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Summary. Reconstructing gene regulatory networks (GRNs) and inferring the gene dynamics are impor-
tant to understand the behavior and the fate of the normal and abnormal cells. Gene regulatory networks
could be reconstructed by experimental methods or from gene expression data. Recent advances in
Single Cell RNA sequencing technology and the computational method to reconstruct trajectory have
generated huge scRNA-seq data tagged with additional time labels. Here, we present a deep learning
model “Neural Gene Network Constructor” (NGNC), for inferring gene regulatory network and recons-
tructing the gene dynamics simultaneously from time series gene expression data. NGNC is a model-free
heterogenous model, which can reconstruct any network structure and non-linear dynamics. It consists
of two parts: a network generator which incorporating gumbel softmax technique to generate candidate
network structure, and a dynamics learner which adopting multiple feedforward neural networks to pre-
dict the dynamics. We compare our model with other well-known frameworks on the data set generated
by GeneNetWeaver, and achieve the state of the arts results both on network reconstruction and dynamics
learning.

1 INTRODUCTION

Gene regulatory networks (GRNs) play a central role in
the cell development and cellular identity. Transcrip-
tion factors (TF) interact with each other and regulate
hundreds to thousands downstream genes (JOHNSON
et al., 2007), form the regulatory networks. Great ef-
forts have been made in experimental method to wire
this network together, which are crucial to decipher the
basic mechanism of biology. By analyzing ENCODE
data, a dense meta-network is constructed with mul-
tiple parts of the hierarchical networks exhibiting dis-
tinct properties (GERSTEIN et al., 2012). Meanwhile,
the regulatory networks containing 762 human TFs in-
teractions had been built. The authors use an integrative
approach to systematically map combinatorial interac-
tions among mammalian TFs (RAVASI et al., 2010).

Experimental method is not the only way to recons-
truct regulatory networks. Alternatively, GRNs could

be inferred from gene expression data. The conventi-
onal inference algorithms are based on mutual infor-
mation (MARGOLIN et al., 2006), gene co-expression
module (AIBAR et al., 2017) or Gaussian graphic mo-
del (TIAN; GU; MA, 2016). Most of the inference al-
gorithms focus on the reconstruction of the regulatory
networks from the un-ordered expression data but usu-
ally could not predict the dynamics of gene expression
due to the lack of the time information of individual
cell.

Single cell RNA sequencing (scRNA-seq) could me-
asure gene expression levels in massive individual cells
(ZHENG et al., 2017). Meantime, time label could be
tagged on each cell computationally (QIU et al., 2017)
or exprimentally (BRIGGS et al., 2018). Time-course
scRNA-seq data has inspired new methods to infer both
the network structure and the dynamics of gene expres-
sion (MATSUMOTO et al., 2017). However it over-
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simplifies the expression process because it is based on
linear ordinary differential equations.

In this work, we present a purely data driven, model-
free, heterogenous univesal deep learning model “Neu-
ral Gene Network Constructor” (NGNC) based on our
previous Gumbel Graph Network (GGN) model (ZHANG
et al., 2019). Here, heterogenous means each gene has
a unique dynamic, and universal means any non-linear
dynamic can be reconstructed by our model. The NGNC
model can simultaneously infer the gene regulatory networks
and reconstruct gene dynamics from time series gene
expression data generated by GeneNetWeaver (GNW),
which is referred as ‘golden standard’ for evaluation of
network inference methods. Comparing to other network
inference algorithms, our NGNC model could infer the
structure of network with relative high accuracy. Me-
anwhile, the dynamic leaner in our model could accu-
rately reproduce the dynamics of observed data with no
restriction on the dynamic mechanism in advance.

2 METHODS

2.1 Model

The aim of the gene regulatory networks inference task
is to reconstruct the regulatory network from time series
gene expression data which could be measured as RNA-
seq counts.

Following our previous work Gumbel Graph Network
(GGN) (ZHANG et al., 2019), we designed NGNC with
two modules: a network generator and a dynamic lear-
ner. The Network Generator module uses the Gumbel
softmax trick (JANG; GU; POOLE, 2017) to generate
the candidate adjacency matrix, which allows us to sam-
ple the adjacency matrix from the parameters in a dif-
ferentiable way, and thereafter the stochastic gradient
descent algorithm can be applied. Specifically, for an
adjacency matrix A with N columns, we have a N ×N
parameterized matrix to optimize, with parameter αij

denoting the probability that Aij taking value 1. The
candidate adjacency matrix can be sampled following
the equation shown below:

Aij =
exp((log(αij) + ξij)/τ)

exp((log(αij) + ξij)/τ) + exp((log(1 − αij) + ξ′
ij

)/τ)
, (1)

where ξijs and ξ′ijs are random numbers following the
gumbel distribution (NADARAJAH; KOTZ, 2004) and
τ denotes the temperature. When τ is close to 0, the
sampled Aij will be close to 0 or 1.

The dynamic learner could predict the estimated va-
luesXt+1 for all variables(nodes) in the network at time
t+ 1 based on the candidate adjacency matrix genera-
ted by Network Generator and all observed real values

Figura 1: Architecture of NGNC: The NGNC mo-
del consists of two parts, a network generator and a
group of dynamic learners. First, the adjacency matrix
is generated by the network generator through Gumbel
softmax sampling. Then, the element-wised products
between gene expression vector Xt at time t and the
column i of the adjacency matrix are calculated as the
input for corresponding dynamic learner i. The dyna-
mic learner i, which is a MLP, computes the output
Xi

t+1, which is the estimation of the gene i’s expres-
sion at time t+ 1. The concatenation of outputs of all
dynamic learners is the estimation of all gene expres-
sion values Xt+1 at time t+ 1. The back-propagation
process updates network generator and dynamic lear-
ners simultaneously.
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Xt of all variables(nodes) measured at time t. In GGN
model, we used a Graph Neural Network kernel to le-
arn the homogeneous dynamics. but in gene regulatory
networks, the regulation is heterogeneous for each gene
since the TFs who regulate one single gene will com-
bine together and interact in a non-linear way (RAVASI
et al., 2010). So, we revise the dynamics learner to meet
the need of heterogeneous regulation. In detail, the dy-
namics learner consists of several multi-layer percep-
tron (MLP), with each MLP corresponding to one sin-
gle gene. The input of the MLP is a vector comes from
the element-wised product of the gene expression vec-
tor Xt and the column vector Ai of adjacency matrix
which representing the TF regulation acting on the cor-
responding gene i. The output of a MLP is X̂i

t+1, which
is the estimated gene expression of gene i at time t+ 1.
The concatenation of all MLP outputs is the gene ex-
pression value X̂t+1 at time t+ 1. We then can com-
pare the output estimation X̂t+1 and the real expression
valueXt+1. Thus, the loss function of the whole system
can be designed as:

Loss =
∣∣∣X̂t+1 −Xt+1

∣∣∣ (2)

Then the stochastic gradient descent algorithm can be
applied to minimize equation 2. The structure diagram
of our model could be found in Fig1.

On the testing process, we use ensemble learning te-
chnique to improve the prediction level. For each task,
we choose three sets of randomly initialized parameters
to train and let them vote for the reconstructed adja-
cency matrix. Other details about model and training
process are described in SI.

3 RESULTS

Time series data. The time series data is from the si-
mulator GeneNetWeaver (GNW), which is used to eva-
luate different network inference methods systematically
and comparatively (SCHAFFTER; MARBACH; FLO-
REANO, 2011). The time series are generated with
default parameters in DREAM4_in-silico_Size-10 and
DREAM4_in-silico_Size-100 configurations.

Network inference. The Area Under Curve of ROC
curve (AUROC) are used to evaluate the performance of
the inference methods. We compare our method with
other algorithms, such as Partial Correlation, Bayesian
Network Inference and Mutual Information (see SI). As
shown in Fig2, for simulated data with 10 TF and 100
TF, our model get higher AUC value than other algo-
rithms. Especially for data with 100 TF, our model per-
form much better than other algorithms, indicating that

Figura 2: The performances (illustrated by ROC cur-
ves) of network inference methods: The ROC-Curve
shows that the performance of NGNC (purple lines)
is better than other network inference methods in the
tasks with both 10 nodes and 100 nodes. Our NGNC
could perform even better (Blue lines named NGNC-
kp) when some prior knowledge (see SI) is incorpora-
ted.

Figura 3: The comparison between the observed ex-
pression (real) and reconstructed dynamics (predic-
ted) of several genes: In plots, solid lines represent
predicted expression of genes and the dotted lines re-
present observed ones. One gene is depicted with one
color. MAEs For each prediction curve are also plotted.
As the plots show, the reconstructed dynamics faithfully
reproduce the observed expression.
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our model could reconstruct the network with high ac-
curacy even the network is large and complex.

Dynamic reconstruction.To test the performance
of dynamic reconstruction, we fed nodes information
at the first time step into the model and had it iterate
20 time steps. On 10 nodes and 100 nodes data, the
mean absolute error (MAE) are 0.050 and 0.038. For
further illustration, we draw both reconstructed dyna-
mics and the observed time series on the same plot.
As shown in Fig3, our reconstructed dynamics accu-
rately reproduce the observed data. These results in-
dicate that our method could learn the gene regulation
dynamics correctly from the time series gene expres-
sion data. Meanwhile, the design of MLP dynamic le-
arner in our model could approximate the underlying
mechanism of gene regulation without any restriction
on model of regulation such as linearality.
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