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Summary 11 

Insulin receptor substrate 2 (IRS2) is an essential adaptor that mediates signaling 12 

downstream of the insulin receptor and other receptor tyrosine kinases. Transduction 13 

through IRS2-dependent pathways is important for coordinating metabolic homeostasis, 14 

and dysregulation of IRS2 causes systemic insulin signaling defects. Despite the 15 

importance of maintaining proper IRS2 abundance, little is known about what factors 16 

mediate its protein stability. We conducted an unbiased proteomic screen to uncover 17 

novel substrates of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin 18 

ligase that controls the abundance of key cell cycle regulators. Surprisingly, we found that 19 

IRS2 levels are regulated by APC/C activity and that IRS2 is a direct APC/C target in G1. 20 

Consistent with the APC/C’s role in degrading cell cycle regulators, we find that IRS2-null 21 

cells are deficient in proteins involved in cell cycle progression and display spindle 22 

assembly checkpoint defects during M-phase. Together, these findings reveal a new 23 

pathway for IRS2 turnover and indicate that IRS2 is a critical component of the cell cycle 24 

control system in addition to acting as an essential metabolic regulator.  25 
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 2 

Introduction 32 

 The insulin and insulin-like growth factor 1 receptors (IR/IGF1R) are receptor 33 

tyrosine kinases that control metabolism, differentiation, and growth. Upon ligand binding 34 

at the cell surface, the activated IR/IGF1R undergoes a conformational change that allows 35 

it to auto-phosphorylate tyrosine residues on its cytoplasmic subunits (Haeusler et al., 36 

2017). This facilitates the recruitment and phosphorylation of insulin receptor substrate 37 

(IRS) proteins, which serve as scaffolds to initiate downstream signaling (Copps and 38 

White, 2012). Two major pathways that are stimulated by this cascade are the PI3K-AKT 39 

and Ras-Raf-MAPK pathways, which coordinate metabolic homeostasis and growth, 40 

among other functions (Haeusler et al., 2017). 41 

The most physiologically important and ubiquitously expressed IRS proteins are 42 

IRS1 and IRS2. Though IRS1 and IRS2 share similar structural and functional features, 43 

they have complementary roles and expression patterns that depend on tissue type and 44 

physiological state (Haeusler et al., 2017). These differences are illustrated by divergent 45 

phenotypes in knockout mice: whereas IRS1 knockout mice exhibit insulin resistance that 46 

is compensated by increased pancreatic β cell mass, IRS2 knockout mice exhibit β cell 47 

failure and resultant diabetes (Lavin et al., 2016). Distinct roles for IRS1 and IRS2 can 48 

also be observed within the same tissue. For example, in skeletal muscle, IRS1 is 49 

required for glucose uptake and metabolism, whereas IRS2 is important for lipid uptake 50 

and metabolism (Bouzakri et al., 2006; Long et al., 2011). Furthermore, recent work has 51 

shown that the ratio of IRS1 to IRS2 is important for hepatic glucose metabolism (Besse-52 

Patin et al., 2019). Thus, maintaining proper IRS1 and IRS2 levels is critical for systemic 53 

and cellular homeostasis.   54 

The ubiquitin-mediated proteolysis of IRS proteins is important for restraining 55 

signaling through the IR/IGF1R. For example, both IRS proteins are targeted for 56 

proteasomal destruction following persistent insulin or IGF1 stimulation in a negative 57 

feedback loop that attenuates PI3K-AKT signaling (Copps and White, 2012; Scheufele et 58 

al., 2014). In mice, removal of a ubiquitin ligase that is responsible for IGF1-induced 59 

degradation of IRS1 enhances insulin sensitivity and increases plasma glucose clearance 60 

(Scheufele et al., 2014). Though several ubiquitin ligases have been reported to control 61 

IRS1’s proteasome-dependent degradation (Nakao et al., 2009; Rui et al., 2002; Shi et 62 
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al., 2011; Xu et al., 2008; Yi et al., 2013), only SOCS1/3 have been implicated in driving 63 

IRS2 turnover (Rui et al., 2002). This is an intriguing disparity because hepatic IRS1 64 

remains stable between fasting and feeding whereas IRS2 levels drop after feeding 65 

(Kubota et al., 2008), suggesting that IRS2 is less stable than IRS1 in some physiological 66 

contexts. Because SOCS1/3 also targets IRS1, there are no reports of ubiquitin ligases 67 

that target IRS2 but not IRS1, leaving a gap in our knowledge of how IRS1 and IRS2 are 68 

differentially regulated by the ubiquitin proteasome system.  69 

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a 1.2 mDa ubiquitin 70 

ligase that targets key cell cycle related proteins for destruction by the proteasome (Alfieri 71 

et al., 2017; Chang and Barford, 2014). To transfer ubiquitin to its substrates, the APC/C 72 

works with one of two co-activators: Cdc20 during M-phase or Cdh1 during G1. These co-73 

activators stimulate the catalytic activity of the APC/C and facilitate substrate recognition. 74 

APC/CCdc20 and APC/CCdh1 recognize substrates via short degron motifs in unstructured 75 

protein regions called destruction boxes (D-boxes) and KEN-boxes. An additional degron, 76 

called the ABBA motif, is used by APC/CCdc20 only (Alfieri et al., 2017; Chang and Barford, 77 

2014; Davey and Morgan, 2016).   78 

To probe the substrate landscape of the APC/C, we conducted an unbiased 79 

proteomic screen by acutely blocking APC/CCdh1 activity with small molecule APC/C 80 

inhibitors (apcin and proTAME) (Sackton et al., 2014; Zeng et al., 2010) in G1 cells. Using 81 

this approach, we uncovered diverse putative APC/CCdh1 substrates, including IRS2. We 82 

demonstrate that IRS2, but not IRS1, is a direct target of APC/CCdh1, thereby establishing 83 

a novel mode by which IRS1 and IRS2 are differentially regulated. Using IRS2 knockout 84 

cell lines, we show that IRS2 is important for the expression of proteins involved in cell 85 

cycle progression. We further show that genetic deletion of IRS2 perturbs spindle 86 

assembly checkpoint function. Taken together, these data establish a role for IRS2 in 87 

normal cell cycle progression, revealing new connections between an essential 88 

component of the growth factor signaling network and cell cycle regulation.   89 

 90 

Results 91 

Chemical proteomics reveals proteins whose abundances are APC/CCdh1 regulated 92 
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 To identify novel substrates and pathways regulated by APC/CCdh1, we designed 93 

an experiment that coupled small molecule inhibition of the APC/C in G1 cells to high 94 

resolution tandem mass tag (TMT)-based quantitative proteomics (Figure 1A). Blocking 95 

Cdk4/6 activity inhibits Rb phosphorylation, causing cells to arrest at the G1 restriction 96 

point (Ezhevsky et al., 1997). Thus, to generate a homogeneous population of G1 cells, 97 

we treated asynchronous hTERT-RPE1 cells bearing fluorescent ubiquitination-based 98 

cell cycle indicator (FUCCI) constructs (Sakaue-Sawano et al., 2008) with the Cdk4/6 99 

inhibitor palbociclib. Following G1 arrest, cells were acutely treated with a combination of 100 

APC/C inhibitors (6 µM proTAME + 50 µM apcin) or vehicle (DMSO) for 8 hours. Cells 101 

were then collected for proteomic analysis with the expectation that APC/C-regulated 102 

proteins would be stabilized in cells treated with APC/C inhibitors compared to control 103 

cells (Figure 1A). The combined use of proTAME and apcin results in robust inhibition of 104 

the APC/C (Sackton et al., 2014), which guided our decision to use this treatment scheme. 105 

Moreover, this scheme was designed to specifically identify APC/CCdh1 substrates rather 106 

than APC/CCdc20 substrates since APC/CCdh1 degrades Cdc20 during G1 phase (Prinz et 107 

al., 1998). Illustrating this point, Cdc20 was undetectable in G1 palbociclib-arrested cells 108 

(Figure 1B). 109 

The experimental approach outlined in Figure 1A was validated using the FUCCI 110 

reporter system. This system relies on the expression of two stably integrated fluorescent 111 

fusion proteins—mAG1-geminin (1-110) and mCherry-Cdt1 (30-120)—to monitor the 112 

activity of endogenous cell cycle-related ubiquitin ligases APC/CCdh1 and SCFSkp2, 113 

respectively (Sakaue-Sawano et al., 2008). As expected, cells treated with palbociclib lost 114 

mAG1-geminin (1-110) protein expression over time due to APC/CCdh1 activity while 115 

mCherry-Cdt1 (30-120) was stabilized, indicating G1 arrest (Figures S1A-S1B). The 116 

addition of APC/C inhibitors in palbociclib-arrested cells rescued mAG1-geminin (1-110) 117 

levels (Figures S1C-S1D), confirming that this workflow stabilizes APC/C targets. 118 

 Using TMT-coupled quantitative proteomics, we identified and quantified relative 119 

abundances for ~8000 human proteins in G1-arrested cells treated with or without APC/C 120 

inhibitors in biological triplicate (Supplementary Table S1). Notably, we detected 38 121 

previously reported APC/C substrates in our dataset (Figures 1C-1D; Supplementary 122 

Table S2). Of these, 22 increased significantly (p < 0.05) under conditions of APC/C 123 
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inhibition. As an internal control, we detected a significant increase (p = 3.2 x 10-5) in the 124 

abundance of peptides derived from the N-terminal 110 amino acids of geminin (GMNN). 125 

These residues are shared with the mAG1-geminin (1-110) reporter expressed in this cell 126 

line, confirming earlier fluorescence-based validation of our experimental system. 127 

While the majority of the previously reported APC/CCdh1 substrates that were 128 

quantified in our G1 proteomic experiment were stabilized following APC/C inhibition, 129 

some remained constant. There are several possible explanations for this result. First, for 130 

proteins that were identified based on a small number of peptides, inadequate 131 

quantification may have resulted in inaccurate abundance assignments. Second, some 132 

substrates may be APC/CCdh1-accessible only under conditions or in tissue types that 133 

were not well modeled by the experimental parameters that we used. Third, some 134 

proteins (e.g. FBXW5, ZC3HC1) (Klitzing et al., 2011; Puklowski et al., 2011) were 135 

proposed to be APC/CCdh1 substrates based on results obtained in Cdh1 overexpression 136 

systems, indicating that APC/CCdh1 activity may be sufficient but not necessary to control 137 

their levels.  138 

 Of the 38 previously reported APC/C substrates that we identified, the median fold 139 

change under APC/C inhibition compared to DMSO was 1.147. Based on this, to identify 140 

new APC/C substrates, we screened for proteins that: (1) had a fold change ≥1.147 under 141 

APC/C inhibition, (2) were identified and quantified based on >1 peptide, and (3) had a p-142 

value < 0.05 across the three biological replicates measured in this experiment. This 143 

narrowed our analysis to a subset of 204 proteins (Supplementary Table S3). Because 144 

the APC/C recognizes substrates based on D-box motifs (RxxL or the extended motif 145 

RxxLxxxxN) and KEN-box motifs (KEN), we used the SLiMSearch (Short Linear Motif 146 

Search) degron prediction tool(Davey and Morgan, 2016; Krystkowiak and Davey, 2017) 147 

to scan this 204-protein subset for proteins that contain these sequences. In order to 148 

classify a putative D- or KEN-box sequence as a probable physiological degron, we 149 

applied the following restrictions on the SLiMSearch (Krystkowiak and Davey, 2017) 150 

parameters: (1) similarity score ≥ 0.75; (2) consensus similarity is medium or high; (3) 151 

disorder score ≥ 0.4; (4) the putative degron must be intracellular and exist on a non-152 

secreted protein. These cutoffs were determined based on those met by previously 153 

validated APC/C substrates (including those not identified in our dataset) and by the 154 
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physical restriction that APC/C activity occurs within the cell. Based on these thresholds, 155 

our analysis identified 26 proteins as potential D- and KEN-box containing APC/CCdh1 156 

substrates (Table 1, Figure 1D). Of these 26 proteins, 11 have previously been reported 157 

as direct APC/C substrates, validating internally that this analysis was useful for 158 

identifying APC/C substrates.  159 

 160 

IRS2 levels are controlled by Cdh1 in a proteasome-dependent manner 161 

Examining our 26-protein putative substrate list, we focused our attention on 162 

IRS2—one of two major adaptors that promotes signaling through the insulin and insulin-163 

like growth factor 1 receptors (IR/IGF1R).  Using conditions identical to those under which 164 

the proteomics experiment was conducted, we validated that IRS2 was upregulated at 165 

the protein level under APC/C inhibition in G1-arrested RPE1 cells by immunoblot (Figure 166 

2A). Seeking to further validate this result in a distinct physiological context, we asked 167 

whether APC/C inhibition in terminally differentiated C2C12 myotubes also increases IRS2 168 

protein abundance. C2C12 myoblasts easily differentiate into multinucleated myotubes 169 

following serum withdrawal and supplementation with growth factors (Figures S2A-S2B). 170 

To validate that the APC/C is active in this system, we transfected C2C12 myoblasts with 171 

a model APC/C substrate (N-terminal fragment of cyclin B1 fused to EGFP; NT-CycB-172 

GFP), allowed cells to differentiate into myotubes, and found that APC/C inhibition 173 

stabilized NT-CycB-GFP (Figure S2C). Similarly, we found that acute APC/C inhibition in 174 

myotubes also resulted in an accumulation of IRS2 protein (Figure 2B), thereby validating 175 

this finding from our G1 experiment in RPE1 cells in an independent system.  176 

To exclude the possibility that the change in IRS2 abundance that we observed 177 

following APC/C inhibition was due to off-target effects of the small molecule APC/C 178 

inhibitors, we depleted Cdh1 using RNAi to block APC/CCdh1 activity in RPE1, C2C12, and 179 

HeLa cells.  In all three cell lines, we found that Cdh1 knockdown caused an accumulation 180 

of endogenous IRS2 compared to control-transfected cells (Figure 2C-2E).  181 

 We next sought to confirm that the increase in IRS2 protein observed under APC/C 182 

inhibition was due to impaired targeting of IRS2 to the proteasome. To test this, we 183 

arrested RPE1 cells in G1 using palbociclib and acutely treated them with APC/C inhibitors 184 

and/or a proteasome inhibitor (MG132) for 8 hours. This experiment revealed that APC/C 185 
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inhibition or proteasome inhibition each resulted in an accumulation of IRS2 (Figure 2F). 186 

Notably, co-inhibition of the APC/C and the proteasome did not result in additional 187 

stabilization of IRS2, indicating that the increase in IRS2 we observed under APC/C 188 

inhibition was solely a consequence of its impaired ubiquitination and proteasomal 189 

degradation.  190 

 191 

IRS2 levels and phosphorylation fluctuate in a cell-cycle dependent manner 192 

 To test whether IRS2 levels fluctuate during the cell cycle as expected for an 193 

APC/C substrate, we synchronized HeLa cells in early S-phase by double thymidine block 194 

and tracked IRS2 protein abundance leading into mitotic entry by immunoblot (Figure 195 

3A). As is typical for known APC/C substrates, IRS2 levels correlated with cyclin B1 196 

abundance and APC3 phosphorylation. To assess IRS2 levels at mitotic exit, we 197 

thymidine-nocodazole synchronized HeLa cells, released them into prometaphase, and 198 

tracked IRS2’s abundance through mitotic exit (Figure 3B). Again, IRS2 protein 199 

abundance correlated with cyclin B1 levels and APC3 phosphorylation. The same 200 

behavior was observed in RPE1 cells that were synchronized in late G2 by RO3306 201 

treatment (Cdk1 inhibition) and tracked over the course of progression through M-phase 202 

and into G1 (Figure 3C). Based on these data, we conclude that IRS2 protein levels 203 

fluctuate in a cell cycle dependent manner that is consistent with other known APC/C 204 

substrates.  205 

 In agreement with previous reports of mitotic phosphorylation of IRS2 by Plk1 206 

(Chen et al., 2015), our cell cycle analysis experiments revealed that IRS2 displays a 207 

marked electrophoretic mobility shift consistent with mitotic phosphorylation. This may 208 

owe, at least in part, to Cdk1 activity given that HeLa cells released from a double 209 

thymidine block into Cdk1 inhibitor RO3306 did not display an observable shift in IRS2 210 

mobility as compared to those released into control (DMSO) treatment (Figure S3). IRS2 211 

abundance still peaked normally at this time point in the presence of RO3306, suggesting 212 

that the increase in IRS2 abundance was not dependent on Cdk1 activity. Together, these 213 

results support previous findings (Chen et al., 2015) that IRS2 is subject to cell-cycle 214 

dependent phosphorylation and that its abundance peaks in M-phase and falls in early 215 

G1 in multiple cell lines. 216 
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 8 

Cdh1 control of IRS2 degradation depends on an IRS2 D-box motif 217 

 Based on its SLiMSearch prediction, IRS2 contains four minimal D-box motifs 218 

(RxxL), one extended D-box motif (RxxLxxxxN) and no KEN-box motifs. Of the four 219 

minimal D-box motifs, none bear strong consensus similarity to previously validated D-220 

box motifs, and one exists in a highly structured region of the protein (Krystkowiak and 221 

Davey, 2017). Because of its high SLiMSearch parameter scores (Table 1), we focused 222 

our efforts on determining whether the extended D-box motif located in the C-terminal 223 

third of IRS2 is required for its APC/CCdh1 dependent stability. IRS2’s extended D-box 224 

(amino acids 972-980 in human IRS2) is highly conserved in placental mammals despite 225 

overall divergence in much of the C-terminus (Figure 4A), suggesting that this sequence 226 

likely has a conserved function.  227 

 To test whether IRS2’s full D-box is relevant for its Cdh1-dependent degradation, 228 

we generated a mutant IRS2 construct bearing an R972A mutation (∆D), which was 229 

expected to abrogate its function as a D-box (Glotzer et al., 1991). Using RPE1 cells 230 

stably expressing C-terminally HA-tagged IRS2-WT or IRS2-∆D, we found that APC/C 231 

inhibition following G1 arrest caused accumulation of IRS2-WT but not IRS2-∆D (Figure 232 

4B).  The degree of accumulation of the WT protein depended on the dose of APC/C 233 

inhibitors used (Figure S4A). We were moreover able to repeat this result in terminally 234 

differentiated C2C12 myotubes that stably expressed doxycycline-inducible, C-terminally 235 

HA-tagged IRS2-WT or IRS2-∆D constructs that were treated with APC/C inhibitors 236 

(Figure 4C).  237 

 To further validate the Cdh1-dependence of IRS2’s D-box motif, we asked whether 238 

Cdh1 knockdown by siRNA could stabilize the IRS2-∆D protein. Using asynchronous 239 

RPE1 cells stably expressing C-terminally HA-tagged IRS2-WT and IRS2-∆D, we found 240 

that Cdh1 knockdown by siRNA caused an accumulation of IRS2-WT relative to control-241 

transfected cells but not IRS2-∆D (Figure 4D). This result was repeated in HeLa cells 242 

stably expressing N-terminally FLAG-HA-tagged IRS2-WT and IRS2-∆D constructs 243 

subject to the same conditions (Figure 4E).  244 

The stable cell lines described above express tagged IRS2 variants at low levels 245 

comparable to the endogenous protein (Figure S4B), making it unlikely that the observed 246 

effects were protein overexpression artifacts. Notably, IRS1 (the other primary adaptor 247 
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protein for the IGF1R and IR) shares 75% sequence homology with IRS2’s N-terminus 248 

and 35% homology with its C-terminus (Sun et al., 1995) but does not share the D-box 249 

motif found in IRS2’s C-terminus (Figure 4F). In keeping with our hypothesis that Cdh1-250 

mediated control of IRS2 is D-box dependent, IRS1 levels did not increase in G1-arrested 251 

RPE1 cells treated with APC/C inhibitors as measured by either mass spectrometry 252 

(Figure 4G) or immunoblot (Figure 4H). Furthermore, while it did display a change in 253 

electrophoretic mobility compatible with mitotic phosphorylation, unlike IRS2, it did not 254 

decrease in abundance at mitotic exit in RPE1 cells (Figure 4I). Taken together, the 255 

findings described above indicate that APC/CCdh1 controls IRS2 levels in manner that is 256 

dependent upon its C-terminal D-box motif. 257 

 258 

IRS2 is required for normal expression of many proteins involved in mitosis  259 

 Many reported APC/CCdh1 substrates (including several of those identified in our 260 

initial proteomics screen) are required for normal cell cycle progression. Because 261 

IR/IGF1R transduction promotes a variety of transcriptional programs (Copps and White, 262 

2012), we hypothesized that IRS2 might promote the expression of proteins involved in 263 

cell cycle control.  To investigate this, we generated two IRS2 knockout RPE1 cell lines 264 

using CRISPR/Cas9 (Figure 5A), henceforth referred to as ∆IRS2-A and ∆IRS2-B. Using 265 

these cells, we again employed TMT-coupled quantitative proteomics. The proteomes of 266 

wild-type, ∆IRS2-A, and ∆IRS2-B cell lines were analyzed in biological triplicate, and 267 

relative abundances were ascertained based on TMT reporter ion signal-to-noise values. 268 

Hierarchical clustering indicated that the proteomes of the two knockout cell lines 269 

analyzed were more similar to each other than either knockout cell line was to wild-type 270 

(Figure S5A), indicating that deletion of IRS2 produced similar effects in both cell lines.  271 

In order to exclude aberrancies that may have accrued during the CRISPR process or as 272 

a result of clonal expansion, we focused the scope of our analysis to proteins that 273 

changed significantly (p < 0.05) by more than 20% in both IRS2 knockout clones relative 274 

to the WT cell line (Figures 5B-5C). We found 239 proteins that decreased by >20% in 275 

both IRS2 knockout lines relative to the wild type line and 300 proteins that increased by 276 

>20% (Figures 5B-5C, S5B).   277 
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We conducted gene enrichment analysis of the proteins that increased (Figure 278 

S5C) or decreased (Figure 5D) by >20% in both knockout cell lines relative to wild type 279 

cells. Of the 239 proteins that were depleted by >20% in both knockout cell lines, we 280 

found a statistical over-representation of proteins participating in metabolic processes 281 

characteristic of IR signal transduction. Notably, we also found an over-representation of 282 

proteins involved in mitotic cell cycle regulation in this subset (Figure 5D). This suite of 283 

proteins included regulators of mitotic entry and exit as well as several factors involved in 284 

spindle assembly (Figure 5E). Consistent with the fact that strong depletion of most 285 

critical cell cycle regulators renders cells inviable, most of the observed changes in cell 286 

cycle-related genes were relatively modest (Figure S5D). Based on these data, we 287 

conclude that IRS2 is important for promoting the expression of a suite of proteins 288 

involved in orchestrating the mitotic cell cycle, and deletion of IRS2 stunts their expression 289 

in RPE1 cells.  290 

 291 

IRS2 expression promotes a functional spindle assembly checkpoint 292 

 Because many of the factors that were depleted in IRS2 knockout cell lines are 293 

known to be involved in regulating spindle assembly and mitotic exit, we asked whether 294 

IRS2 knockout cell lines display phenotypic differences from wild-type cells in terms of 295 

spindle assembly checkpoint function. Using a high content nuclear imaging assay to 296 

measure mitotic fraction based on DAPI staining intensity (Sackton et al., 2014), we asked 297 

whether IRS2 knockout cell lines display mitotic arrest differences compared to wild-type 298 

cells when treated with spindle poisons. Wild-type cells treated with nocodazole (a 299 

microtubule destabilizing agent) arrested in mitosis in a dose-dependent manner, 300 

whereas both IRS2 knockout cell lines displayed depressed mitotic arrest (Figure 6A, 301 

Figure S6A). This was also true to a lesser extent in the presence of S-trityl-L-cysteine 302 

(STLC), an Eg5 inhibitor (Figure 6A).  303 

Using time lapse video microscopy, we found that untreated IRS2 knockout cell 304 

lines had no significant alteration in mitotic duration compared to wild-type cells (Figure 305 

S6B). In contrast, both IRS2 knockout cell lines had a significantly shorter mitotic duration 306 

compared to wild-type cells (p < 0.0001 in both cases) when treated with 300 nM 307 

nocodazole (Figure 6B). Importantly, wild-type cells expressing mAG1-geminin (1-101)— 308 
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an APC/CCdc20 substrate that is stabilized by the spindle assembly checkpoint (Clijsters 309 

et al., 2013)— display an accumulation of mAG1 fluorescence early in mitotic arrest, 310 

consistent with checkpoint-mediated blockade of APC/CCdc20. In contrast, both IRS2 311 

knockout cell lines display depressed mAG1 accumulation, consistent with higher 312 

APC/CCdc20 activity due to a weakened checkpoint (Figure 6C). This phenotype, along 313 

with the shorter mitotic duration and lower mitotic fraction in the presence of spindle 314 

poisons, is consistent with cells bearing a defective mitotic spindle assembly checkpoint. 315 

Based on these data, we conclude that IRS2 promotes a functional spindle assembly 316 

checkpoint in RPE1 cells.  317 

 318 

Discussion  319 

Based on the results of an unbiased proteomic screen, we provide evidence that 320 

IRS2, a critical mediator of IR/IGF1R signaling, is a direct APC/CCdh1 substrate. We 321 

demonstrate that IRS2 is stabilized by APC/C inhibition and Cdh1 knockdown in multiple 322 

cell types and that this depends on IRS2’s C-terminal D-box motif. In contrast, we find 323 

that IRS1, a closely related IRS2 paralog that lacks a D-box, is not subject to regulation 324 

by the APC/C. Taken together, these results show that APC/C activity directly controls 325 

IRS2 levels in a D-box dependent manner.   326 

We identified a high-mobility form of IRS2 that accumulates under APC/C 327 

inhibition, likely corresponding to a difference in phosphorylation given that IRS2 has 328 

~150 annotated threonine, serine, and tyrosine phosphorylation sites (Hornbeck et al., 329 

2015). This suggests that IRS2’s APC/C-dependent stability could be regulated by 330 

phosphorylation, possibly at sites near or within the D-box, which is an intriguing topic for 331 

future study. Consistent with this, IRS2 phosphorylation is known to impact its stability in 332 

other contexts, including following prolonged exposure to insulin or following mTOR 333 

activation (Copps and White, 2012). Furthermore, there is a strong precedent for 334 

phospho-regulation of APC/C degrons modulating substrate stability under specific 335 

conditions (Holt, 2012; Mailand and Diffley, 2005; Wang et al., 2001).  336 

Many APC/C substrates are involved in cell cycle regulation, and previous studies 337 

have suggested a relationship between IRS2 and cell cycle progression. IRS2 can 338 

stimulate cell cycle entry via Cdk4 activation (Chirivella et al., 2017) and is important for 339 
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sustaining proliferation in 32D myeloid cells and pancreatic β cells (Folli et al., 2011; Wu 340 

et al., 2009).  Based on these findings and our identification of IRS2 as an APC/C 341 

substrate, we further investigated the role of IRS2 in regulating cell division. Proteomic 342 

analyses of RPE1 cells lacking IRS2 reveal lower expression of well-characterized cell 343 

cycle proteins compared to wild-type cells. Because these proteins are involved in critical 344 

processes like cytokinesis, DNA replication, cell cycle transitions, and spindle assembly, 345 

we investigated whether IRS2 knockout cell lines display cell cycle progression defects. 346 

We find that cells lacking IRS2 have an impaired ability to arrest following spindle 347 

assembly checkpoint activation in M-phase, thereby implicating IRS2 in promoting a 348 

functional spindle assembly checkpoint.  349 

Despite the well-established importance of sustained IRS2 levels in many tissue 350 

types, little is known about what factors regulate its turnover. While several distinct 351 

ubiquitin ligases control IRS1 stability (Fbxw8, Cbl-b, Fbxo40, SOCS1/3, MG53, and 352 

others) (Nakao et al., 2009; Rui et al., 2002; Shi et al., 2011; Xu et al., 2008; Yi et al., 353 

2013), only SOCS1/3 have been implicated in the ubiquitin mediated proteolysis of IRS2 354 

(Rui et al., 2002) until now. Thus, our work establishes APC/CCdh1 as the first known 355 

ubiquitin ligase that targets IRS2 but not IRS1. Furthermore, our results suggest that 356 

APC/CCdh1-mediated IRS2 degradation is relevant in broad biological contexts since we 357 

were able to demonstrate this mechanism of regulation in multiple cell lines.  358 

 Over the past several years, a number of connections between growth factor 359 

signaling and APC/C-mediated regulation have emerged. SKIL/SnoN, an APC/C 360 

substrate involved in TGFβ signaling, implicates APC/C activity in modulating the 361 

expression of TGFβ target genes (Wan et al., 2001).  Another APC/C substrate, CUEDC2, 362 

controls the stability of the progesterone receptor (Zhang et al., 2007). Regarding 363 

IR/IGF1R signaling, connections to APC/C-mediated regulation have been more opaque. 364 

Multiple reports have shown that Cdh1 interacts with PTEN, a phosphatase that 365 

antagonizes signal transduction through the IR pathway by dephosphorylating 366 

phosphoinositide-3,4,5-triphosphate (PIP3) (Choi et al., 2014; Song et al., 2011). Others 367 

have demonstrated that components of the mitotic checkpoint complex (which inhibit 368 

APC/CCdc20) potentiates IR signaling via IR endocytosis (Choi et al., 2019; Choi et al., 369 
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2016). Despite these links, there have been no reports of direct APC/C substrates that 370 

are involved in IR signaling until now.  371 

Based on the data presented here, we propose a model (Figure 7) in which IRS2’s 372 

APC/C-mediated degradation in G1 serves to limit IRS2-dependent signaling during G1. 373 

Upon APC/C inactivation at the G1/S boundary, IRS2 is able to accumulate and stimulate 374 

signaling required for normal progression through the latter stages of the cell cycle, 375 

including the expression of proteins required for mitotic spindle checkpoint function.  This 376 

model is consistent with previous studies that implicate IRS2 in promoting the expression 377 

of cell cycle-related genes, including mitotic cyclins (A and B) in mouse granulosa cells 378 

(Lei et al., 2018). Furthermore, IR signal transduction promotes the expression of Plk1 (a 379 

mitotic kinase) and CENP-A (a centromere protein) in β cells through a mechanism that 380 

appears to depend on IRS2 rather than IRS1 (Folli et al., 2011; Shirakawa et al., 2017).  381 

Our findings suggest that APC/CCdh1 modulates IRS2-dependent signaling but not 382 

IRS1-dependent pathways. In IRS2-deficient mice with consequent type 2 diabetes, some 383 

have attributed the reduced β cell mass to a failure of β cells to re-enter the cell cycle 384 

following division (Folli et al., 2011). Our findings that APC/CCdh1 inhibition stabilizes IRS2 385 

and that IRS2 promotes the expression of cell cycle regulatory proteins, coupled with data 386 

from others showing that IRS2 can stimulate cell cycle entry (Chirivella et al., 2017), 387 

suggest that APC/CCdh1 inhibition may represent a possible approach for stimulating 388 

proliferation in quiescent β cells via the stabilization of IRS2.  389 
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Main Figure Legends 418 

Figure 1: High resolution chemical proteomics reveals proteins whose abundances are 419 

APC/C regulated.  420 

(A) Workflow for the chemical proteomics experiment described in this study. 421 

Asynchronous RPE1 cells were arrested in 1 µM palbociclib (a Cdk4/6 inhibitor) for 422 

20 hours, at which point they were acutely treated with either DMSO or a combination 423 

of 6 µM proTAME + 50 µM apcin (referred to as “APC/C inhibitors” or APCi). Cells 424 

were then collected at time 0 (t0, the time of drug addition) or 8 hours after drug 425 

addition and were harvested for TMT-based proteomic identification and 426 

quantification.  Samples were analyzed in biological triplicate within a 10-plex TMT 427 

label set, with the 10th channel used as a bridge. 428 

(B) Asynchronous RPE1 cells were treated with either DMSO or 1 µM palbociclib for 20 429 

hours. Cells were harvested, and lysates were analyzed by immunoblot for the 430 

indicated proteins.  431 
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(C) Previously reported APC/C substrates that were identified in this study are plotted with 432 

their observed fold change in the APC/C inhibitor treated sample (APCi) relative to 433 

the DMSO treated sample. Error bars represent the standard deviation (SD) between 434 

the three biological replicates measured by MS. Asterisks indicate an abundance 435 

increase over control that is statistically significant ( * : p < 0.05 ; ** : p < 0.01 ; *** : p 436 

< 0.001 ; **** : p < 0.0001)  437 

(D) Volcano plot highlighting all published APC/C substrates identified in this study (blue) 438 

as well as proteins that (1) contain a high probability D- and/or KEN-box (D-box = 439 

green, KEN-box = pink, D- and KEN-boxes = purple), (2) increase ≥1.147-fold under 440 

APC inhibition, (3) were identified by >1 peptide, and (4) have a p-value < 0.05.  441 

 442 

Figure 2: IRS2 levels are controlled by Cdh1 in a proteasome-dependent manner 443 

(A) Cells were treated identically to what is described in Figure 1A, and IRS2 abundance 444 

was measured by immunoblot.  445 

(B) C2C12 myoblasts (Day 0) were induced to differentiate through serum withdrawal and 446 

supplementation with insulin, transferrin, and selenium (ITS). After three days of 447 

differentiation, myotubes were acutely treated with either DMSO or APC/C inhibitors 448 

(of 6 µM proTAME + 50 µM apcin). After eight hours of drug treatment, myotubes were 449 

collected and IRS2 levels from all samples were analyzed by immunoblotting. 450 

(C) –(E) Asynchronous RPE1 (C), C2C12 (D), and HeLa (E) cells were transfected with 451 

either a control or Cdh1-directed siRNA for 24 hours. siRNAs were washed out of cell 452 

culture media, and cells were allowed to grow for an additional 24 hours prior to 453 

collection and analysis of IRS2 and Cdh1 levels in lysate by immunoblot.  454 

(F) RPE1 cells were arrested in G1 with 1 µM palbociclib for 20 hours. Following G1 455 

arrest, cells were treated with DMSO, APC/C inhibitors (6 µM proTAME + 50 µM 456 

apcin), MG132 (10 µM), or a combination of APC/C inhibitors and MG132 for an 457 

additional 8 hours. Cells were harvested, and lysates were analyzed by immunoblot 458 

for IRS2 abundance.  459 

 460 

Figure 3: IRS2 levels and phosphorylation fluctuate in a cell-cycle dependent manner 461 
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(A) HeLa cells were synchronized by double thymidine block and released into S-phase. 462 

Time points were taken every two hours for 14 hours. Lysates were harvested and 463 

analyzed by immunoblotting for IRS2 and cell cycle markers (APC3 phosphorylation 464 

and cyclin B1). 465 

(B) HeLa cells were synchronized by thymidine-nocodazole block and released into 466 

prometaphase. Mitotic cells were collected by mitotic shake-off and re-plated. Time 467 

points were taken every two hours as cells exited M-phase. Lysates were harvested 468 

and analyzed by immunoblotting for IRS2 and cell cycle markers (APC3 469 

phosphorylation and cyclin B1). 470 

(C) RPE1 cells were synchronized in prometaphase by 7.5 µM RO3306 treatment. After 471 

18 hours, cells were switched to fresh media and were allowed to enter mitosis (~35 472 

minutes following drug removal). At mitotic entry, cells were collected by mitotic shake-473 

off and were re-plated (0 hr). Time points were taken as cells exited M-phase and 474 

entered G1. Lysates were harvested and analyzed by immunoblotting for IRS2 and 475 

cell cycle markers (APC3 phosphorylation and cyclin B1). 476 

 477 

Figure 4: Cdh1’s ability to control IRS2 levels depends on a C-terminal D-box motif 478 

(A) (top) Schematic depicting IRS2’s protein domain structure. PH = pleckstrin homology 479 

domain, PTB = phosphotyrosine binding domain, KRLB = kinase regulatory-loop 480 

binding region. IRS2’s C-terminal full D-box motif is highlighted in red. (bottom) 481 

Comparison of IRS2’s D-box conservation among placental mammals. 482 

(B) RPE1 cells stably expressing lentivirus-derived, doxycycline-inducible, C-terminally 483 

HA-tagged IRS2 constructs were arrested in G1 with 1 µM palbociclib for 20 hours. 484 

Following arrest, samples were either collected or DMSO or APC inhibitors (6 µM 485 

proTAME + 50 µM apcin) were added for an additional 8 hours. Quantification of 486 

immunoblots shown at right: HA levels were normalized to a loading control and are 487 

plotted relative to DMSO levels. Error bars = mean ± SEM. * : p=0.0187; ns : p=0.816 488 

(C)  C2C12 myoblasts stably expressing lentivirus-derived, doxycycline-inducible, C-489 

terminally HA-tagged IRS2 constructs were grown to confluence and switched to low 490 

serum media supplemented with ITS (differentiation media, DM) and doxycycline. 491 

Cells were allowed to differentiate into myotubes for three days (with media 492 
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refreshment every 24 hours), at which point (0 hr) either DMSO or APC/C inhibitors (6 493 

µM proTAME + 50 µM apcin) for an additional 8 hours in the presence of doxycycline. 494 

Quantification of immunoblots shown at right: HA levels were normalized to a loading 495 

control and are plotted relative to DMSO levels. Error bars = mean ± SEM. * : 496 

p=0.0118; ns : p=0.910. 497 

(D) Asynchronous RPE1 cells stably expressing lentivirus-derived, doxycycline-inducible 498 

C-terminally HA-tagged IRS2 constructs were transfected with a non-targeting 499 

(control) siRNA or an siRNA directed against Cdh1 for 24 hours. Quantification of 500 

immunoblots shown at right: HA levels were normalized to a loading control and are 501 

plotted relative to DMSO levels. Error bars = mean ± SEM. * : p=0.0132; ns : p=0.963. 502 

(E) Asynchronous HeLa cells stably expressing lentivirus-derived, N-terminally FLAG-HA 503 

tagged IRS2 constructs were transfected with a non-targeting (control) siRNA or an 504 

siRNA directed against Cdh1 for 24 hours. Quantification of immunoblots shown at 505 

right: HA levels were normalized to a loading control and are plotted relative to DMSO 506 

levels. Error bars = mean ± SEM. * : p=0.0131; ns : p=0.803. 507 

(F) Comparison of the Hs IRS2 D-box sequence with the aligned area on Hs IRS1.  508 

(G)  MS-quantified IRS1 and IRS2 abundance in G1 APC inhibitor proteomics. IRS1 509 

abundance was quantified based on 5 peptides (4 unique) in 3 biological replicates; 510 

IRS2 was quantified based on 3 peptides (all unique) in 3 biological replicates.   511 

(H)  RPE1 cells were subject to the same conditions described in Figure 1A, and cell 512 

lysates were analyzed by immunoblotting for IRS1 abundance  513 

(I)  RPE1 cells were synchronized in late G2 with 7.5 µM RO3306 for 18 hours. Cells 514 

were released into fresh media and allowed to enter mitosis (~35 min post-drug 515 

removal) and were collected by mitotic shake-off. Mitotic cells were re-plated and 516 

collected at the indicated time points. Cell lysates were analyzed by immunoblotting 517 

for IRS1 abundance.  518 

 519 

Figure 5: IRS2 knockout cell lines are defective in mitotic cell cycle-related protein 520 

expression. 521 

(A) WT, ∆IRS2-1, and ∆IRS2-2 cell line lysates were analyzed for IRS2 expression by 522 

immunoblotting. 523 
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(B-C) Volcano plots comparing proteomes of ∆IRS2 cell lines with WT cell line. Proteins  524 

that significantly decrease > 20% (p-value<0.05) in both cell lines compared to wild-525 

type are shown in purple; proteins that significantly increase > 20% (p-value<0.05) in 526 

both cell lines compared to WT are shown in green.  527 

(D) Gene ontology (GO) term enrichment of proteins that decrease in both ∆IRS2 cell lines 528 

relative to WT cells.  529 

(E) Heat map depicting cell cycle-related protein abundance changes between ∆IRS2 cell 530 

lines and WT cells.  531 

 532 

Figure 6: IRS2 expression promotes a functional spindle assembly checkpoint. 533 

(A) Mitotic fractional analysis for RPE1 wild type (WT) and IRS2 KO cell lines treated with 534 

the indicated doses of nocodazole and S-trityl L-cysteine (STLC) for 18 hours. Mitotic 535 

fraction measurements were made using a high content fixed cell imaging assay 536 

based on DAPI intensity of stained nuclei. Error bars = mean ± SD.  537 

(B) Asynchronous RPE1 wild type (WT) or IRS2 KO cell lines were treated with 300 nM 538 

nocodazole and imaged every five minutes by widefield time lapse microscopy for 36 539 

hours. Each point represents an individual cell’s mitotic duration, measured as the 540 

time from nuclear envelope breakdown (NEB) to division, slippage, or cell death. Error 541 

bars = mean± SD. p-values were calculated by one-way ANOVA. **** = p<0.0001. ns 542 

= not statistically significant. 543 

(C)  Asynchronous RPE1 wild type (WT) or IRS2 KO cell lines expressing mAG1-544 

geminin(1-110) were treated as in (C). mAG1 fluorescence intensity was measured 545 

from nuclear envelope breakdown (NEB) until division, slippage, or cell death (n=10 546 

for all three cell lines). Error bars = mean ± SEM. Fluorescence intensity was 547 

background subtracted and normalized to intensity at NEB. 548 

 549 

Figure 7: Model for IRS2’s role in cell cycle control. IRS2 is targeted for proteasomal 550 

degradation by APC/CCdh1 during G1. When APC/C is inactivated at the G1/S boundary, 551 

IRS2 protein accumulates, potentially allowing it to stimulate the expression of cell cycle-552 

related proteins either through IR-mediated action (Shirakawa et al., 2017) or through 553 

another receptor tyrosine kinase. Some of the proteins that are expressed through this 554 
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pathway may be required for a robust spindle assembly checkpoint, which directly inhibits 555 

APC/CCdc20 during M-phase.  556 

 557 

Tables 558 

Table 1: 26 proteins containing high-probability D- and KEN-boxes as identified from G1 559 

APC/C inhibitor proteomics. 560 

Gene 
Symbol 

Fold 
Change KEN box D box Similarity score(s) a Consensus 

similarity b 
Disorder 
Score c Citation d 

TK1 3.6 Y  0.97 High 0.53 (Ke et al., 2005) 

CKAP2 3.2 Y Y 0.95 ; 0.81 High ; Medium 0.62 ; 0.49 (Seki and Fang, 
2007) 

KIF11 2.4 Y Y 0.97 ; 0.84 High ; High 0.57 ; 0.52 (Eguren et al., 
2014) 

GMNN e 2.2 Y  Y  0.80 ; 0.81 Low ; Medium 0.61 ; 0.66 
(McGarry and 

Kirschner, 
1998) 

TACC3 1.9 Y (2)  0.94/0.90 High/High 0.54/0.49 (Jeng et al., 
2009) 

TOP2A 1.8 Y  0.86 High 0.44 (Eguren et al., 
2014) 

MKI67 1.5 Y (2)  0.89/0.86 High/High 0.45/0.48   

CUEDC2 1.4 Y  0.99 High 0.71 (Zhang et al., 
2013) 

IRS2 1.3  Y 0.87 High 0.68   

GPBP1 1.3 Y  0.81 Medium 0.61   

BUB1B 1.2 Y (2) Y (2) 0.92/0.85 ; 0.83/0.86 High/Medium ; 
High/High 

0.47/0.64 ; 
0.47/0.49 

(Choi et al., 
2009) 

UHRF2 1.2 Y  0.88 High 0.61   

PBXIP1 1.2  Y 0.83 Medium 0.42 (Khumukcham 
et al., 2019)  

DCBLD1 1.2  Y 0.86 High 0.56   

KIF23 1.2 Y  0.87 High 0.45 (Singh et al., 
2014) 

ULK1 1.2  Y 0.85 High 0.58   

NAA38 1.2  Y 0.82 Medium 0.44   

LRP10 1.2  Y 0.82 Medium 0.49   

PNPLA8 1.2 Y  0.92 High 0.61   

CEP120 1.2  Y 0.84 High 0.42   

DIAPH3 f 1.2  Y 0.84 High 0.56 (DeWard and 
Alberts, 2009) 

KDM2A 1.2 Y  0.94 High 0.66   

PRPF38B 1.2 Y  0.92 High 0.44   

DLGAP5 1.2 Y  0.89 High 0.6 (Song and 
Rape, 2010) 

KDM3A 1.2 Y Y 0.95 ; 0.81 High ; Medium 0.59 ; 0.48   

ANKRD11 1.2  Y 0.86 High 0.53   
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Features of the putative degron(s) found in each protein are annotated, including (a) the 561 

SLiMSearch similarity score to other validated degrons, (b) the similarity of the 562 

surrounding consensus sequence to other validated degrons, (c) the disorder score for 563 

the region of the protein in which the degron is located, and (d) the citation of the 564 

publication that reports the protein as an APC/C substrate, where applicable. (e) We 565 

cannot delineate whether the geminin peptides identified here derive from the FUCCI 566 

reporter or the endogenous protein. (f) While DIAPH3/mDia2 has been shown to be 567 

ubiquitinated in a cell cycle dependent manner and was suggested as an APC/C 568 

substrate, there is no direct cell-based or biochemical evidence for this. Previously 569 

reported substrates are shown in bold. 570 

 571 

STAR Methods 572 

Cell Culture and Synchronization  573 

All cell lines used in this work (HeLa, C2C12, hTERT-RPE1-FUCCI, HEK293T) were 574 

cultured in a humidified incubator at 37ºC in the presence of 5% CO2. HeLa, hTERT-575 

RPE1 and C2C12 cells were obtained from American Type Culture Collection (ATCC), and 576 

hTERT-RPE1 cells were modified with FUCCI constructs(Sakaue-Sawano et al., 2008) 577 

with the permission of the RIKEN Institute. HeLa cells were grown in DMEM with 10% 578 

FBS. Proliferating C2C12 myoblasts were grown in DMEM with 15% FBS, whereas 579 

differentiated myotubes were cultured in differentiation media, consisting of DMEM with 580 

2% horse serum and 1x insulin, transferrin, selenium (ITS) Premix Universal Culture 581 

Supplement (Corning, 354350). hTERT-RPE1-FUCCI cells were grown in DMEM/F12 582 

with 10% FBS supplemented with 0.01 mg/ml hygromycin B (Corning, 30-240-CR). 583 

HEK293T cells used for lentivirus generation were a gift from Wade Harper and were 584 

cultured in DMEM with 10% FBS. All cell lines tested were negative for mycoplasma 585 

contamination (Lonza LT07-218). 586 

 587 

HeLa cells were synchronized by double thymidine block by treating with 2 mM thymidine 588 

for 18 hours, releasing for 8 hours, and re-treating with 2 mM thymidine for 19 hours. 589 

HeLa cells synchronized by thymidine-nocodazole block were treated with 2 mM 590 

thymidine for 20 hours, released for 8 hours, then treated with 300-330 nM nocodazole 591 
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for 15 hours. Mitotic cells were collected by shake-off and re-plated in drug-free media for 592 

cell cycle time course experiments. 593 

 594 

RPE1 cells were synchronized by RO3306 treatment by treating with 7.5 µM RO3306 for 595 

18 hours before releasing into fresh media for 30-40 minutes, after which cells were 596 

collected by mitotic shake-off and re-plated for cell cycle time course experiments. For G1 597 

arrest experiments, RPE1 cells were treated with 1 µM palbociclib for 20 hours.  598 

 599 

To differentiate C2C12 myoblasts into myotubes, cells were grown to confluence and 600 

washed 2x in DMEM with 2% horse serum before switching to differentiation media. Cells 601 

were incubated for 72 hours, with media changes every 24-36 hours. Differentiation into 602 

myotubes was confirmed visually as well as by immunoblotting for MyoD, a myogenic 603 

marker. 604 

 605 

Immunoblotting 606 

Cell extracts were prepared in lysis buffer (10 mM Tris HCl pH 7.4, 100 mM NaCl, 1 mM 607 

EDTA, 1 mM EGTA, 1 mM NaF, 1 mM PMSF, 20 mM Na4P2O7, 2 mM NA3VO4, 1% Triton 608 

X-100, 10% glycerol, 0.1% SDS, and 0.5% deoxycholate) supplemented with Pierce 609 

protease inhibitor tablets (Thermo Fisher Scientific, A32963) and Pierce phosphatase 610 

inhibitor tablets (Thermo Fisher Scientific, A32957). Pellets were incubated in lysis buffer 611 

on ice for 30 minutes with vortexing and were centrifuged at 13,000rpm for 10 minutes to 612 

clear the lysate. Protein concentrations were determined using a bicinchoninic acid (BCA) 613 

assay (Thermo Fisher Scientific, 23225). Supernatants were re-suspended in NuPAGE 614 

LDS sample buffer (Thermo Fisher Scientific, NP0008) supplemented with 100 mM 615 

dithiothreitol (DTT) and boiled at 100ºC for 5 minutes. Equal masses of lysates were 616 

separated by SDS-PAGE using either 4-12% Bis Tris gels or 3-8% Tris acetate gels 617 

(Thermo Fisher Scientific). All IRS2 immunoblots were separated on 3-8% Tris acetate 618 

gels with the exception of those shown in Figures 5A and S4B, which were separated on 619 

4-12% Bis Tris gels.  Proteins were transferred to polyvinylidene difluoride (PVDF) 620 

membranes (Thermo Fisher Scientific, 88518).  621 

 622 
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Membranes were blocked in 5% non-fat dry milk in Tris-buffered saline with 0.1% Tween 623 

(TBS-T) before incubating with primary antibodies overnight at 4ºC with agitation. 624 

Membranes were probed with secondary antibodies dissolved in 5% milk in TBS-T for 1-625 

2 hours at room temperature before developing with an Amersham 600RGB imaging 626 

system. Quantification of immunoblots was done using ImageJ (Schneider et al., 2012).  627 

 628 

Antibodies 629 

The following commercially available primary antibodies were used for immunoblotting: 630 

anti-IRS2 (Cell Signaling Technologies, 4502) 1:750; anti-Cdh1/Fzr1 (Sigma Aldrich, 631 

CC43) 1:500; anti-APC3 (BD Transduction Laboratories, 610455) 1:500; anti-cyclin B1 632 

(Santa Cruz Biotechnology, sc-752) 1:500; anti-Cdc20 (Santa Cruz Biotechnology, sc-633 

8358) 1:500; anti-HA-peroxidase (Sigma Aldrich), 1:1500; anti-cyclin A2 (Santa Cruz 634 

Biotechnology, sc-596) 1:500;  anti-IRS1 (Cell Signaling Technologies, 2382) 1:750; anti-635 

MyoD1 (Cell Signaling Technologies, 13812) 1:750; anti-GAPDH (Abcam, ab8245) 636 

1:2000; anti-⍺ tubulin (Abcam, ab7291 and Santa Cruz Biotechnology, sc-8035) 1:1000 637 

for both; anti-vinculin (Santa Cruz Biotechnology, sc-73614) 1:2000. Secondary 638 

antibodies used: anti-rabbit IgG-HRP (GE Healthcare, NA934) and anti-mouse IgG- HRP 639 

(GE Healthcare, NA931V), both at 1:3000 dilutions.  640 

 641 

Compounds 642 

The following chemicals were used: palbociclib (LC Laboratories, P-7722), proTAME 643 

(Boston Biochem, I-440), MG132 (474790, Calbiochem), S-trityl L-cysteine (STLC, Alfa 644 

Aesar, L14384), thymidine (Sigma Aldrich, T9250), nocodazole (Sigma Aldrich, 31430-645 

18-9), RO3306 (AdipoGen Life Sciences, AGCR13515M), doxycycline hyclate (Sigma 646 

Aldrich, D9891). Apcin was custom synthesized by Sundia MediTech Company (Lot 647 

#A0218-10069-031) using methods described previously (Sackton et al., 2014). All 648 

compounds were dissolved in dimethyl sulfoxide (DMSO), with the exception of thymidine 649 

and doxycycline, which were dissolved in Dulbecco’s phosphate buffered saline (DPBS, 650 

Corning, 21-030-CV). Dissolved compounds were stored at -20°C prior to use.  651 

 652 

CRISPR/Cas9 mediated gene editing  653 
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A TrueGuide crRNA directed against exon 1 of Hs IRS2’s coding region (target DNA 654 

sequence: 5’- TCG AGA GCG ATC ACC CGT TT -3’, Assay ID number: 655 

CRISPR850215_CR, Thermo Fisher Scientific) was annealed to the TrueGuide tracrRNA 656 

(Thermo Fisher Scientific, A35507) according to manufacturer protocol. hTERT RPE1-657 

FUCCI cells were co-transfected with TrueCut Cas9 protein v2 (Thermo Fisher Scientific, 658 

A36496) and the annealed tracrRNA:crRNA complex using the Lipofectamine 659 

CRISPRMAX Cas9 Transfection reagent (Thermo Fisher Scientific, CMAX00003) 660 

according to manufacturer protocol. Transfected cells were incubated for two days before 661 

switching to fresh media and expanding. Single cell clones were isolated using the limiting 662 

dilution method in a 96-well format, and clonal cell lines were expanded before screening 663 

for knockouts by immunoblotting.  664 

 665 

Site directed mutagenesis 666 

R777-E111 Hs.IRS2 and R777-E111 Hs.IRS2-nostop were gifts from Dominic Espositio 667 

(Addgene plasmid #70395 and #70396, respectively). Both of these plasmids encode 668 

codon optimized sequences for IRS2, with and without a stop codon respectively. R972A 669 

mutations were introduced into the aforementioned IRS2 clones using the Q5 Site-670 

Directed Mutagenesis Kit (New England BioLabs) with the primers 5' - AGA TTA TAT 671 

GAA TAA GTC CAC TGT CAG ATT ATA TG - 3' and 5' - GAC AGT GGA CTT GCC TGG 672 

CGA GAG TCT GAA CT - 3' according to the manufacturer’s protocol. For N-terminally 673 

FLAG-HA-tagged constructs, the insert from R77-E111 Hs.IRS2 (WT or ∆D) was cloned 674 

into the pHAGE-FLAG-HA-NTAP vector (a gift from Wade Harper) using the Gateway LR 675 

Clonase II system (Invitrogen). For doxycycline-inducible, C-terminally HA-tagged 676 

constructs, the insert from R77-E111 Hs.IRS2-nostop (WT or ∆D) was cloned into 677 

pINDUCER20 (a gift from Stephen Elledge, Addgene plasmid #44012) using the Gateway 678 

LR Clonase II system (Invitrogen). The ∆D mutation was verified both before and after 679 

Gateway cloning by Sanger sequencing.  680 

 681 

Lentivirus construction  682 

To construct lentiviruses, HEK293T cells were co-transfected with pPAX2, pMD2, and 683 

either pINDUCER-20-IRS2 or pHAGE-FLAG-HA-NTAP-IRS2 in a 4:2:1 DNA ratio using 684 
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Lipofectamine 3000 (Invitrogen, L3000001) according to manufacturer’s instructions. 685 

pPAX2 and pMD2 were gifts from Wade Harper. 24 hours after transfection, HEK293T 686 

cells were switched to fresh media (DMEM + 10% FBS). 48 hours after transfection 687 

lentiviruses were harvested by clearing debris by centrifugation at 960xg for 5 minutes 688 

and filtering through 0.45 µm SFCA filters. Lentiviruses were either used immediately or 689 

flash frozen in liquid nitrogen and stored at -80ºC for later use. 690 

 691 

Stable cell line construction 692 

To generate stable cell lines, plated HeLa, RPE1, or C2C12 cells were incubated with 693 

lentiviruses and 2 µg/ml protamine sulfate. 24 hours after viral infection, cells were 694 

switched to fresh media. 48 hours after viral infection, antibiotics were introduced. For 695 

lentiviruses derived from pINDUCER20, geneticin (Invitrogen, 10131027) was used at a 696 

concentration of 750 µg/ml for both RPE1 and C2C12 for 6-7 days. For lentiviruses derived 697 

from pHAGE-FLAG-HA-NTAP, puromycin (Sigma Aldrich, P8833) was used at a 698 

concentration of 0.5 µg/ml for 3 days. Antibiotic-selected populations of cells were 699 

expanded and used for further experiments without clonal selection. 700 

  701 

Small interfering RNAs (siRNAs)  702 

Cells were transfected using RNAiMax (Invitrogen, 13778100) according to 703 

manufacturer’s instructions with the following siRNAs: siGENOME Non-Targeting Control 704 

siRNA #5 (D-001210-05, Dharmacon); ON-TARGETplus Human FZR1 siRNA (J-015377-705 

08, Dharmacon), 25 nM; SMARTpool ON-TARGETplus Mouse Fzr1 siRNA (L-065289-706 

01-0005), 25 nM. Cells were treated with siRNAs for 24 hours for all experiments. For 707 

experiments involving subsequent compound treatment, cells were switched to fresh 708 

media prior to the addition of compounds. 709 

 710 

Plasmid transfection 711 

C2C12 myoblasts were transfected with a plasmid containing the N-terminal 88 amino 712 

acids of human cyclin B1 fused to EGFP using Lipofectamine 3000 (Invitrogen, 713 

L3000001) with the P3000 reagent according to manufacturer’s instructions. Growth 714 
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media was refreshed to remove transfection reagents 24 hours post-transfection, and 715 

cells were switched to differentiation media for an additional 3 days.  716 

 717 

Time lapse and fluorescence microscopy  718 

Cells were plated in a 24-well coverslip-bottom plate (Greiner BioOne, 662892). After 24 719 

hours, cells were treated with the indicated compounds and were imaged immediately 720 

afterwards. Plates were inserted into a covered cage microscope incubator (OkoLab) with 721 

temperature and humidity control at 37ºC and 5% CO2 and mounted on a motorized 722 

microscope stage (Prior ProScan III). All images were collected on a Nikon Ti motorized 723 

inverted microscope equipped with a 20x/0.75 NA Plan Apo objective lens and the Perfect 724 

Focus system. mCherry fluorescence was excited with a Lumencor Spectra-X using a 725 

555/25 excitation filter and a 605/52 emission filter (Chroma). mAG1 fluorescence was 726 

excited using a 490/20 excitation filter and a 525/36 emission filter (Chroma). Both 727 

configurations used a Sedat Quad dichroic (Chroma). Images were acquired with a 728 

Hamamatsu Orca-R2 or Hamamatsu Flash 4.0 V2 controlled with Nikon Elements image 729 

acquisition software. Three fields of view were collected per condition, and phase contrast 730 

and/or fluorescence images were captured at 5- to 8-minute intervals (depending upon 731 

the experiment) for 24-48 hours.  732 

 733 

Videos were analyzed using ImageJ. Mitotic duration was defined as the time from 734 

nuclear envelope breakdown (NEB) until division, death (cytoplasmic blebbing), or mitotic 735 

slippage. mAG1 and mCherry intensities were quantified manually by measuring the 736 

maximum intensity of signal for each cell in a given frame across multiple time points. For 737 

experiments analyzing fluorescence intensity during G1 arrest, measurements were made 738 

for all cells in a frame for each time point.  739 

 740 

TMT mass spectrometry sample preparation  741 

Cells were cultured as described in biological triplicate. Cells pellets were re-suspended 742 

in urea lysis buffer: 8M urea, 200 mM EPPS pH 8.0, Pierce protease inhibitor tablets 743 

(Thermo Fisher Scientific, A32963), and Pierce phosphatase inhibitor tablets (Thermo 744 

Fisher Scientific, A32957). Lysates were passed through a 21-gauge needle 20 times, 745 
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and protein concentrations were measured by BCA assay (Thermo Fisher Scientific). 100 746 

µg of protein were reduced with 5 mM tris-2-carboxyethyl-phosphine (TCEP) at room 747 

temperature for 15 minutes, alkylated with 10 mM iodoacetamide at room temperature for 748 

30 minutes in the dark, and were further reduced with 15 mM DTT for 15 minutes at room 749 

temperature. Proteins were precipitated using a methanol/chloroform extraction. Pelleted 750 

proteins were resuspended in 100 µL 200 mM EPPS, pH 8.0. LysC (Wako, 125-05061) 751 

was added at a 1:50 enzyme:protein ratio, and samples were incubated overnight at room 752 

temperature with agitation. Following overnight incubation, trypsin (Promega, V5111) was 753 

added at a 1:100 enzyme:protein ratio, and samples were incubated for an additional 6 754 

hours at 37ºC. Tryptic digestion was halted by the addition of acetonitrile (ACN). Tandem 755 

mass tag (TMT) isobaric reagents (Thermo Fisher Scientific, 90406) were dissolved in 756 

anhydrous ACN to a final concentration of 20 mg/mL, of which a unique TMT label was 757 

added at a 2:1 label:peptide ratio. Peptides were incubated at room temperature for one 758 

hour with vortexing after 30 minutes. TMT labeling reactions were quenched by the 759 

addition of 10 µL of 5% hydroxylamine. Equal amounts of each sample were combined 760 

at a 1:1 ratio across all channels and lyophilized by vacuum centrifugation. Samples were 761 

re-suspended in 1% formic acid (FA)/99% water and were desalted using a 50 mg 1cc 762 

SepPak C18 cartridge (Waters, WAT054955) under vacuum. Peptides were eluted with 763 

70% ACN/1% FA and lyophilized to dryness by vacuum centrifugation. The combined 764 

peptides were fractionated with basic pH reversed-phase (BPRP) HPLC, collected in a 765 

96-well format and consolidated to a final of 24 fractions, out of which only alternating 766 

fractions (a total of 12) were analyzed (Navarrete-Perea et al., 2018). Each fraction was 767 

desalted via StageTip, lyophilized to dryness by vacuum centrifugation, and reconstituted 768 

in 5% ACN/5% FA for LC-MS/MS processing. 769 

 770 

TMT mass spectrometry analysis 771 

Data for the G1 APC inhibition experiment were collected on an Orbitrap Fusion mass 772 

spectrometer coupled to a Proxeon EASY-nLC 1000 liquid chromatography (LC) pump 773 

(Thermo Fisher Scientific), whereas data for IRS2 knockout cell line analysis were 774 

collected on an Orbitrap Fusion Lumos mass spectrometer coupled to a Proxeon EASY-775 

nLC 1200 liquid chromatography (LC) pump. The 100 μm capillary column was packed 776 
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with 30 cm of Accucore 150 resin (2.6 μm, 150Å; Thermo Fisher Scientific). Mobile 777 

phases were 5% ACN, 0.125% FA (Buffer A) and 95% ACN, 0.125% FA (Buffer B). 778 

Peptides from G1 APC inhibition experiment were separated using a 2.5 h gradient from 779 

4% to 26% Buffer B and analyzed with a SPS-MS3 method (McAlister et al., 2014). 780 

Peptides from IRS2 knockout cell line analysis were separated using a 2 h gradient from 781 

4% to 30% Buffer B and analyzed with a real-time search strategy (Erickson et al., 2019; 782 

Schweppe et al., 2019).  783 

 784 

Raw data were converted to mzXML format using a modified version of RawFileReader 785 

and searched against a human protein target-decoy database. Searches were performed 786 

with a 50 ppm precursor mass tolerance, 0.9 Da fragment mass tolerance, trypsin digest 787 

with up to 2 missed cleavages. Allowed modifications include cysteine 788 

carboxyamidomethylation (+57.02146), static TMT on lysine and peptide N-temini 789 

(+229.16293) and up to 3 variable methionine oxidation (+15.99491).  Peptide spectral 790 

matches were filtered with a linear discriminant analysis (LDA) method to a 1% FDR 791 

(Huttlin et al., 2010) and a protein-level FDR of 1% was also implemented (Savitski et al., 792 

2015). For peptide quantification, we extracted the TMT signal-to-noise and column 793 

normalized each channel to correct for equal protein loading. Peptide spectral matches 794 

with summed signal-to-noise less than 100 were excluded from final result. Lastly, each 795 

protein was scaled such that the summed signal-to-noise for that protein across all 796 

channels equals 100, thereby generating a relative abundance (RA) measurement. 797 

 798 

High content mitotic fraction assay 799 

Asynchronous hTERT RPE1-FUCCI wild-type or IRS2 KO cell lines were plated in a 800 

black, clear-bottom 96-well plate (Corning, 3606). Plates were sealed with breathable 801 

white rayon sealing tape (Nunc, 241205) to prevent evaporation following plating and 802 

during all subsequent incubations. In experiments involving RNAi, cells were treated with 803 

siRNAs for 24 hours. Cells were switched to fresh media, and compounds were added at 804 

the indicated concentrations for an additional 18 hours. Following compound treatment, 805 

cells were fixed and stained directly without additional washing steps (to avoid the loss of 806 

loosely attached mitotic cells) with 10% formalin, 0.33 µg/mL Hoechst 33342, and 0.1% 807 
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Triton X-100 in DPBS. Plates were sealed with aluminum tape (Nunc, 276014) and were 808 

incubated for 45 minutes room temperature in the dark before imaging. All experimental 809 

conditions were represented in triplicate on the same plate. Plates were imaged using an 810 

ImageXpress Micro high-content microscope (Molecular Devices) equipped with a 10x 811 

objective lens. Four images were acquired per well, yielding a total of 12 images per 812 

conditions. Images were processed automatically in ImageJ to identify and count nuclei 813 

as well as measure their maximum fluorescence intensity. ImageJ output files were 814 

pooled, and cumulative frequency curves for the maximum intensity of the cell population 815 

in each condition were computed using MATLAB. An intensity threshold was set based 816 

on the intensity of mitotic cells in control (DMSO-treated) wells to delineate interphase 817 

cells from mitotic cells. The fraction of mitotic cells was calculated as the fraction of cells 818 

above the set intensity threshold in MATLAB(Sackton et al., 2014).   819 

 820 

Statistical analyses 821 

For experiments regarding the stability of IRS2-WT and IRS2-∆D, p-values were 822 

calculated by two-way ANOVA. For fluorescence microscopy experiments that quantify 823 

mAG1 intensity in response to drug treatment over time, p-values were calculated by two-824 

way ANOVA. For microscopy experiments that quantify mitotic duration following 825 

nocodazole treatment, p-values were calculated by one-way ANOVA. For proteomics 826 

data, p-values were calculated using a two-tailed, unpaired Student’s t-test. For time 827 

lapse microscopy data, p-values were calculated by one-way ANOVA. Gene enrichment 828 

was calculated using the AmiGO 2 search tool (Carbon et al., 2009). Error bars indicate 829 

standard deviation (SD) or standard error of the mean (SEM) where indicated.   830 

 831 

Materials Availability 832 

All mass spectrometry raw files will be available through the PRIDE archive upon 833 

publication. All other data are available in the associated supplementary data files. 834 

Further information and requests for resources and reagents should be directed to the 835 

Lead Contact, Randy King (randy_king@hms.harvard.edu).  836 

 837 

Supplemental Information Legends 838 
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Figure S1: Related to Figure 1 839 

(A) Asynchronous RPE1 cells were treated with 1 µM palbociclib and imaged by 840 

fluorescence time lapse microscopy for 20 hours. Frames at 0, 10, and 20 hours are 841 

shown.   842 

(B) From the experiment shown in Figure S1B, FITC intensity was quantified at 0 hours 843 

(time of drug addition) and 20 hours. Each point represents the maximum FITC 844 

intensity of an individual cell at the given time point. ns : not significant ; **** : 845 

p<0.0001. 846 

(C)  Asynchronous RPE1 cells were treated with 1 μM palbociclib for 20 hours. Following 847 

G1 arrest, cells were treated with either DMSO or APC inhibitors (6 µM proTAME + 50 848 

µM apcin) and imaged by fluorescence widefield time lapse microscopy for an 849 

additional eight hours.  850 

(D) Quantification of the experiment shown in S1D, as explained in S1B. Error bars = SD 851 

among all of the cells quantified for each condition. ns: not significant ; **** : p<0.0001. 852 

 853 

Figure S2: Related to Figure 2B 854 

(A) Asynchronous C2C12 myoblasts and 3-day differentiated C2C12 myotubes were lysed 855 

and MyoD levels were measured by immunoblotting.  856 

(B) Phase-contrast images of asynchronous (Day 0) C2C12 myoblasts and 3-day 857 

differentiated C2C12 myotubes.  858 

(C) Asynchronous C2C12 myoblasts were transfected with a plasmid coding for the N-859 

terminal fragment of cyclin B1 (amino acids 1-88) fused to EGFP for 24 hours. 860 

Following transfection, cells were switched to low-serum differentiation media 861 

containing ITS for three days with media refreshment every 24 hours. After 3 days, 862 

myotubes were acutely treated with either DMSO or APC inhibitors (6 µM proTAME + 863 

50 µM apcin) for an additional 8 hours. Myotubes were then harvested, and lysates 864 

were analyzed for transgene expression by immunoblot. 865 

 866 

Figure S3: Related to Figure 3 867 

(D) HeLa cells were synchronized by double thymidine block and released into S-phase 868 

either in the presence of DMSO or 5 µM RO3306. Cells were harvested at the 869 
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indicated time points for analysis of the given protein abundances and phosphorylation 870 

patterns in lysate by immunoblot.  871 

 872 

Figure S4: Related to Figure 4 873 

(A) (left) RPE1 cells stably expressing lentivirus generated, C-terminally HA-tagged IRS2 874 

wild type (WT) and R972A (∆D) constructs were arrested in G1 with 1 µM palbociclib 875 

for 20 hours. Cells were then acutely treated with either DMSO or the indicated dose 876 

range of APC inhibitors for an additional 8 hours. Cells were then harvested, and 877 

lysate was analyzed for HA expression by immunoblot. The lane denoted t0 indicates 878 

a sample that was collected at the time of drug addition. (right) The experiment shown 879 

at left was repeated three times, and HA intensity was quantified. Plot shows HA 880 

intensity normalized to a loading control (either GAPDH or Ponceau) and to the DMSO 881 

condition. Error bars = mean ± SEM.  882 

(B) (top) Asynchronous RPE1 cells expressing doxycycline-inducible, C-terminally HA 883 

tagged IRS2 variants were treated with a dose range of doxycycline. HA and IRS2 884 

expression levels were analyzed by immunoblotting cell lysates. Red = doxycycline 885 

dose used for all experiments. (bottom) Asynchronous C2C12 cells expressing 886 

doxycycline-inducible, C-terminally HA tagged IRS2 variants were treated with a dose 887 

range of doxycycline. HA and IRS2 expression levels were analyzed by 888 

immunoblotting cell lysates. Red = doxycycline dose used for all experiments. 889 

 890 

Figure S5: Related to Figure 5 891 

(A) Hierarchical clustering for the nine conditions analyzed by TMT-coupled quantitative 892 

mass spectrometry in wild type and ∆IRS2 cell lines.  893 

(B) Venn diagrams depicting proteins that (left) decrease significantly >20% relative to 894 

WT cells in both ∆IRS2 cell lines and (right) increase significantly >20% relative to WT 895 

in both ∆IRS2 cell lines. 896 

(C) Gene ontology (GO) term enrichment of proteins that increase in both ∆IRS2 cell lines 897 

relative to WT cells.  898 
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(D) Fraction abundance of cell-cycle related proteins shown in Figure 5D depleted in 899 

∆IRS2 cell lines relative to WT cells. ∆IRS2-1 median abundance = 0.70 ; ∆IRS2-2 900 

median abundance = 0.66. 901 

 902 

Figure S6: Related to Figure 6 903 

(A) Representative frames from high-content nuclear imaging experiment for mitotic 904 

fraction based on DAPI intensity. Asynchronous RPE1 WT or IRS2 KO cell lines were 905 

treated with 900 nM nocodazole for 18 hours before fixing and DAPI staining.  906 

(B)  Asynchronous RPE1 WT or IRS2 KO cell lines were imaged every five minutes by 907 

widefield time lapse microscopy for 36 hours. Each point represents an individual cell’s 908 

mitotic duration, measured as the time from nuclear envelope breakdown (NEB) to 909 

division, slippage, or cell death. Error bars = mean ± SD. p-values were calculated 910 

using one-way ANOVA. ns = not statistically significant. 911 

 912 

Figure S7: Related to Figures 1-3 913 

Extended immunoblots from Figures 1, 2, and 3 914 

 915 

Figure S8: Related to Figures 4-5 916 

Extended immunoblots from Figures 4 and 5.  917 

 918 

Table S1: APC inhibition in G1 proteomics 919 

 920 

Table S2: Reported APC/C substrates identified by proteomics 921 

 922 

Table S3: 204 protein subset 923 

 924 

Table S4: IRS2 knockout cell proteomics  925 

 926 

 927 

 928 

 929 
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