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Abstract 
 
Recent advances in consortium-scale genome-wide association studies (GWAS) have highlighted 
the involvement of common genetic variants in autism spectrum disorder (ASD), but our 
understanding of their etiologic roles, especially the interplay with rare variants, is incomplete. In 
this work, we introduce an analytical framework to quantify the transmission disequilibrium of 
genetically regulated gene expression from parents to offspring. We applied this framework to 
conduct a transcriptome-wide association study (TWAS) on 7,805 ASD proband-parent trios, and 
replicated our findings using 35,740 independent samples. We identified 31 associations at the 
transcriptome-wide significance level. In particular, we identified POU3F2 (p=2.1e-7), a 
transcription factor (TF) mainly expressed in developmental brain. TF targets regulated by 
POU3F2 showed a 2.1-fold enrichment for known ASD genes (p=4.6e-5) and a 2.7-fold 
enrichment for loss-of-function de novo mutations in ASD probands (p=7.1e-5). These results 
provide a clear example of the connection between ASD genes affected by very rare mutations 
and an unlinked key regulator affected by common genetic variations. 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/835678doi: bioRxiv preprint 

https://doi.org/10.1101/835678
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 
 
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder affecting 1.5% 
of the world population1. It manifests as impaired social interaction and communication, repetitive 
behavior, and restricted interests with highly heterogenous clinical presentations2. Whole-exome 
sequencing (WES) studies for ASD have identified numerous ultra-rare or de novo single-
nucleotide variants, small insertions and deletions (indels), and copy number variants (CNVs)3-7. 
Although these protein-disrupting genetic variations have large effects on the disease risk, they 
are only found in a moderate proportion of ASD probands. It has been estimated that the 
contribution of de novo loss-of-function mutations and CNVs to the variance in ASD liability was 
only 3% while common genetic variants explain 50% of the variance in the population8. Recently, 
genome-wide association studies (GWAS) with large sample sizes, coupled with novel statistical 
genetic approaches, have provided new insights into the involvement of common single-
nucleotide polymorphisms (SNPs) in ASD. Polygenic risk of ASD is significantly over-transmitted 
from parents to ASD probands but not their unaffected siblings in simplex families9. Such over-
transmission was also observed in probands with de novo mutations in known ASD genes. 
Additionally, a recent GWAS meta-analysis of 18,381 ASD cases and 27,969 controls identified 
multiple genome-wide significant loci, but did not implicate apparent associations at ASD risk 
genes identified in WES studies10. These results suggested that distinct mechanistic pathways 
may underlie the ASD risk attributed to rare and common genetic variants, but our understanding 
of their interplay remains incomplete. 
 
One potential approach to better dissect the genetic basis of ASD is to fine-map candidate genes 
affected by common SNPs and then investigate how they interact with genes harboring rare 
pathogenic variants implicated in WES studies. Transcriptome-wide association study (TWAS) is 
an analytical strategy that integrates expression quantitative trait loci (eQTL) annotations with 
GWAS data to identify disease genes11-13. Through advanced predictive modeling for gene 
expression traits, TWAS effectively combines association evidence across many eQTL in diverse 
tissues and has identified risk genes for numerous complex diseases14. 
 
In this study, we introduce TITANS (TrIo-based Transcriptome-wide AssociatioN Study), a novel 
statistical framework to conduct TWAS in proband-parent trios. Combining recent advances in 
TWAS modeling and the trio-based study design in ASD cohorts, we demonstrate transmission 
disequilibrium of genetically regulated gene expression in brain tissues from parents to ASD 
probands. Specifically, we conducted GWAS and TWAS on 7,805 ASD trios from the Autism 
Genome Project (AGP), the Simons Simplex Collection (SSC), and the Simons Foundation 
Powering Autism Research for Knowledge (SPARK) cohort, and replicated our findings in an 
independent cohort of 13,076 cases and 22,664 controls (Methods). We identified 31 
associations at the transcriptome-wide significance level. In particular, we identified POU3F2, a 
master regulator highly expressed in developmental brain whose downstream target genes are 
strongly enriched for known ASD genes and mutations. 
 
 
 
Results 
 
Transmission disequilibrium of polygenic risk, gene expression, and SNP alleles 
 
We applied multiple analytical approaches to dissect common SNPs’ contributions to ASD risk at 
different scales. First, we performed polygenic transmission disequilibrium test (pTDT)9 to 
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examine the transmission disequilibrium of ASD polygenic risk in probands. ASD polygenic risk 
scores (PRS) were constructed using case-control samples from the iPSYCH cohort (N=35,740; 
Methods). We confirmed a highly significant over-transmission of ASD PRS from parents to 
probands in multiple datasets (p=1.4e-25 in the meta-analysis), including the SPARK cohort which 
has not been previously analyzed (p=1.0e-11; Supplementary Figure 1). No significant over-
transmission was identified in 3,245 healthy siblings (p=0.88).  
 

 
Figure 1. TITANS workflow. (A) We generate three matched pseudo siblings for each proband using the phased 
genotype data of parents and impute gene expression values. (B) We compare the impute gene expression traits 
between probands and matched pseudosiblings and use conditional logistic regression to quantify the associations. (C) 
We simulate genotype data for matched pseudosiblings and use conditional logistic regression to assess SNP-disease 
associations. 
 
Next, using a novel approach called TITANS (Methods), we performed a TWAS with eQTL and 
splicing quantitative trait loci (sQTL) in 12 brain tissues from the Genotype-Tissue Expression 
(GTEx) project15 and the CommonMind consortium (CMC)16. For each proband, we generated 3 
pseudo siblings using phased genotype data of the parents (Figure 1A). We imputed gene 
expression and intron usage values17 for all probands and pseudo siblings (Figure 1B) using 
UTMOST12 (10 GTEx brain tissues) and FUSION11 (CMC dorsolateral prefrontal cortex; DLPFC) 
imputation models. We used conditional logistic regression18 to assess the transmission 
disequilibrium of imputed gene expression traits while adjusting for the genetic similarity between 
probandw and pseudo siblings. We also used the same framework to perform trio-based GWAS 
(Figure 1C; Methods). 
    

Discovery Stage (N=7,805 trios) Replication Stage (N=35,740) Meta-analysis 
Gene Chr Tissue Beta SE P Beta SE P Beta SE P 
POU3F2 6 GTEx hippocampus 0.09 0.02 5.56E-07 0.03 0.01 0.015 0.05 0.01 2.05E-07 
MSRA 8 CMC DLPFC - splicing 0.09 0.02 2.26E-07 - - 0.002 - - 5.67E-09 
MAPT 17 CMC DLPFC - splicing 0.06 0.02 2.42E-04 - - 4.09E-04 - - 3.62E-07 
KIZ 20 CMC DLPFC 0.05 0.02 1.73E-03 - - 2.62E-05 - - 1.88E-07 
NKX2-2 20 GTEx nucleus accumbens 

basal ganglia 
-0.05 0.02 2.44E-03 -0.07 -0.01 2.91E-09 -0.06 0.01 1.49E-10 

Table 1. Cross-tissue significant associations in TWAS. Beta and SE indicate the normalized effect size estimates 
and standard error in conditional logistic regression. Some effect size estimates are unavailable in the replication cohort 
since FUSION does not provide effect size estimates. 
 
We identified significant transmission disequilibrium of POU3F2 expression (p=5.6e-7; GTEx 
hippocampus) and MSRA intron usage (p=2.3e-7; CMC DLPFC splicing) in 7,805 trios after 
correcting for the number of genes in each tissue (Table 1). Both associations were replicated in 
an independent cohort of 13,076 cases and 22,664 controls (p=0.015 and 0.002, respectively). 
Meta-analysis enhanced the associations at POU3F2 and MSRA and identified 29 additional 
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significant associations at the transcriptome-wide significance level (Supplementary Table 1; 
Supplementary Figures 2-11). 5 associations, i.e. POU3F2 (p=2.1e-7), MSRA (p=5.7e-9), MAPT 
(p=3.6e-7), KIZ (p=1.9e-7), and NKX2-2 (p=1.5e-10), remained significant after a stringent 
Bonferroni correction for all genes and all tissues in the analysis (Table 1 and Figure 2). In total, 
these associations implicated 18 unique candidate genes from 7 loci, including 5 novel loci not 
previously identified in GWAS. No significant associations were identified in unaffected sibling-
parent trios (Supplementary Figure 12) or after randomly shuffling probands and pseudo siblings 
(Supplementary Figure 13).  
 
GWAS meta-analysis of trios and case-control cohorts identified 4 genome-wide significant loci 
(Supplementary Table 2), 3 of which (1p21.3, 8p23.1, and 20p11.23) were among previously 
identified loci10. A locus on chromosome 8 is novel but we note that the top SNP did not exist in 
the trio-based analysis. Overall, association patterns in GWAS and TWAS were concordant 
(Figure 2). Two GWAS loci on chromosomes 8 and 20 were also identified in TWAS. No 
significant associations were found in sibling-parent trios (Supplementary Figure 12). 
 

 
Figure 2. Mirrored Manhattan plot for TWAS and GWAS results. TWAS results are shown in the upper panel. GWAS 
associations are shown in the lower panel. The dashed line in the upper panel indicates the cross-tissue transcriptome-
wide significance cutoff (p=4.0e-7) and the dashed line in the lower panel is the genome-wide significance cutoff 
(p=5.0e-8). TWAS associations for all 12 tissues are shown. 
 
 
Candidate risk genes and gene set enrichment analysis 
 
Among the 5 significant genes after a stringent Bonferroni correction for all genes and all tissues 
in the analysis (Figure 3 and Supplementary Figure 14), POU3F2 (also known as BRN2) is 
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primarily expressed in the central nervous system (Supplementary Figure 15). It encodes a 
transcription factor with important roles in neurogenesis and brain development19,20. It is a known 
risk gene for bipolar disorder21,22 and has been identified as a master regulator of gene expression 
changes in schizophrenia and bipolar disorder20,23. Deletions resulting in loss of one copy of 
POU3F2 cause a disorder of variable developmental delay, intellectual disability, and 
susceptibility to obesity24. Heterozygous POU3F2 knockout mice showed deficits in adult social 
behavior25 and it has been linked to neural proliferation phenotypes in stem cell models of ASD26. 
Although this locus did not reach genome-significance in the GWAS, gene-level association at 
POU3F2 was supported by a SNP-level association peak 700 kb upstream of POU3F2 (Figure 
3A; lead SNP rs2388334, p=1.0e-6). 
 

 
Figure 3. Significant loci identified in TWAS. We identified 5 cross-tissue transcriptome-wide significant associations 
from 4 loci. (A) chr1, 99.4 mb (B) chr8, 10.5 Mb (C) chr17, 44.5 mb (D) chr20, 21.3 mb. For each locus, the index SNP 
with the most significant association in GWAS is marked as purple diamond and the color of data points indicates 
linkage disequilibrium (LD) of neighboring SNPs with the index SNP. Genes are highlighted in red if they reached 
transcriptome-wide significance in at least one tissue. The x-axis denotes genome coordinates and the y-axis denotes 
association p-values in GWAS. 
 
MAPT encodes the microtubule-associated protein tau known to associate with multiple 
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neurodegenerative diseases including Alzheimer's disease and Parkinson's disease27 and 
balance of MAPT isoforms is critical for neuronal normal functioning28. This locus showed 
suggestive associations in the GWAS (lead SNP rs2532274, p=6.9e-8). KIZ, NKX2-2, and MSRA 
are located at 2 loci previously identified in ASD GWAS10. KIZ encodes the Kizuna centrosomal 
protein which is critical for stabilizing mature centrosomes during spindle formation29. NKX2-2 
encodes the homeobox protein NKX2.2, a transcription factor with an essential role in interpreting 
graded Sonic hedgehog signals and selecting neuronal identity30. MSRA shows high levels of 
expression in the human central nervous system and Msra knockout mice show abnormal 
behaviors31,32. 
 
We investigated if genes with nominal associations (p<0.05) in TWAS are enriched in known ASD 
pathways. Among the 15 gene sets we tested (Methods), only genes encoding postsynaptic 
density proteins (PSD; enrichment=1.18, p=3.6e-5) and SFARI genes with evidence score 4-6 
(enrichment=1.27, p=8.8e-5) showed significant enrichment for TWAS findings after multiple 
testing correction (Figure 4A; Supplementary Table 3). Additionally, we note that some genes 
with weaker evidence in the SFARI Gene database (see URLs) were identified using samples 
from the AGP and SSC cohorts and thus may not represent independent evidence. Notably, gene 
sets that are known to harbor significant burden of rare or de novo variants in ASD, e.g. FMRP 
target genes (enrichment=1.07, P=0.14), SFARI genes with evidence score S-3 (enrichment=1.07, 
p=0.24), and chromatin modifier genes (enrichment=0.94, p=0.77), showed negligible enrichment 
for TWAS associations. These results confirmed the distinct etiologic pathways underlying 
common and rare genetic variations in ASD. 
 

 
Figure 4. Gene set enrichment analysis and subgroup TWAS results. (A) Enrichment -log p-values for different 
gene sets are shown in the bar plot. Fold enrichment values are labeled next to each bar. (B) The normalized effect 
size estimates in sex-stratified TWAS. Effects of 31 associations identified in the pooled TWAS are shown in the plot. 
5 cross-tissue significant associations are highlighted in red. For each cross, the interval indicates normalized effect ± 
standard error. (C) The normalized effect size estimates in FSIQ-stratified TWAS. Each interval indicates normalized 
effect ± standard error. 
 
 
TWAS associations in subgroups 
 
Further, we investigated if the effects of candidate genes are consistent in different phenotypic 
subgroups. We applied TITANS to assess the 31 associations identified in TWAS in sample 
subgroups stratified by sex and full-scale intelligence quotient (FSIQ)7,9. In sex-stratified analysis 
of 6,484 male probands and 1,321 female probands, most genes showed comparable effect sizes 
in males and females (correlation=0.65; Figure 4B). Cross-tissue significant genes POU3F2, KIZ, 
and NKX2-2 had higher effects in females. Of note, POU3F2 showed a 2.26-fold ratio between 
its effects in females and in males, reaching statistical significance even under a substantially 
smaller sample size of female probands (Supplementary Table 4). This is consistent with a 
female protection mechanism that requires a larger effect size and risk load. We next performed 
FSIQ-stratified analysis and compared the transmission disequilibrium in probands with higher 
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(FSIQ >= 70, N=2,127) and lower FSIQ (FSIQ < 70, N=731). The effect size estimates in two 
subgroups were mostly consistent (correlation=0.71; Figure 4C). POU3F2 showed a stronger 
effect in the subgroup with lower FSIQ (fold=2.00; p=0.023 in subgroup with higher FSIQ, p=0.009 
in subgroup with lower FSIQ).  
 

 
Figure 5. Biological underpinnings of POU3F2. (A) The upper panel shows GWAS associations at the POU3F2 
locus. Predictor SNPs in the POU3F2 imputation model highlighted in red or pink based on their effect size rankings 
(top 15% or lower 85%). The middle panel shows the TADs in CP and GZ zones and the Hi-C interactions between 
each 10-kb bin in the region and POU3F2 promoter which is indicated by the vertical line. The lower panel lists the 
genes at this locus. (B) The spatiotemporal expression pattern of POU3F2 in 12 developmental stages across 5 brain 
regions. The periods span fetal development, infancy, childhood, adolescence, and adulthood. Average log2(RPKM+1) 
values for samples of the same region and developmental stage are shown. The dashed line indicates the boundary 
between later fetal and early infancy stages (0 month). (C) Transcription factor target genes of POU3F2. ASD genes in 
the SPARK gene list are highlighted in blue and additional genes with SFARI evidence score S to 3 are highlighted in 
pink. (D) Enrichment of De novo mutations in POU3F2 targets. Enrichment results in 2,508 ASD probands and 1,911 
unaffected siblings across four annotation categories (all mutations, loss-of-function, missense, and synonymous) are 
shown. P-values are shown above each bar. 
 
 
Regulatory role of POU3F2 in ASD 
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The transcription factor encoded by POU3F2 is a key regulator in multiple psychiatric 
disorders20,23. Based on its robust association with ASD in our analysis, we hypothesize that 
POU3F2 may also play a central role in ASD through its regulatory network. We investigated the 
biological underpinnings of POU3F2 by leveraging diverse types of genomic data. First, we 
confirmed the link between the gene-level association at POU3F2 and GWAS associations in the 
same region through integrating fetal brain Hi-C data from the germinal zone (GZ) and postmitotic-
zone cortical plate (CP)33. POU3F2 and the GWAS association peak 700 kb upstream are located 
in the same topological associating domain (TAD) that is conserved in both GZ and CP zones 
(chr6: 97.52-99.76 mb; Figure 5A). Additionally, we identified 59 non-overlapping bins, each of 
10 kb in size and within 1 mb from the transcription start site of POU3F2, showing significant 
interactions with the promoter region of POU3F2 (p<1.0e-4; Methods; Supplementary Tables 
5-7). Multiple bins showing significant interactions with POU3F2 promoter colocalized with GWAS 
associations in this region. For example, SNP rs62422661 (p=2.0e-5 in GWAS) is located in the 
bin located at 98.54-98.55 mb on chromosome 6 which significantly interacts with POU3F2 in the 
CP zone (p=2.0e-12). In addition, 15 SNP predictors for POU3F2 expression, including 2 strong 
predictors with effect sizes ranked at top 15%, are located in bins interacting with POU3F2 
promoter (Figure 5A). 
 
Next, we examined the spatiotemporal expression pattern of POU3F2 in 5 brain regions, i.e. 
cerebellar cortex (CBC), striatum (STR), hippocampus (HIP), mediodorsal nucleus of thalamus 
(MD), and amygdala (AMY), spanning from fetal development to adulthood34 (Methods). POU3F2 
showed significantly elevated expression in developmental brains compared to postnatal brains 
across all 5 brain regions (p=5.3e-3, permutation test; Figure 5B). A similar pattern was also 
observed in several other genes (e.g. MAPT) while NKX2-2 showed elevated expression in 
postnatal brains (Supplementary Figure 16). 
 
Additionally, we used the regulatory network from Chasman et al.35 to investigate the enrichment 
of known ASD genes in target genes regulated by POU3F2. The transcription factor target 
network of POU3F2 contained 1,013 genes (Figure 5C). These genes showed strong enrichment 
(enrichment=2.1, p=0.012) for the SPARK genes which included 153 curated genes known to be 
associated with autism (Methods; URLs) and for SFARI genes with scores S to 3 (enrichment=2.1, 
p=4.6e-05). Various gene sets previously shown to enrich for rare and de novo mutations in ASD, 
including chromatin modifiers (p=2.6e-4), FMRP targets (p=0.009), and loss-of-function intolerant 
genes (p=2.2e-6), were significant enriched in POU3F2 targets (Supplementary Table 8). 
Furthermore, POU3F2 target genes were significantly enriched for loss-of-function de novo 
mutations (enrichment=2.68, p=7.1e-05, Poisson test; Methods) in 2,508 SSC probands (Figure 
5D, Supplementary Table 9). Enrichment remained substantial even after we removed known 
ASD genes in the SPARK gene list from the analysis (enrichment=1.66, p=0.06) despite the 
reduced statistical evidence (Supplementary Table 10). We did not observe significant 
enrichment for missense or synonymous mutations. No enrichment was observed in 1,911 
unaffected siblings.  
 
Finally, we obtained transcription factor binding sites (TFBS) of POU3F2 based on the prior 
network in Chasman et al.35 and used linkage disequilibrium score regression (LDSC) to assess 
the enrichment of ASD heritability in these TFBS36 (Methods). SNPs located near POU3F2 
binding sites explained 11.7% of ASD heritability, showing a 5.3-fold enrichment with suggestive 
statistical significance (p=0.054; Supplementary Table 11).  
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Discussion 
 
In this study, we have presented TITANS, an analytical framework for testing the transmission 
disequilibrium of genetically regulated molecular traits between parents and probands. Through 
integrative modeling of GWAS data in trios and rich QTL annotations from large consortia such 
as GTEx15, this approach effectively combines association evidence at multiple SNPs to implicate 
risk genes affected by common genetic variations. Applied to multiple large-scale ASD cohorts 
including the SPARK study which has not been previously reported, we conducted a TWAS on 
7,805 proband-parent trios and replicated our findings in 35,740 case-control samples. Meta-
analysis identified a total of 31 transcriptome-wide significant associations, many of which are 
located at novel loci not previously implicated in GWAS. 
 
Among the identified associations, convergent evidence suggested a critical etiologic role of 
POU3F2 in ASD. POU3F2 encodes a transcription factor mainly expressed in the central nervous 
system19 and has known key regulatory roles in schizophrenia and bipolar disorder20,23. In our 
analysis, it reached transcriptome-wide statistical significance in trio-based TWAS and was 
successfully replicated in the case-control replication. Meta-analysis strengthened the association 
at POU3F2 and it remained significant after a stringent multiple testing correction for all genes 
and all tissues analyzed in this study. Subtype analysis suggested that POU3F2 has enhanced 
over-transmission in female probands (2.3-fold) and individuals with lower FSIQ (2-fold). 
Furthermore, we demonstrated its etiologic importance and its connection to other ASD risk genes 
through integrative analysis of diverse types of genomic data. Analysis of fetal brain Hi-C data 
confirmed significant interactions between POU3F2 promoter and multiple genome regions near 
GWAS associations located in the same TAD. Analysis of spatiotemporal gene expression data 
suggested significantly elevated POU3F2 expression in developmental brain. TFBS of POU3F2 
were enriched for ASD heritability. Downstream target genes regulated by POU3F2 were enriched 
for known ASD risk genes identified in WES studies. POU3F2 targets were also significantly 
enriched for loss-of-function de novo mutations in ASD probands. Enrichment remained 
substantial even after known ASD genes were removed from the gene set. 
 
WES studies have identified numerous extremely rare, protein-disrupting variants in ASD and 
have implicated risk genes and pathways3-7. Successful studies focusing on other types of genetic 
variants using GWAS and whole-genome sequencing approaches have just begun to 
emerge9,10,37-39. A common and somewhat puzzling observation in these studies was that common 
SNPs associated with ASD did not influence the same genes and pathways enriched for rare 
variants. Our analysis partly confirmed this observation – genes showing strong associations in 
TWAS had limited overlap with genes identified through WES. However, the POU3F2 results 
provide a clear example of the direct link of genes affected by very rare mutations with common 
genetic variations at a second, unlinked locus. These findings provide insights into the interplay 
of common and rare genetic variations in ASD, shed light on regulatory network-based modeling 
of epistatic interactions, and have broad implications for the genetic basis of other diseases. 
 
 
 
Methods 
 
Sample information and data processing 
 
We accessed AGP samples through dbGaP (accession: phs000267). The total sample size was 
7,880. Genotyping was performed using the Illumina Human 1M-single Infinium BeadChip. Details 
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on these samples have been described elsewhere (see URLs)40. We accessed samples from the 
SSC and the SPARK study through the Simons Foundation Autism Research Initiative (SFARI; 
see URLs). The SSC cohort contains comprehensive genotype and phenotype information from 
2,600 simplex families, each family has one ASD child, and healthy parents and siblings. 
Genotyping was performed in batches by the Illumina IMv1, IMv3 Duo, and Omni2.5 arrays. 
Details on these data can be found on the SFARI website (URLs) and have been described 
elsewhere39. Samples in the SPARK study were genotyped by the Illumina Infinium Global 
Screening Array. Details on these samples have been previously reported41,42 and are available 
on the SFARI website (URLs)  
 
We performed pre-imputation quality control (QC) using PLINK43. Only individuals with self-
reported European ancestries were included in the study. SNPs with genotype call rate < 0.95, 
minor allele frequency (MAF) less than 0.01, or significant deviation from Hardy-Weinberg 
equilibrium (p<1.0e-6) were removed from the analysis. Samples with genotype missing rate > 
0.05 were also excluded from the analysis. We used genetic relationship coefficients estimated 
from GCTA44 to identify and remove overlapped samples among different cohorts. After QC, 2,188, 
1,794, and 3,823 independent proband-parent trios remained in AGP, SSC, and SPARK cohorts 
respectively. 1,432 and 1,813 trios of sibling-parent trios remained in SSC and SPARK. The UCSC 
liftOver tool was used to liftover the genome coordinates in AGP samples from hg18 to hg19. The 
genotype data were phased and imputed to the HRC reference panel version r1.1 2016 using the 
Michigan Imputation server45. We removed SNPs with imputation quality < 0.8 or MAF < 0.01 in 
the post-imputation QC. 7,260,224 SNPs remained in the AGP study after QC. 7,298,961 SNPs, 
7,029,817 SNPs, and 6,866,248 SNPs remained in the SSC 1Mv1, 1Mv3, and Omni2.5 datasets, 
respectively. 7,031,717 SNPs remained in the SPARK data. 
 
We used case-control samples from the iPSYCH cohort as the replication dataset in our study 
(13,076 cases and 22,664 controls). The iPSYCH ASD sample contains all Danish children born 
between 1981 and 2005 and details on this cohort are described elsewhere46. This cohort has 
been included in a recent ASD GWAS meta-analysis10. Samples in the iPSYCH cohort are 
independent from samples in the AGP, SSC, and SPARK. 
 
 
Polygenic transmission disequilibrium analysis 
 
We used the iPSYCH GWAS summary statistics to generate ASD PRS on all samples. We 
performed a LD-clumping using PLINK with a p-value threshold of 1, a LD threshold of 0.1, and a 
distance threshold of 1,000 Kb. After clumping, 167085 SNPs remained in the dataset. PRSice 
was used for PRS calculation47. We quantified the transmission disequilibrium of ASD PRS using 
the pTDT approach9. 
 
 
Trio-based TWAS and GWAS analysis 
 
We developed a statistical framework TITANS to perform trio-based TWAS (Figure 1). We used 
UTMOST12 gene expression imputation models for 10 brain tissues in GTEx and imputation 
models for CMC DLPFC expression and intron usage values implemented in FUSION11. UTMOST 
model uses a cross-tissue penalized regression model to borrow information from tissues with 
larger sample size and improve imputation accuracy of gene expression12. FUSION trains multiple 
imputation models in each tissue separately, including Bayesian sparse linear mixed model, 
elastic net, LASSO, and an ordinary least square model using single best eQTL as the predictor. 
We selected the best model using the cross-validation. 
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Given a gene with 𝑚 predictor SNPs, we extracted those SNPs from parents’ phased genotypes 
and recombined the chromosomes based on Mendelian inheritance to create the genotypes of 
pseudo siblings. Since only cis-regulators within the local region are included in gene expression 
and intron usage imputation models, we assumed no crossover events in our analysis. Given the 
parental data, four recombined pseudo offspring genotypes can be created, each having a 
paternal haplotype and a maternal haplotype. We imputed gene expression and intron usage on 
each proband and all four simulated pseudo siblings. We excluded the pseudo sibling whose 
imputed expression is the closest to the proband’s since one of the four simulated offsprings’ 
genotype should be identical to the proband if there is no phasing error or crossover. We tested 
the association between imputed gene expression and disease phenotype using conditional 
logistic regression18, with conditional likelihood 

L = Π%&'( exp,x-%β/
exp,x-%β/ + exp(x2'3β) + exp(x253β) + exp(x263β)

 

Here, 𝑥83, 𝑥:'3, … , 𝑥:63 denote the imputed gene expression or intron usage values of the proband 
and 3 pseudo siblings in the ith family. We used the clogit function in the R package ‘survival’ to 
numerically estimate the effect size β, which can be interpreted as transmission disequilibrium of 
imputed expression. The SE of β, the z-score test statistic, and association p-value are also 
reported. TWAS was conducted in the AGP, SSC, and SPARK cohorts separately. Results in 
different trio-based cohorts were meta-analyzed using the inverse-variance weighted method48. 
These results were then meta-analyzed with the associations in the replication stage using z-
score-based meta-analysis weighted by sample sizes48. 
 
We performed TWAS in sample subgroups based on sex and FSIQ (Supplementary Table 4). 
We conducted sex-stratified TWAS in each cohort and meta-analyzed the result across AGP, SSC, 
and SPARK using the inverse-variance weighted method48. FSIQ-stratified analysis based on a 
cutoff of 70 was conducted in SSC and SPARK separately and then combined through meta-
analysis. 
 
We used a similar framework to conduct GWAS in trios. For each SNP, we create four recombined 
genotypes based on parental data, exclude a genotype identical to the proband’s genotype, and 
perform conditional logistic regression to assess the association between each SNP and ASD 
status. 
 
 
Gene set enrichment analysis 
 
We used hypergeometric test to assess if genes with nominal TWAS associations (p<0.05 in any 
tissue) were enriched in gene sets that have bene linked to ASD in past literatures 
(Supplementary Table 3). Gene sets assessed in our analysis included co-expression modules 
M2, M3, M13, M16, and M17 from Parikshak et al.49. FMRP targets, genes encoding postsynaptic 
density proteins (PSD), gene preferentially expressed in human embryonic brains downloaded 
from BRAINSPAN (see URLs), essential genes50, chromatin modifier genes5, and genes with 
probability of loss-of-function intolerance (pLI) > 0.9 from the Exome Aggregation Consortium51. 
In addition, we downloaded genes from the SFARI Gene database on August 2019 (URLs) and 
created two gene sets based on evidence scores. The gene set based on scores S, 1, 2, or 3 
include genes involved in ASD with high to suggestive evidence and genes predisposing to ASD 
in the context of a syndromic disorder. Genes with scores 4-6 have limited evidence or have only 
been hypothesized to link to ASD. Finally, we obtained a list of 153 genes with known roles in 
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ASD curated by the SPARK study (URLs). We refer to this gene set of SPARK genes in our 
analyses. 
 
 
Hi-C analysis 
 
We used the human fetal brain Hi-C data (URLs; GEO: GSE77565)33 at resolution 10 kb in the 
analysis. The samples were sequenced using Illumina HiSeq 2000 chip, collecting from three 
individuals aging gestation week (GW) 17–18 (one sample from GW17 and two samples from 
GW18). The Hi-C libraries were constructed in two brain zones GZ and CP. The TAD region of 
GZ and CP are also provided. We converted the Hi-C contact matrices (HDF5 format) normalized 
by ICE52 into the sparse contact matrix format (BED format) and leveraged Fit-Hi-C53 to detect the 
significant interactions in the regions of interest. Benjamini-Hochberg procedure54 was employed 
to control the false discovery rate. 
 
 
Spatiotemporal expression analysis 
 
We obtained spatiotemporal gene expression data from BRAINSPAN for 17 candidate genes 
(URLs) with significant associations in our TWAS analysis. Average log2(RPKM+1) values for 
samples of the same region and developmental stage were calculated. Expression data were 
from 5 brain regions, i.e. CBC, STR, HIP, MD, and AMY, and spanned from 8 weeks post-
conception (PCW) to 40 years as indicated in Kang et al55. mRNA sequencing was performed 
using the Illumina Genome Analyzer IIx. Details on these data are described elsewhere34. 
 
 
POU3F2 transcription factor binding network 
 
The transcriptional targets of POU3F2 were obtained using the procedure from Chasman et al35. 
We downloaded POU3F2 motif position weight matrices (PWM) from 3 databases, CIS-BP56, 
ENCODE57, and JASPAR58. We obtained DNase-I seq data for neural progenitor cells from the 
Roadmap Epigenome Consortium59 (GEO: GSE18927). Next, we applied the Protein Interaction 
Quantification (PIQ) algorithm60 to identify POU3F2 motif binding sites across the human genome. 
Using the DNase-I seq data, the PIQ algorithm defines a purity score (0.5-1.0) for a motif instance, 
which quantifies the likelihood of a true binding event in that site. PIQ motif instances were 
mapped to the transcription start sites from Gencode v10 within a 10kb radius. The confidence of 
the edge between a transcription factor and the target was defined as the maximum PIQ purity 
score among all transcription factor motif instances and the target gene. Furthermore, the 
confidence score was converted to percentile ranks ranging from 0 to 1. Only edges with 
confidence score > 0.99 were preserved in the final network, containing 1,013 outgoing edges of 
POU3F2. 
 
 
De novo mutation enrichment analysis 
 
We used published de novo mutability61 of synonymous, missense, and loss-of-function variants 
to estimate the expected counts of mutations. Published de novo mutation data5 in 2,508 
probands and 1,911 controls from the SSC cohort were accessed through denovo-db62. Loss-of-
function mutations were defined as frameshift, stop-gained, splice-donor, stop-gained near splice, 
frameshift near splice, stop-lost, or splice-acceptor mutations. Missense mutations included 
missense and missense-near-splice labels from the denovo-db. Synonymous mutations included 
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synonymous and synonymous-near-splice labels. We used Poisson test to assess enrichment 
and quantify the statistical evidence61. 
 
 
Partitioned heritability analysis 
 
We used stratified LDSC36 to assess the partitioned ASD heritability in POU3F2 TFBS. We used 
the PIQ motif instances we generated in the network analysis and expanded each TFBS by 100, 
150, and 250 base pairs up- and downstream. Further, we partitioned the heritability from the 
using the meta-analyzed GWAS summary statistics as input. The model also included 53 LDSC 
baseline annotations, as recommended in Finucane et al36. 
 
 
URLs 
 
AGP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000267.v5.p2);  
SSC (https://www.sfari.org/resource/simons-simplex-collection/);  
SPARK (https://www.sfari.org/resource/spark/); 
SFARI Genes database (https://gene.sfari.org/about-gene-scoring/);  
SPARK Genes 
(https://simonsfoundation.s3.amazonaws.com/share/SFARI/SPARK_Gene_List.pdf);  
Fetal brain Hi-C data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77565); 
BRAINSPAN (http://www.brainspan.org/static/home). 
 
 
Data and code availability 
 
Summary statistics from the ASD GWAS and TWAS are freely accessible at 
(ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/TITANS). The code to perform trio-based TWAS 
and GWAS analysis is available at (https://github.com/qlu-lab/TITANS).  
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