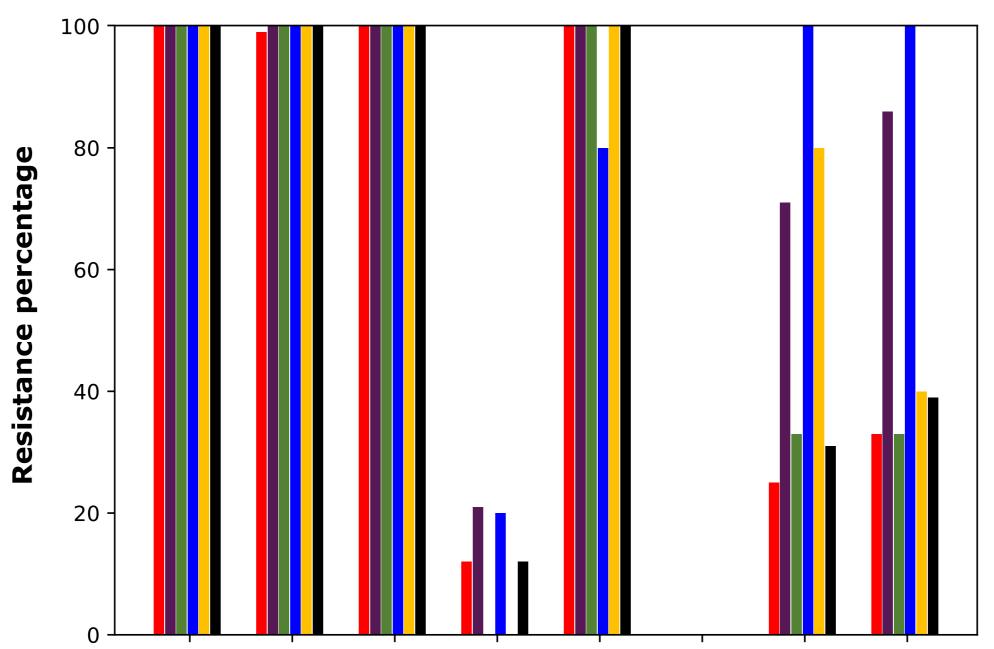
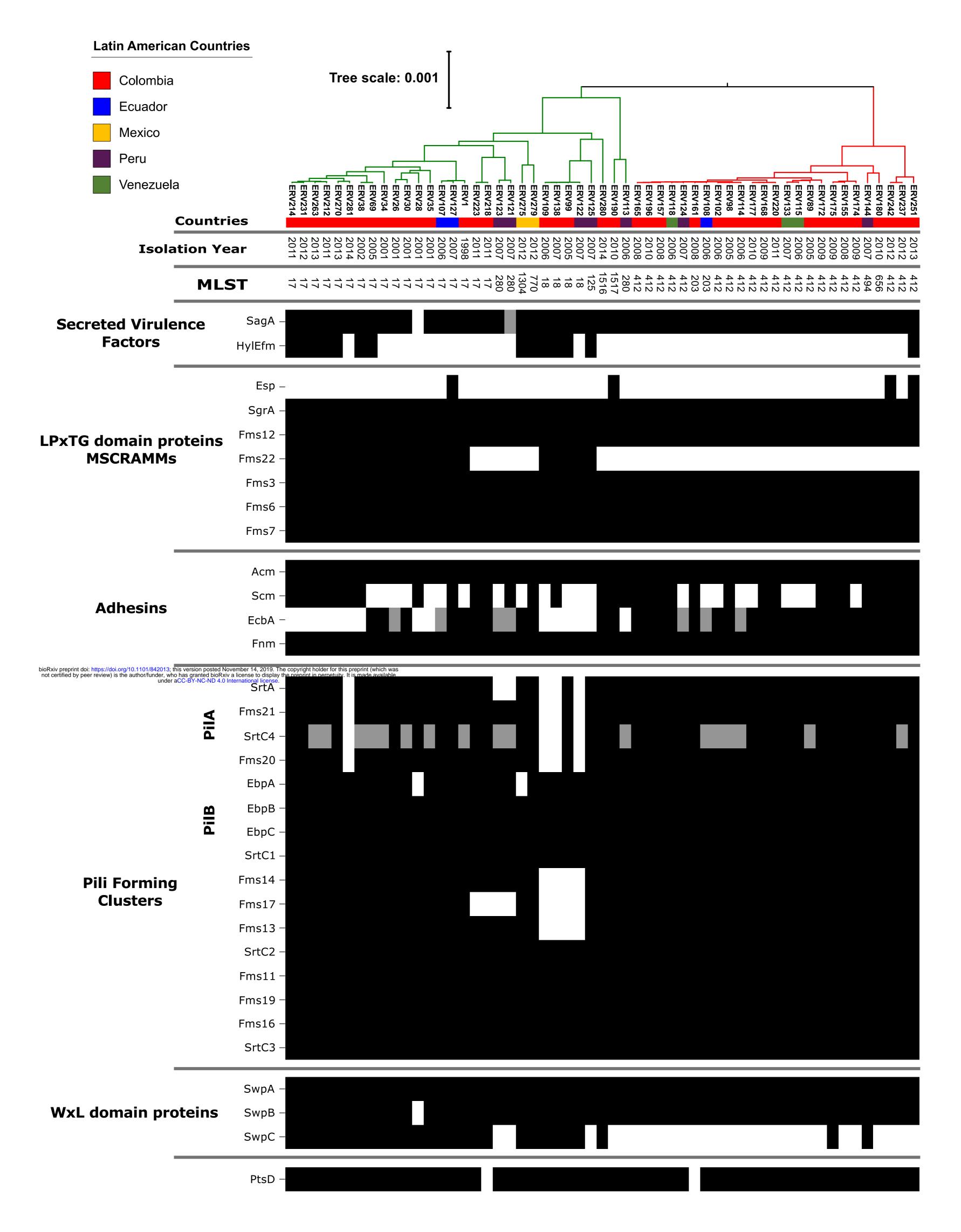
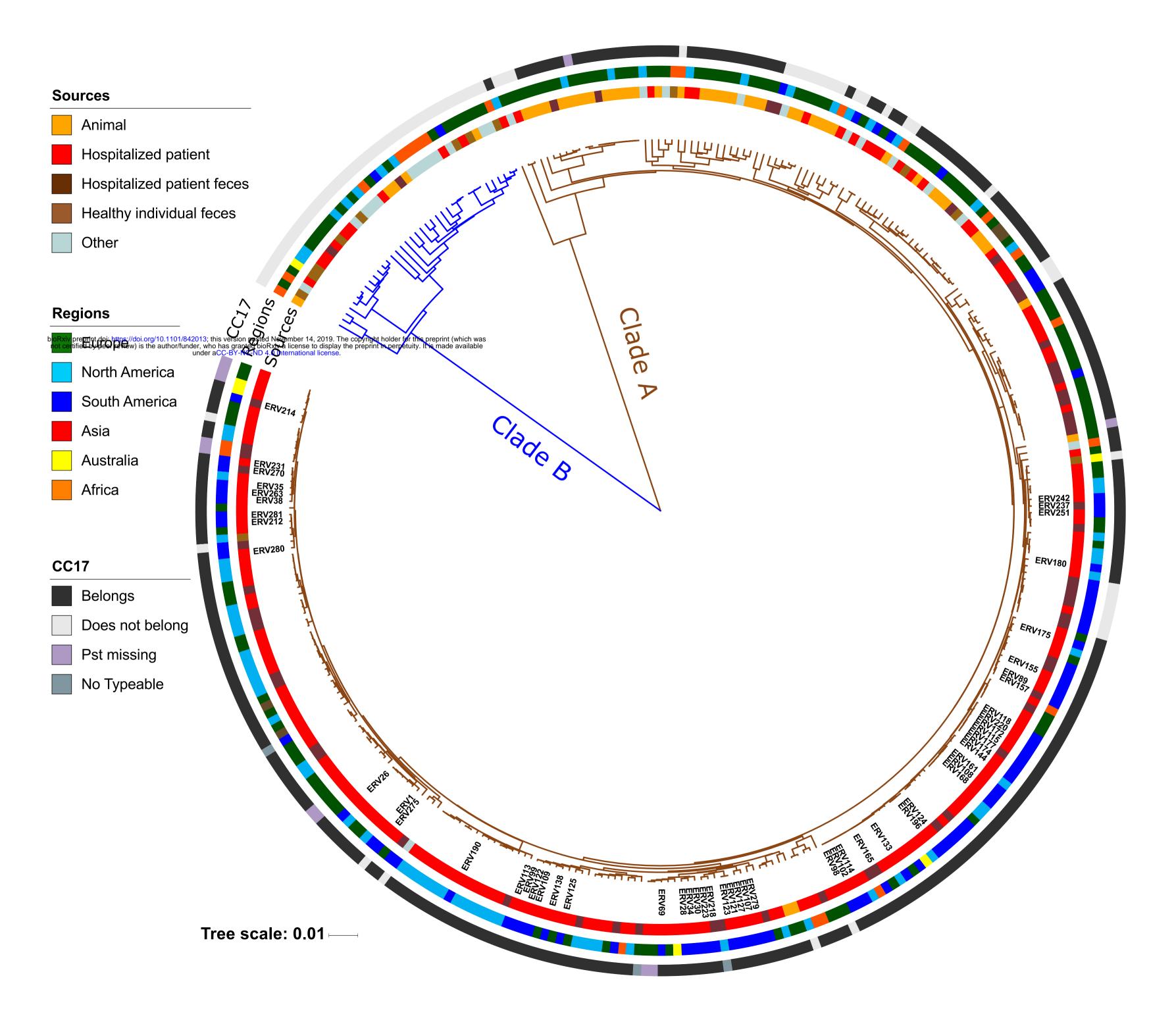

Figure 2. Bayesian phylogenomic tree from the core genome and genomic characterization of virulence factors of 55 representative Latin American VR*Efm* strains, the presence of a genetic element is marked as a black box in the corresponding column of the isolate.

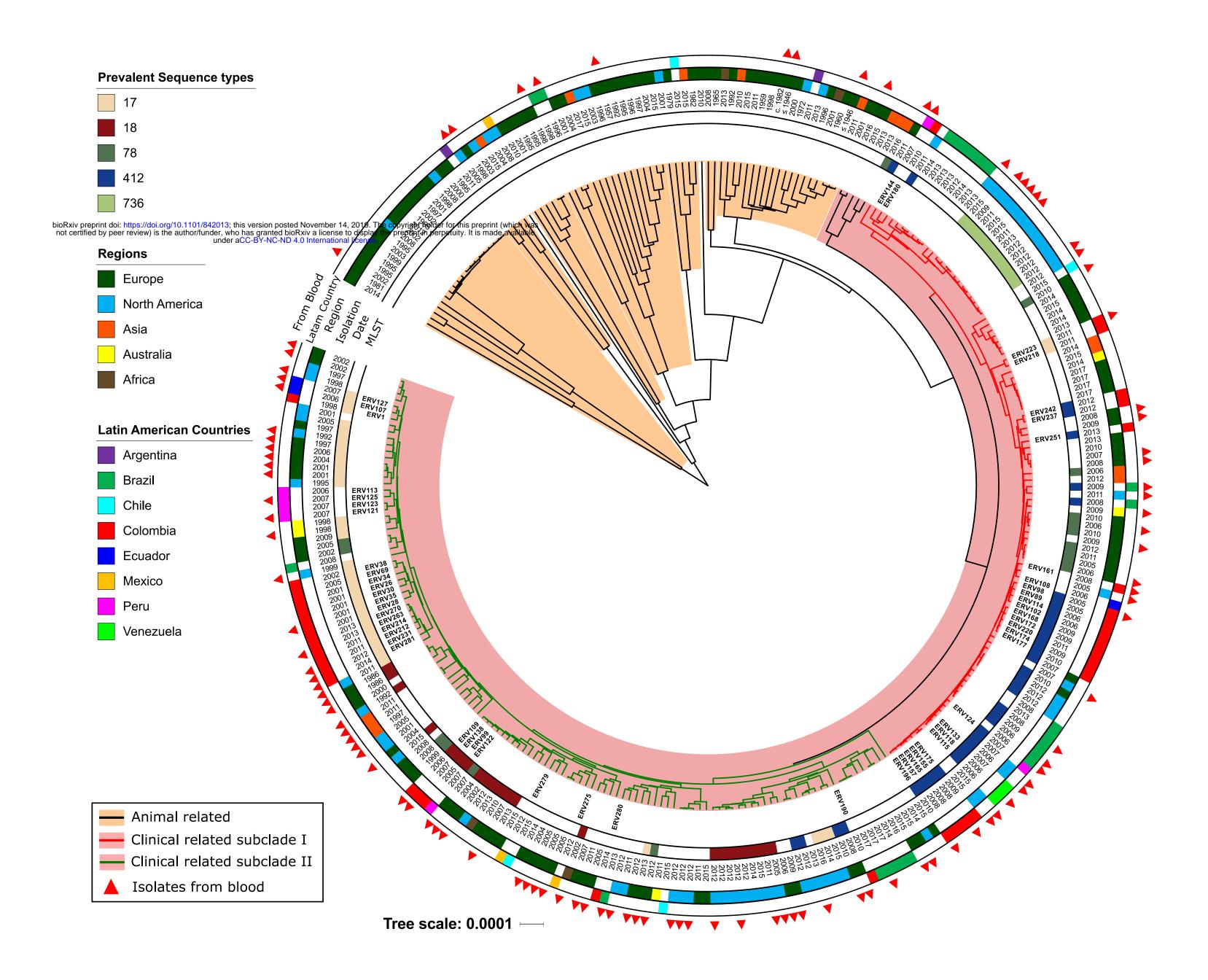
Figure 3. Bayesian phylogenomic tree from the core genome of 340 genomes sampled from 36 countries between 1946 and 2017 and from different sources. Blue branches showed the genomes grouped within clade B, while brown branches show isolates from clade A. The outer coloured rings (from inner to outer) indicate the source of each isolate, the region from which it was sampled and its relationship through MLST typing (if possible) to Clonal Complex 17. Labels show the isolates originating from our Latin American collection.

Figure 4. Bayesian phylogenomic tree from the non-recombinant regions of the 303Clade A genomes. Branches highlighted in orange represent genomes from the


animal early branches. Branches highlighted in pink show genomes from clinical related isolates. Red and green branches show the genomes from clinically related subclades (CRS) I and II, respectively. Annotation rings (from inner to outer) show the sequence type (ST) of the isolate (only the five most prevalent STs in the sample are shown), the isolation year, the region from which the isolate was sampled and if the region was Latin America, the exact country from where it was obtained. The last ring shows which isolates were recovered from blood.






VAN TEI AMP CHL CIP LNZ HLR-GE HLR-STR

Antibiotics

