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Abstract 

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA and harbor 
disease- and phenotypic trait-associated genetic variation.  We established 
high-precision maps of DNase I hypersensitive sites from 733 human biosamples 
encompassing 439 cell and tissue types and states, and integrated these to precisely 
delineate and numerically index ~3.6 million DHSs encoded within the human genome, 
providing a common coordinate system for regulatory DNA.  Here we show that the 
expansive scale of cell and tissue states sampled exposes an unprecedented degree of 
stereotyped actuation of large sets of elements, signaling the operation of distinct 
genome-scale regulatory programs.  We show further that the complex actuation patterns 
of individual elements can be captured comprehensively by a simple regulatory 
vocabulary reflecting their dominant cellular manifestation.  This vocabulary, in turn, 
enables comprehensive and quantitative regulatory annotation of both protein-coding 
genes and the vast array of well-defined but poorly-characterized non-coding RNA genes. 
Finally, we show that the combination of high-precision DHSs and regulatory 
vocabularies markedly concentrate disease- and trait-associated non-coding genetic 
signals both along the genome and across cellular compartments.  Taken together, our 
results provide a common and extensible coordinate system and vocabulary for human 
regulatory DNA, and a new global perspective on the architecture of human gene 
regulation. 
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Introduction 
A fundamental goal of the ENCODE project is to delineate with the highest possible precision 
the repertoire of regulatory DNA elements encoded within the human genome sequence.  A 
canonical feature of actuated cis-regulatory elements – promoters, enhancers, silencers, 
chromatin insulators/enhancer blockers, and locus control regions – is focal alteration in 
chromatin structure resulting in heightened DNA accessibility to nucleases and other protein 
factors​1,2​.  From their discovery 40 years ago ​3–5​, DNase I hypersensitive sites (DHSs) have 
provided reliable signposts for high-precision regulatory DNA delineation in the human and 
other complex genomes​1,5–8​. DHSs typically mark compact (<250bp) elements densely 
populated by sequence-specific regulatory factors; these factors, in turn, produce 
nucleotide-resolution ‘footprints’ when exposed to DNase I​9​ that further illuminate the underlying 
regulatory architecture and logic of regulatory DNA​10​. 
 
Following the sequencing of the human genome, the advent of genome-scale mapping of 
DHSs​11–14​ and its application to diverse human and mouse cell and tissue types​15,16​ has yielded 
many insights into the organization ​15​, evolution ​16–18​, activity​15,19,20​, and function ​15,19,21​ of human 
regulatory DNA in both normal and malignant states​22​.  Cell type- and state-selectivity of DNA 
accessibility is a cardinal property of regulatory DNA, with only a small fraction of all 
genome-encoded elements becoming actuated in a given cellular context​15,22​.  Most 
cell-selective behavior is manifested at distal, non-promoter elements, which comprise the 
plurality of DHSs​15​.  Exceptions to this are the minority of DHSs that mark active or potentiated 
transcriptional start sites (TSSs), or those arising from non-promoter occupancy sites for 
CTCF​23–25​.  While it is possible to infer functional properties of a subset of DHSs on the basis of 
surrounding histone modification patterns​26–28​, such features do not account well for complex 
behaviors such as primed elements poised to receive environmental or other stimuli ​19​, or 
quiescent but developmentally actuated elements​22​. 
 
The overwhelming majority of disease- and trait-associated variants identified by genome-wide 
association studies (GWAS) lie in non-coding regions of the genome, and are strongly enriched 
in DHSs, particularly from disease-relevant cell and tissue types​29,30​.  Additionally, DHSs harbor 
the subset of GWAS variants that account for the majority of trait heritability explained by 
genotyped SNPs​31​.  Beyond these general principles, which derive from simple localization of 
variants within DHSs, deeper insights have been generally limited by the lack of comprehensive 
DHS annotations that capture their biological behavior. 
 
The above findings have collectively required a combination of high data quality and wide 
biological breadth, enabling systematic recognition of cell-selective elements.  However, as 
genome-scale data from diverse cellular contexts have accumulated, systematic assessment of 
cell type- and state-selectivity has grown increasingly complex.  It has become evident that 
large sets of DHSs that are widely distributed across the genome may nonetheless exhibit 
common (but complex) patterns of cell-selective actuation ​15​.  However, the lack of a common 
coordinate system for DHSs has greatly hampered systematic identification and exploitation of 
these features. 
  
Here we sought to expand a broad set of high-quality DHS maps, and to unify them into a 
common reference framework that both (i) incorporates precise genomic annotation that reflects 
observed biological variability in the pattern of DNA accessibility seen at individual elements, 
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and (ii) captures complex cell-selective behaviors in a quantitative fashion.  Both the 
unprecedented precision of genomic annotation and the richness with which cell-variable 
behaviors could be captured were directly enabled by joint analysis of high-quality data across 
hundreds of biological contexts, and thus unattainable from smaller scale data.  We show that 
the integration of DNA accessibility maps across large numbers of cell and tissue states results 
in a remarkably coherent framework with wide utility for annotation of the human regulatory DNA 
and gene landscapes; for defining how regulatory programs are encoded within the genome; 
and for clarifying links between genetic signals and genome-scale regulatory programs that 
enable new insights into the organization and interpretation of non-coding disease- and 
trait-associated variation. 

A deep index of consensus human DHSs 
To create deeply sampled reference maps of human regulatory DNA marked by DHSs, we 
performed DNase-seq ​19​ on a wide range of human cell and tissue samples spanning all major 
human organ systems (​Fig. 1a; Methods ​).  Reference-grade data were created by rigorous 
quality screening for high signal-to-noise ratios and complex libraries (​Methods ​), and were 
aggregated with prior high-quality data from the ENCODE​15​ and Roadmap Epigenomics​32 
Projects.  We conservatively selected 733 biosamples with high-quality data, representing 439 
cell or tissue types and states (​Fig. 1a; Supplementary Table 1; Methods ​).  The vast majority 
of these data derived from primary ​ex vivo ​ cell and tissue samples (72% of samples) and from 
primary cells in culture (11%), with the remainder (17%) derived from immortalized cell lines.  
Collectively these data represent a >6-fold expansion of cell types or states relative to the prior 
phase of ENCODE​15​. 
 
A common coordinate system for accessible regulatory DNA 
Deeply sampled reference maps of DHSs reveal rich and varied patterns of DNase I 
hypersensitivity (​Fig. 1b​).  We sought to create a precise and durable reference framework for 
genomic elements that encode DHSs by (i) comprehensively and stringently (FDR < 0.1%) 
delineating DHSs within each biosample using an improved algorithm 
(​https://github.com/Altius/hotspot2 ​); (ii) systematically integrating individual biosample maps to 
define archetypal DHS-encoding elements; and (iii) assigning to each archetypal DHS element 
a unique numerical identifier, thus establishing a common coordinate system for regulatory DNA 
marked by DHSs (​Fig. 1c ​). 
 
We identified an average of 104,433 DHSs per biosample (collectively detecting 76,549,656 
DHSs across all 733 biosamples). To define archetypal DHS-encoding elements, we developed 
a consensus approach outlined in ​Fig. 1c ​ and ​Extended Data Fig. 1a-b​.​  ​First, we aligned the 
summit coordinate (1bp) of each peak in DNase hypersensitivity signal across all biosamples to 
define the centroids of all spatially distinct DHSs.  To resolve the boundaries of each element, 
we collated the local linear extent of DNase I hypersensitivity into a consensus range 
(​Methods ​).  We then combined centroids and boundaries into a single index of 3,591,898 
distinct archetypal DHS-encoding sequence elements comprising, for each, (i) a consensus 
DHS summit; (ii) a ‘core’ region representing empirical confidence bounds on the centroid; and 
(iii) the consensus start and end coordinates of the archetypal DHS (​Fig. 1d, Extended Data 
Fig. 1c ​).  Because each DHS mapped within an individual biosample contributes to a single 
archetypal DHS in the consensus index, the provenance of each index DHS can be directly 
traced back to the DHSs of its contributing biosample(s).​  ​Finally, we assigned a unique 
identifier to each archetypal DHS within the index using a flexible and extensible numerical 
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schema (​Fig. 1d​) that (i) conveys the genomic localization of each DHS; (ii) enables unlimited 
extension to newly-discovered DHSs; (iii) ensures compatibility with future reference genome 
builds and portability to personal genomes; and (iv) enables direct integration with DNase I 
footprints or other experimentally annotated components of a reference DHS (​Methods ​).  To 
create a robust framework for selecting more stringent genomic subsets of the complete index, 
we assigned confidence scores to all DHSs that reflect both the propensity for repeated 
observation in independent biosamples and the signal strength.  These scores (​Extended Data 
Fig. 1d-e ​) can be used to select DHS subsets at any desired level of stringency. 
 
Index DHSs are broadly distributed across annotated genic and repetitive elements (​Extended 
Data Fig. 2a ​).  54% of DHSs overlap repetitive elements, in line with observations that 
approximately half of human regulatory elements are derived from repetitive elements​33​, and 
covering all classes and sub(families) of repetitive elements (​Extended Data Fig. 2b​).  Most 
DHSs localize distal to annotated TSSs (​Extended Data Fig. 2d​), 53% lie within introns, ~3% 
within non-coding exons and UTRs, and ~2% are dually encoded within protein-coding exons 
(​Extended Data Fig. 2c ​). 
 
Consensus indexing enabled a far more precise and compact annotation of the accessible 
regulatory DNA compartment of the human genome than previously attainable ​15​.  The ~3.6 
million index DHSs have an average width of 204bp (median 196bp, interquartile range 
151-240bp) and annotate 665.57 Mb or 21.55% of the human genome sequence.  DHS ‘core’ 
regions within the index have an average width of 55bp (median 38bp) and annotate 197.74Mb 
or 6.4% of the genome.  DHS summits precisely define the peak in evolutionarily conserved 
nucleotides within DHSs, and the corresponding trough in the density of human genetic 
variation (​Extended Data Fig. 2e ​). 

Cellular patterning of DNA accessibility 
DHSs are extensively shared across individual biosamples and, more generally, across groups 
of biosamples from different human organ systems (​Fig. 1e ​and ​Extended Data Fig. 2f​).   
Previously we described the existence of stereotyped cross-cell-type actuation patterns shared 
by tens to hundreds of widely distributed DHSs sharing the same biological function such as 
enhancer activity​15​.  We observed a high degree of complexity in the patterning of index DHS 
actuation across the 733 cell types and states studied (​Fig. 2a ​), with both biologically modular 
and less structured patterns (​Fig. 2b​).  Across this very large sample set, DHSs are frequently 
selective for a single cell type or state, though a majority show complex actuation behavior 
across cell states (​Fig. 1e, Extended Data Fig. 2f​). 
 
We next sought to develop a flexible approach for quantifying and annotating DHS actuation 
patterns.  In principle, the cross-cell-state actuation pattern of any given index DHS can be 
summarized by a limited number of biological ‘components’ combined in a weighted fashion; the 
same components can be used (orthogonally) to summarize the DHS repertoire of an individual 
biosample.  A key advantage of this approach is the possibility to capture complex behaviors 
while maintaining the potential for biological interpretability, since DHS-centric information can 
inform biosamples and ​vice versa ​. 
 
A compact vocabulary captures complex DHS regulatory patterns 
To decompose the matrix of 3,591,898 DHSs x 733 biosamples we applied non-negative matrix 
factorization ​34​ (NMF; ​Extended Data Fig. 3a-c ​), a technique initially employed in the field of 
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computer vision to learn parts-based representations of objects, and semantic features of text​35​.  
We represented each DHS by a large enough number of components (​k​=16) to ensure 
accuracy – i.e., the degree to which the original matrix can be reconstructed from the 
components – while retaining potential for interpretability via assignment of components to 
established biological contexts such as known cell lineage relationships, or cell states known to 
be specified by specific regulatory factors (​Fig. 2c, Extended Data Fig. 3d-f, Methods ​).   
 
To connect components with established biological contexts, we identified (i) the biosamples 
most strongly associated with each component, and (ii) the distribution of TF recognition 
sequences within DHSs most strongly associated with that component.  For all components, the 
top 15 contributing cell or tissue samples were remarkably coherent, enabling provisional 
assignment of a meaningful biological label to most components (​Extended Data Fig. 4a ​).  
Beyond these top associations, more general analyses further support these labelings 
(​Extended Data Fig. 4b-d, Methods ​). 
 
We next analyzed the distribution and enrichment of TF recognition sequences within DHSs 
most strongly associated with each component (​Extended Data Fig. 5a; Methods ​), revealing 
clear mappings between distinct sets of cell lineage- or state-specifying TFs and specific 
components (​Extended Data Fig. 5b​).  Notably, these mappings are orthogonal to the 
biosample-to-component mappings described above.  Finally, we combined 
biosample-to-component mappings and TF-to-component mappings to create a robust and 
biologically resonant regulatory ‘vocabulary’ that can be used to capture the actuation pattern of 
any DHS across cell types and states (​Fig. 2d, Box 1 ​). 
 
Biological annotation of DHSs using regulatory components 
To date, over 99% of DHSs encoded by the human genome remain unannotated.  Because the 
actuation pattern of each DHS across biosamples is captured by linear combinations of NMF 
components (​Fig. 2c, Extended Data Fig. 3c ​), these combinations provide ​de facto ​ annotations 
of the biological spectrum of every DHS (​Fig. 2e ​).  DHSs selective for a single cell type or state 
are annotated by a single majority component (​Fig. 2e ​, columns 1,4,5,7,8,9); DHSs occurring in 
multiple cellular contexts are described by a combination of components (​Fig. 2e ​, columns 
2,3,6,10); and constitutive DHSs are annotated by a rich mix of all components (​Fig. 2e ​, column 
10), including a specific component that describes tissue-invariant behavior.  In this schema, 
DHSs with similar cross biosample actuation patterns exhibit similar mixtures of components.  
For analytical practicality and visual compactness, the annotation of each DHS can be further 
summarized using its strongest single component (​Fig. 2e ​, bottom); we use this summary 
vocabulary for the analyses described below. 

Regulatory annotation of human genes 
The function of many genes is closely connected with their regulation across cells and tissues, 
and hence with the activity spectra of their cognate regulatory elements.  We observed that 
DHSs with similar annotations were highly clustered along the genome (​Methods ​; ​Extended 
Data Fig. 6a-b​), particularly over gene bodies (​Extended Data Fig. 6c​).  We thus reasoned that 
regulatory components of overlying DHSs could be utilized to annotate the likely functional 
compartments of their underlying genes.  Quantifying the enrichment of congruently annotated 
DHSs around 56,832 GENCODE genes (protein-coding and non-coding) genome-wide revealed 
20,658 genes (FDR < 5%) with significant clustering of DHSs belonging to the same component 
(​Fig. 3a-b; Supplementary Table 2 ​).  This phenomenon was particularly striking for genes 
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encoding tissue-regulatory factors such as GATA1 (myeloid/erythroid component DHSs), 
FOXP3 (lymphoid component), and HOXB9 (developmental component). A subset of genes 
showed enrichment of more than one component suggestive of different functions in different 
organ systems – for example CDX2 (embryonic/primitive and digestive components; ​Fig. 3c ​).  
 
Of 20,291 GENCODE protein coding genes, more than half (54.1%) could be assigned a 
regulatory component based on their overlying DHSs (​Fig. 3b​).  To determine whether these 
assignments are concordant with their annotated function, we assessed (i) whether the most 
confidently annotated genes reflect their known function and (ii) whether genes annotated with a 
particular component are maximally expressed in cell types matching those components.  The 
top genes annotated by the lymphoid component are all involved in immune response and 
disease (​Fig. 3e, Extended Data Fig. 7a ​).  Similar relationships were observed for other 
categories of genes including those annotated by the myeloid/erythroid component 
(erythropoiesis or hematopoietic stem cell genes,  ​Fig. 3e, Extended Data Fig. 7b​), a stromal 
component (collagen genes and fibronectin, ​Fig. 3e, Extended Data Fig. 7c)​, and the 
tissue-invariant component (housekeeping genes, ​Fig. 3e, Extended Data Fig. 7d​).  This 
phenomenon was particularly striking for TF-encoding genes​36​ such as lineage specifying 
master regulators for cardiac development (cardiac component, ​Fig. 3f, Extended Data Fig. 
8b​) or development of other organ systems (​Extended Data Fig. 8 ​). 
 
To explore the concordance between regulatory vocabulary annotations and gene expression 
across cell types and states, we interrogated a compendium of over 100,000 uniformly 
processed RNA-seq data sets​37​.  After matching regulatory components with tissue-relevant 
expression data sets (​Methods ​), we observed strong correspondence between the 
vocabulary-based annotation of genes and the cell or tissue types in which they were maximally 
expressed (​Fig. 3g​). 
 
Annotation of genes with unknown functions  
Despite intensive study, the function of many human genes remains obscure, particularly those 
with lowly or highly cell-selective expression patterns – for example, zinc-finger (ZNF) TFs​36,38​ or 
long non-coding RNA genes​39​. Nearly half of ZNF TFs (43.7%) could be annotated with a single 
regulatory component (​Extended Data Fig. 9a ​) thus indicating their likely target biological 
sphere of activity.  38.7% of long non-coding genes evinced clear mappings to regulatory 
components (​Extended Data Fig. 9b​), as did 18% of pseudo-genes​40​ (​Extended Data Fig. 9c ​), 
possibly reflective of remnants of regulatory states prior to ancient gene duplications.  Beyond 
genes, we reasoned that entire pathways could be annotated using the overlying DHS 
landscapes of their constituent genes (​Extended Data Fig. 10a ​) – for instance, the KEGG 
pathway ‘Allograft rejection’ is strongly enriched for the lymphoid component (​Extended Data 
Fig. 10b​), consistent with the principle that genes involved in similar biological processes share 
similar patterns of regulatory element actuation. 

Annotation of trait-associated genetic variation 
We next asked whether DHS annotations could expand insights into the role(s) of genetic 
variation harbored within regulatory DNA, and provide a more meaningful framework for 
interpreting the pathophysiological basis of disease and trait associations.​ ​A rank-based 
analysis of disease/trait versus regulatory component associations (explicitly controlling for large 
scale Linkage Disequilibrium (LD) structure; ​Methods ​) revealed increasingly strong 
component-specific enrichments of association signals across diverse traits (​Fig. 4a, Extended 
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Data Fig. 11a,b)​.  Notably, the observed enrichments could not typically be obtained by 
considering only DHSs from biosamples most closely related to the relevant regulatory 
component (e.g., lymphoid cell biosamples vs. lymphoid component; ​Fig. 4a, Extended Data 
Figs. 4a, 11c ​). 
 
Quantifying the extent to which DHS annotations captured SNP-based trait heritability (h ​g​2​, ​Fig. 
4b​, white bars) revealed a strong increase in heritability enrichment for trait-relevant regulatory 
components relative to index DHSs (​Fig. 4b​, colored bars vs. grey bars, respectively). 
Heritability was markedly enriched specifically within DHS ‘core’ regions, providing orthogonal 
evidence supporting the delineation and importance of these subregions (​Fig. 4b​). 
 
To generalize these observations, we compiled >1,300 traits with SNP-based heritability of at 
least 1% from the UK Biobank project​41​ and from curated published data ​42​.  Of these, 261 
diseases and traits showed highly significant component-specific enrichment in heritability, 
particularly for pathophysiologically relevant regulatory components (​Fig. 4c, Extended Data 
Fig. 12a ​, FDR < 1%).  Restricting DHS delineations to ‘core’ regions again yielded significantly 
greater enrichment compared to full DHSs (​Extended Data Fig. 12b-c ​).  To remove potentially 
confounding contributions from multiple genomic annotations overlapping the same SNP, we 
quantified the statistical significance of regulatory component heritability contributions while 
controlling for the contribution of all other annotations (​Methods ​).  For virtually all reported traits, 
regulatory component annotations significantly (p < 0.01) captured SNP-based trait heritability 
(​Fig. 4d​, black line).   
 
To quantify the concentration of trait-associated genetic signal in DHSs annotated by specific 
regulatory components relative to the full repertoire of DHSs in disease/trait-relevant cell types 
we performed cell type-specific heritability analyses​43​ (​Methods ​).  Component-annotated DHSs 
offer a significant improvement in capturing trait heritability compared to individual datasets (p < 
2.2 x 10 ​-16​; ​Fig. 4d​, grey solid line).  Strikingly, we find that at the level of individual traits, in 68 
out of 261 (26%) cases regulatory component annotations better capture trait heritability than 
individual DNase-seq datasets (​Fig. 4e ​). 
 
Concentration of trait-associated variation in component-annotated gene body DHSs 
The clustering of concordantly regulated DHSs within gene bodies (​Fig. 3 ​) prompted us to 
speculate that such DHSs were more likely to contain relevant genetic signals.  To test this, we 
quantified the significance of regulatory component heritability separately for concordant (17% 
of DHSs) and discordant (34%) DHS annotations (​Fig. 4f​).  Although in the minority, the former 
uniquely and strongly contributed to SNP-based trait heritability relative to DHSs occurring in the 
same genes but discordant with the gene’s component labeling.  DHSs proximal to genes not 
labelled by any regulatory component provide the weakest heritability contributions, while 
intergenic DHSs contribute modestly (​Fig. 4f, Extended Data Fig. 12d​). 
 
Taken together, our results show that partitioning the trait heritability encoded in DHSs based on 
regulatory components provides a novel and powerful approach for prioritization of genetic 
signals. 

Discussion 
Here we have presented by far the most comprehensive and precise map of human DNase I 
hypersensitive sites, the best described generic markers of regulatory DNA.  The remarkable 
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positional stability of DHSs across cell types and states has enabled delineation and indexing of 
archetypal DHS-encoding sequence elements within the human genome.  We have also 
provided the first universal annotation that captures, for every archetypal DHS, its complex 
actuation pattern across diverse cell types and states.  Together these features create a 
powerful new framework for analyses at the intersection of gene regulation and the genetics of 
human diseases and quantitative traits.  Archetypal DHS identifiers are robust to genome builds, 
transferable to personal genomes and emerging graph-based genome analysis​44,45​, and enable 
facile incorporation of functional properties such as cell-selectivity, or finer structural annotations 
such as DNase I footprints.  Common reference coordinates will further greatly facilitate 
comparisons between large experimental data sets, and between human and mouse DHSs.  
  
Cell type-selectivity is a cardinal property of DHSs yet has been difficulty to analyze 
systematically or to compare between organisms and individuals due to lack of a common 
positional reference framework.  Regulatory components capture complex cell context 
behaviors and thus greatly expand the analytical horizon beyond cell type-agnostic annotations 
such as chromatin states​30,46​.  Because each regulatory component can be mapped to a set of 
contributing TFs and resolved to specific archetypal DHSs, they provide annotations of 
unprecedented richness that can be readily leveraged for mechanistic insights into regulatory 
pathways and networks. 
  
By combining DHS indexing and regulatory components, it is now possible to triangulate the 
genetics-gene regulation interface on three axes:  (i) a genomic position axis, which has been 
finely resolved to consensus DHS summits; (ii) a cell/tissue biological axis captured in regulatory 
components; and (iii) a gene context axis reflecting the coherent co-localization of similarly 
regulated DHSs over gene bodies.  
  
On the genomic position axis, the concentration of trait heritability within highly compact ~50bp 
DHS cores – even relative to the immediately adjacent DHS ‘arms’ ​– is particularly striking given 
that the overall density of human sequence variation nadirs at DHS summits (​Extended Data 
Fig. 2e ​). On the cell/tissue biological axis, regulatory components now provide a systematic and 
principled approach for combining the complex biological landscapes of individual cell types, 
resulting in a more powerful and comprehensive framework for analyzing the intersection of 
cell/tissue selectivity and trait heritability than could be achieved with individual biosamples or 
simple combinations thereof.  Finally, on the gene axis, the concentration of GWAS variants 
within DHSs sharing a gene’s dominant component reinforces the biological coherence of these 
elements and provides a new pathway for separating variants implicating a given gene from 
those within its body or flanking regions that are connected with nearby or distant genes.  
  
On a broader level, the DHS index and component framework we report represents a transition 
from an exploratory era focused on discovery of novel elements, to a map-centric framework 
with a focus on detection of an annotated element within a particular biological context.  This 
new framework should prove particularly valuable for anchoring single cell studies, which are 
presently at least 1000-fold too sparse for robust delineation of DHSs within individual cells. 
The index/component framework is highly information rich, and provides an inter-operable 
reference for annotating functional connections between and among DHSs and genes, and for 
functional categorization of elements – two intertwined challenges that represent the next 
frontier in human genome annotation. 
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Box 1: DHS vocabulary component labeling 

◼​Placental/trophoblast​ － Placenta and trophoblast biosamples.  Strong enrichment for 
binding sites of GCM1, selectively expressed in trophoblasts and placenta in general ​47​ and 
associated with pre-eclampsia in pregnant women ​48​. 
◼​Primitive/embryonic ​ － Embryonic stem cell and related biosamples.  Most enriched motif is 
that for POU5F1/OCT4, reflecting its key role in embryonic development and pluripotency. 
◼​Organ development/renal​ － Largely captures fetal kidney biosamples, with strong 
enrichment for development-related Homeobox protein (HOX) factors, as well as PAX2, 
associated with early kidney development​49​. 
◼​Pulmonary development ​－ Consists of fetal lung biosamples.  Enriched for CEBPB and 
FOXC2 motifs, the latter of which is implicated in lung development and maturation ​50​. 
◼​Lymphoid​ － T-cells and other immune-related cellular conditions.  Its most enriched motifs 
are Interferon-Regulatory Factors (IRF4, IRF1, IRF5, etcetera), in line with their critical role in 
the (adaptive) immune system​51​. 
◼​Myeloid/erythroid​ － CD34+ cells and shows strong motif enrichments for not only ETS/SPI1, 
but also for GATA1 － by itself, as well together with TAL1. 
◼​Cardiac ​ － Associated with heart-related biosamples.  Strongly enriched for motifs of the 
Myocyte enhancer factor–2 (MEF2) transcription factor, a core cardiac transcription factor​52​. 
◼​Musculoskeletal​ － Associated with muscle(-related) and bone biosamples.  Enriched for 
Musculin (MSC) motifs, with known key roles in regulating myogenesis. 
◼​Vascular/endothelial​ － Consists mostly of HMVEC cells and is enriched for motifs of ERG, a 
member of the erythroblast transformation-specific (ETS) family of transcription factors, required 
for platelet adhesion to the subendothelium, inducing vascular cell remodeling. 
◼​Neural ​－ Brain and other nervous system biosamples.  General enrichment for AT-rich 
homeobox motifs, as well as many highly specific NEUROD2 motifs. 
◼​Digestive ​ － Associated with intestine, liver and bowel mucosa biosamples.  Strong 
enrichment for motifs of hepatocyte nuclear factor 4 (HNF4), critical for liver development. 
◼​Renal/cancer ​ － Mostly adult kidney biosamples, including renal cancer.  Enriched for 
HNF1B, the HNF1A paralog involved in kidney function. 
◼​Cancer/epithelial​ － Associates with various cancer types, as well as general epithelia.  The 
top-scoring motif is for p53 (cancer-related) and p63, which has been proposed to play a dual 
role ​53​: initiating epithelial stratification during development and maintaining proliferative potential 
of basal keratinocytes in mature epidermis. 
◼​Stromal A​ － Captures fibroblast biosamples.  Enriched for motifs of Jun dimerization protein 
2 (JDP2), as well as other components of the AP-1 transcription factor (JUN, FOS). 
◼​Stromal B​ － Captures similar Biology as the Stromal A component. 
◼​Tissue invariant​ － Lacks strong association with specific cell and tissue types, but shows 
enrichment for a diverse set of housekeeping factor motifs, such as CTCF, ETS and NRF. 
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Figure Legends 
 
Figure 1 － An index of DNase I Hypersensitive Sites (DHSs) in the human genome 
a.​ DNA accessibility assayed across all main organ systems; number of datasets per system 
indicated.  Out of 733 tota datasets, 531 are derived from primary cells and tissue.  ​b.​ Example 
locus on chromosome 1, illustrating DNase I hypersensitivity across selected hematopoietic 
biosamples, as indicated on the right.  A variety of cell type selective configurations are 
indicated.  ​c. ​Outline of procedure to delineate a DHS index; 76.5M per-dataset DHSs are 
aggregated across datasets to jointly delineate 3.59M consensus DHSs, with extensive 
annotation.  ​d.​ Delineation of consensus DHSs shown for three example loci with varying cell 
type selectivity and positional stability.  Positions of each per-dataset DHS are aggregated 
across datasets to determine consensus DHS coordinates, further annotated with a summit 
position, a core region reflecting the positional stability and a unique identifier.  ​e.​ Sharing of 
DHSs across human organ systems, shown by the number of DHSs as a function of the number 
of organ systems in which they are observed. 
 
Figure 2 － A simple vocabulary captures complex cross-dataset patterning of DHSs 
a.​ DNA accessibility of 3.5+ million DHSs across 733 DNase-seq datasets, documented in a 
single DHS-by-dataset matrix.  Indicated are various recurring accessibility patterns, including 
extensive sharing across cellular contexts.  ​b.​ Example of a set of 1,000s of DHSs sharing 
similar accessibility patterns across cellular contexts, illustrating the modular behavior of DHSs. 
c.​ Decomposition of DHS patterns across 733 datasets into 16 components using Non-negative 
Matrix Factorization (NMF).  The cellular patterning of individual DHSs is described using a 
mixture of components, indicated by distinct colors.  ​d. ​Regulatory component labels, 
constituting a DHS vocabulary.  ​e.​ Component mixtures for 10 exemplar DHSs, and 
corresponding DNase-seq data for representative cellular contexts.  Shown are DHSs with 
various degrees of component-specificity, including a constitutive DHS shared across all 
indicated datasets and components.  Single-component annotations representing dominant 
component loadings are shown at the bottom. 
 
Figure 3 － Regulatory annotation of human genes 
a.​ Regulatory annotation of genes through the over-representation of regulatory components in 
a region defined by the body of a gene, extending a maximum of 5kb upstream and 1kb 
downstream, up until halfway through to another gene.  ​b.​ Percentage of genes annotated with 
one or more regulatory components, split up by the major gene categories as recognized by 
GENCODE.  ​c.​ Regulatory annotations of the protein-coding genes GATA1, FOXP3, HOXB9 
and CDX2.  ​d.​ 2D t-SNE projection of regulatory annotation patterns across genes, colored by 
their most strongly associated component.  The number of genes associated with each 
regulatory component is indicated.  ​e-f.​ Summarized view of the number of genes associated 
with each regulatory component.  Call-outs show the top 5 results for protein-coding genes (​e ​; 
myeloid/erythroid, lymphoid, stromal and tissue-invariant components) and the subset of 
transcription factor genes (​f​; placenta, cardiac, digestive or organ development / renal 
components).  ​g.​ Correspondence between gene regulatory annotation and cell type of maximal 
RNA expression shown using relative transcriptional activity of genes in a panel of 
component-matched tissue and cell types.  Values shown are log ​2​ observed/expected ratios. 
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Figure 4 － Component-wise view of disease-associated genetic variation 
a.​ Per-component association of DHSs with selected GWAS traits, shown as enrichment ratios 
as a function of increasingly stringent subsets of variants.  The canonical genome-wide 
significance threshold (5 x 10 ​-8​) is indicated.  Enrichments for the top 15 biosamples associated 
with each regulatory component are shown in grey.  ​b.​ Associations between GWAS variants 
and regulatory components identified through stratified LD-score regression (S-LDSC), for the 
traits shown in ​a ​.  Heritability enrichment levels are indicated for the top 3 most enriched 
baseline annotations (white), the full DHS index (grey) and trait-relevant regulatory components 
(colored bars).  Statistically significant enrichments are indicated (*; FDR < 0.01).  ​c.​ Regulatory 
component (x-axis) heritability enrichment results across 261 GWAS traits (y-axis).  Grayscale 
intensity indicates heritability enrichment levels, shown for statistically significant associations at 
FDR < 1%.  A sampling of labels of enriched traits is shown for each component, as space 
permits.  Traits used in ​a ​ and ​b​ are indicated with arrows.  ​d.​ Distribution of S-LDSC coefficient 
Z-scores across 261 GWAS traits, shown for all baseline annotations (grey dashed line), top 15 
regulatory component-associated biosamples (grey solid line) and regulatory components (black 
line).  ​e.​ S-LDSC coefficient Z-scores for selected traits, shown for all individual biosamples 
(grey lines), top 15 component-associated biosamples (colored ticks) and regulatory 
components (colored arrows).  ​f.​ S-LDSC Z-scores stratified according to gene landscape DHS 
types, indicating stronger heritability contributions for component concordant DHSs.  For ​d-f​, 
Grey areas indicate S-LDSC Z-scores corresponding to p < 0.01.  
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Figure 1 － An index of DNase I Hypersensitive Sites (DHSs) in the human genome
a. DNA accessibility assayed across all main organ systems; number of datasets per system indicated.  Out of 733 
tota datasets, 531 are derived from primary cells and tissue.  b. Example locus on chromosome 1, illustrating DNase 
I hypersensitivity across selected hematopoietic biosamples, as indicated on the right.  A variety of cell type selective 
configurations are indicated.  c. Outline of procedure to delineate a DHS Index; 76.5M per-dataset DHSs are aggre-
gated across datasets to jointly delineate 3.59M consensus DHSs, with extensive annotation.  d. Delineation of 
consensus DHSs shown for three example loci with varying cell type selectivity and positional stability.  Positions of 
each per-dataset DHS are aggregated across datasets to determine consensus DHS coordinates, further annotated 
with a summit position, a core region reflecting the positional stability and a unique identifier.  e. Sharing of DHSs 
across human organ systems, shown by the number of DHSs as a function of the number of organ systems in which 
they are observed.
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Figure 2 － A simple vocabulary captures complex cross-dataset patterning of DHSs
a. DNA accessibility of 3.5+ million DHSs across 733 DNase-seq datasets, documented in a single DHS-by-dataset 
matrix.  Indicated are various recurring accessibility patterns, including extensive sharing across cellular contexts.  b. 
Example of a set of 1,000s of DHSs sharing similar accessibility patterns across cellular contexts, illustrating the 
modular behavior of DHSs.  c. Decomposition of DHS patterns across 733 datasets into 16 components using 
Non-negative Matrix Factorization (NMF).  The cellular patterning of individual DHSs is described using a mixture of 
components, indicated by distinct colors.  d. Regulatory component labels, constituting a DHS vocabulary.  e. 
Component mixtures for 10 exemplar DHSs, and corresponding DNase-seq data for representative cellular contexts.  
Shown are DHSs with various degrees of component-specificity, including a constitutive DHS shared across all 
indicated datasets and components.  Single-component annotations representing dominant component loadings are 
shown at the bottom.
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Figure 3 － Regulatory annotation of human genes
a. Regulatory annotation of genes through the over-representation of regulatory components in a region defined by 
the body of a gene, extending a maximum of 5kb upstream and 1kb downstream, up until halfway through to another 
gene.  b. Percentage of genes annotated with one or more regulatory components, split up by the major gene 
categories as recognized by GENCODE.  c. Regulatory annotations of the protein-coding genes GATA1, FOXP3, 
HOXB9 and CDX2.  d. 2D t-SNE projection of regulatory annotation patterns across genes, colored by their most 
strongly associated component.  The number of genes associated with each regulatory component is indicated.  e-f. 
Summarized view of the number of genes associated with each regulatory component.  Call-outs show the top 5 
results for protein-coding genes (e; myeloid/erythroid, lymphoid, stromal and tissue-invariant components) and the 
subset of transcription factor genes (f; placenta, cardiac, digestive or organ development / renal components).  g. 
Correspondence between gene regulatory annotation and cell type of maximal RNA expression shown using relative 
transcriptional activity of genes in a panel of component-matched tissue and cell types.  Values shown are log2 
observed/expected ratios.
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Figure 4 － Component-wise view of disease-associated genetic variation
a. Per-component association of DHSs with selected GWAS traits, shown as enrichment ratios as a function of increasingly 
stringent subsets of variants.  The canonical genome-wide significance threshold (5 x 10-8) is indicated.  Enrichments for the 
top 15 biosamples associated with each regulatory component are shown in grey.  b. Associations between GWAS variants and 
regulatory components identified through stratified LD-score regression (S-LDSC), for the traits shown in a.  Heritability enrich-
ment levels are indicated for the top 3 most enriched baseline annotations (white), the full DHS index (grey) and trait-relevant 
regulatory components (colored bars).  Statistically significant enrichments are indicated (*; FDR < 0.01).  c. Regulatory compo-
nent (x-axis) heritability enrichment results across 261 GWAS traits (y-axis).  Grayscale intensity indicates heritability enrich-
ment levels, shown for statistically significant associations at FDR < 1%.  A sampling of labels of enriched traits is shown for 
each component, as space permits.  Traits used in a and b are indicated with arrows.  d. Distribution of S-LDSC coefficient 
Z-scores across 261 GWAS traits, shown for all baseline annotations (grey dashed line), top 15 regulatory component-associat-
ed biosamples (grey solid line) and regulatory components (black line).  e. S-LDSC coefficient Z-scores for selected traits, 
shown for all individual biosamples (grey lines), top 15 component-associated biosamples (colored ticks) and regulatory compo-
nents (colored arrows).  f. S-LDSC Z-scores stratified according to gene landscape DHS types, indicating stronger heritability 
contributions for component concordant DHSs.  For d-f, Grey areas indicate S-LDSC Z-scores corresponding to p < 0.01. 
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