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Abstract 1 

To elucidate the genetics of coronary artery disease (CAD) in the Japanese population, we conducted a 2 

large-scale genome-wide association study (GWAS) of 168,228 Japanese (25,892 cases and 142,336 3 

controls) with genotype imputation using a newly developed reference panel of Japanese haplotypes 4 

including 1,782 CAD cases and 3,148 controls. We detected 9 novel disease-susceptibility loci and 5 

Japanese-specific rare variants contributing to disease severity and increased cardiovascular mortality. We 6 

then conducted a transethnic meta-analysis and discovered 37 additional novel loci. Using the result of the 7 

meta-analysis, we derived a polygenic risk score (PRS) for CAD, which outperformed those derived from 8 

either Japanese or European GWAS. The PRS prioritized risk factors among various clinical parameters 9 

and segregated individuals with increased risk of long-term cardiovascular mortality. Our data improves 10 

clinical characterization of CAD genetics and suggests the utility of transethnic meta-analysis for PRS 11 

derivation in non-European populations. 12 
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Coronary artery disease (CAD) is a leading cause of global morbidity and mortality1. CAD is a common 1 

and complex disease, which is also known to be highly heritable2. To identify genetic factors underlying 2 

CAD, continuous efforts have been undertaken3–9, which have resulted in the discovery of over 160 CAD 3 

susceptibility loci. 4 

These achievements have been mainly led by microarray-based genotyping technology in 5 

combination with haplotype imputation by publically available reference panels derived from large-scale 6 

sequencing projects. Recent advances in high-throughput sequencing technology have now made it 7 

possible to reveal the genomes of specific populations, including a substantial number of subjects with 8 

relevant diseases. These efforts have successfully discovered population-specific and disease-specific rare 9 

haplotypes10–12 and it is now possible to assess the pathological roles of these variants at the population 10 

level.13 Another critical achievement in complex-disease genetics is the advancement of the polygenic risk 11 

score (PRS). As recently reported, accumulating genetic knowledge and data enables us to derive a PRS 12 

which shows clinically relevant performance for case-control discrimination14–17. 13 

Clinical implementation of these technologies is considered promising for the future of precision 14 

medicine in CAD. However, these data are mainly derived from large-scale GWAS predominantly 15 

conducted with subjects of European descent. Therefore, before these findings can be widely implemented 16 

in clinical settings, it is essential to confirm their relevance and robustness in diverse ethnic groups. Such 17 

transethnic analyses could further be used to explore novel findings that are otherwise difficult to discover 18 

in a single population18–20. 19 

In the present study, to elucidate the genetic architecture of CAD and its transethnic heterogeneity, 20 

we conducted a large-scale GWAS of CAD in the Japanese population (25,892 cases and 142,336 21 

controls) in combination with whole-genome sequencing of 4,930 Japanese individuals including rare 22 

disease haplotypes. This was followed by a transethnic meta-analysis (total of 121,234 cases and 527,824 23 

controls). Additionally, using the PRS derived from these results and biobank-based phenome-wide 24 

analyses, we provide insights into the clinical utility of the PRS which may pave the way to the precision 25 

medicine.26 
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Results 1 

Construction of a CAD reference panel and imputation 2 

We sequenced the genomes of 1,782 individuals with early-onset CAD and 3,148 non-CAD controls of 3 

Japanese ancestry from the Biobank Japan (BBJ) project and the Nagahama study (Supplementary Fig. 1a). 4 

After stringent quality control (Methods section), we established 48,305,902 variants [45,505,776 single 5 

nucleotide polymorphisms (SNPs) and 2,800,126 indels]. We found several pathogenic or likely 6 

pathogenic variants of familial hypercholesterolaemia (FH)21,22, which is the most important underlying 7 

genetic condition for CAD (Supplementary Table 1). To leverage the enriched disease-relevant haplotype 8 

information, we constructed a reference panel for haplotype imputation from the whole-genome sequence 9 

data (referred as BBJCAD). For comparison, we constructed two reference panels from the 1000 Genomes 10 

Project (1KG)23 dataset under the same pipeline [1KG all subjects (1KGALL) and 1KG East Asian subjects 11 

(1KGEAS)]. To assess the performances of these three different imputation panels, we imputed 179,320 12 

Japanese genotypes with these three reference panels. After filtering by imputation quality (R2 ≥ 0.3), 13 

almost double the number of variants remained in the new panel (1KGALL: 10,284,722; 1KGEAS: 14 

8,482,456; BBJCAD: 22,136,930, Supplementary Table 2). This difference was based on the improved 15 

imputation quality, especially when considering rare [1% ≤ minor allele frequency (MAF) < 5%] to very 16 

rare (MAF < 1%) variants (Supplementary Fig. 2, 3). We revealed a substantially increased number of 17 

variants with R2 ≥ 0.3 in the mechanistically annotated constrained class or curated pathogenic variants 18 

(Supplementary Fig. 4, Supplementary Table 3). For example, the BBJCAD panel imputed a 6 × higher 19 

number of stop-gain variants and a 5 × higher number of “Pathogenic” variants with R2 ≥ 0.3 compared to 20 

the 1KG reference panels. 21 

Nine novel loci for CAD detected in Japanese 22 

Using the densely imputed genotypes with BBJCAD reference panel, we performed a GWAS on the case-23 

control dataset from the BBJ, including 25,892 CAD cases and 142,336 controls (Supplementary Fig.1a), 24 

testing 19,707,525 variants. Although the lambda GC value was inflated at 1.24, the linkage disequilibrium 25 

(LD) score regression intercept24 was 1.06, indicating that 84% of the inflation was likely due to the 26 

polygenic nature of CAD. The liability scale heritability was estimated at 6.5%, which is slightly decreased 27 
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compared to the results of a recent European study. Forty-eight loci reached genome-wide significance 1 

(Methods section); of them, nine loci were previously unreported (Table 1, Supplementary Table 4, 2 

Supplementary Fig. 5, Supplementary Data Set 1,2). A novel locus on 9q31 habours ABCA1, a critical 3 

gene for high-density lipoprotein cholesterol (HDLC) homeostasis, whose disruption causes a severe 4 

deficiency in serum HDLC25. The lead variant rs35093463 is located in the intron of ABCA1. The higher 5 

frequency of this variant in Japanese (MAF 36%) compared to Europeans (MAF 5%) might have 6 

contributed to the discovery of this loci in this study. Besides, we detected a relatively strong signal [MAF 7 

= 1.0%, odds ratio for CAD development (ORCAD) =1.61 and its 95% confidence interval (95%CI) = 1.46 8 

– 1.78, P = 2.3 × 10-21] on the chromosome 17q25, where the lead variant rs112735431 causes a 9 

nonsynonymous substitution in the RNF213 gene. rs112735431 is also known as an established 10 

susceptibility variant for moyamoya disease26, which is a rare cerebrovascular disease with abnormal 11 

vascular formation or obstruction. Since this variant is highly specific to the East Asian population, 12 

previous European studies could not assess its importance in CAD. 13 

Very rare, high-impact signals in the genome-wide significant loci and their pleiotropy 14 

To detect additional CAD-associated signals independent of the lead variants among the genome-wide 15 

significant loci, we performed conditional analysis for each locus of interest. This conditional analysis 16 

revealed 25 additional independent signals (locus-wide P < 1.0 × 10-5) in 48 genome-wide significant loci. 17 

They included rare variants with a high impact on the development of CAD (Fig. 1a, Supplementary Table 18 

5). Of these genome-wide or locus-wide significant variants, we found one stop gain, five missense, and 19 

one in-frame deletion variants. In particular, a stop-gain variants (rs879255211) in the LDLR gene showed 20 

a dramatically high ORCAD [MAF = 0.038%, ORCAD (95% CI) = 4.97 (2.49 - 9.93), P = 5.5 × 10-6]. We 21 

also found two missense variants in PCSK9 [rs151193009, MAF = 0.99%, ORCAD (95% CI) = 0.64 (0.57 – 22 

0.72), P = 1.21 × 10-14; rs564427867, MAF = 1.1%, ORCAD (95% CI) = 1.31 (1.19 – 1.44), P = 2.7 × 10-8], 23 

and one in APOB [rs13306206, MAF = 3.8%, ORCAD (95% CI) = 1.38 (1.31 – 1.46), P = 4.8 × 10-35] 24 

surpassing genome- or locus-wide significance thresholds. 25 

To explore the biological pathways in which these independent signals play roles in CAD development, we 26 

performed association analyses for 34 clinical indices, including clinical measurements [body mass index 27 
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(BMI) and blood pressure], serum laboratory measurements [e.g., total cholesterol (TC), low density 1 

lipoprotein cholesterol (LDLC)] and lifestyles (cigarette smoking and alcohol drinking) in the BBJ dataset. 2 

We found 121 significant associations (P < 0.05 / 2,482) in 29 phenotypes among the 34 tested 3 

(Supplementary Fig. 6, Supplementary Table 6). The most frequent association was found between serum 4 

TC and these variants. The CAD risk-increasing alleles of these variants are completely matched with the 5 

TC increased allele (14/14, Fig. 1b). Especially, rs879255211 showed a large impact on serum TC levels 6 

[MAF = 0.038%, βTC-raw (standard error (SE)) = 74.6 (8.90) mg/dL per allele, PTC-adjusted = 1.4 × 10-10] in 7 

accordance with its large impact on CAD development. In addition, rs553577764, a rare intronic variant in 8 

DOCK6 with a high ORCAD, also showed a large impact on serum TC levels [ORCAD (95% CI) = 3.08 9 

(2.22 – 4.26), P = 1.2 × 10-11, βTC-raw (SE) = 57.9 (4.30) mg/dL per allele, PTC-adjusted = 1.2 × 10-21]. We 10 

noted that this variant was in high LD (R2 = 0.639) with rs746959386, which is a missense variant of 11 

LDLR registered in the ClinVar database as “Likely pathogenic” for FH [MAF = 0.057%, ORCAD (95% CI) 12 

= 3.11 (2.21 – 4.37), P = 4.8 × 10-11, βTC-raw (SE) = 63.4 (4.48) mg/dL per allele, PTC-adjusted = 8.3 × 10-21, 13 

Supplementary Table 7]. We also noted that a splicing variant of LDLR showed a nominal association with 14 

CAD development [rs778408161, MAF = 0.074%, ORCAD (95% CI) = 2.15 (1.44 – 3.21), P = 1.6 × 10-4] 15 

and a significant association with TC levels [βTC-raw (SE) = 43.9 (4.85) mg/dL per allele, PTC-adjusted = 2.5 × 16 

10-10]. 17 

The minor allele of rs151193009 in PCSK9 showed a protective effect against CAD development and a 18 

negative effect on serum TC levels [βTC-raw (SE) = -24.3 (1.06) mg/dL per allele, PTC-adjusted = 2.3 × 10-111]. 19 

This variant results in the amino acid substitution, Arg93Cys, which decreases the affinity of PCSK9 for 20 

LDLR27, and could have negative impacts on CAD development and TC levels. In contrast, the minor 21 

allele for rs564427867 in PCSK9 showed an increased risk for CAD development and increased TC levels 22 

[βTC-raw (SE) = 26.4 (1.06) mg/dL per allele, PTC-adjusted = 6.0 × 10-91]. rs13306206 is a missense variant of 23 

APOB, and its minor allele increased the risk of CAD development. In concordance, the risk allele of 24 

rs13306206 was associated with an increased level of serum TC [βTC-raw (SE) = 19.9 (0.59) mg/dL per 25 

allele, PTC-adjusted = 8.6 × 10-155]. rs112735431, a missense variant of RNF213 that was described above, 26 

showed a significant association with systolic blood pressure (SBP) [βSBP-raw (SE) = 2.48 (0.66) mmHg per 27 

allele, PSBP-adjusted = 2.2 × 10-22]. Supplementary Table 8 lists the genome-wide or locus-wide associated 28 
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coding variants including all of the abovementioned variants. We found that these variants were highly 1 

specific to the East Asian population and not found in the European population. Notably, rs879255211 and 2 

rs746959386 are not found even in the East Asian population in the 1000 Genomes Project23 or gnomAD 3 

dataset28. 4 

Individuals with rare coding variants in monogenic genes for FH showed the worse cardiovascular 5 

outcome 6 

Epidemiological studies have shown that patients with FH have premature myocardial infarctions and 7 

worse outcomes because of recurrent ischemia29. However, the definition of FH in previous 8 

epidemiological studies was mainly based on clinical criteria. To confirm the association between clinical 9 

outcomes and deleterious variants in established FH genes, we assessed the association of the carrier status 10 

of the variants detected in the current study (rs564427867 in PCSK9, MAF = 1.1%; rs13306206 in APOB, 11 

MAF = 3.8%, and rs879255211, rs746959386, and rs778408161 in LDLR, MAF = 0.038%, 0.057%, and 12 

0.074%, respectively) with clinical indicators. We found that these variants are significantly enriched in 13 

the patients with acute coronary syndrome [ACS, defined as a composite of acute myocardial infarction 14 

(AMI) and unstable angina] compared to those with stable angina pectoris (SAP) [ORACS/SAP (95% CI) = 15 

1.23 (1.14 – 1.33) per allele. P = 1.2 × 10-7, Fig. 2a, Supplementary Fig. 7a]; ACS tends to be associated 16 

with a more aggressive clinical course than SAP. In addition, individuals with these variants developed 17 

AMI at a younger age than non-carriers [effect size on onset age per allele (95% CI) = -1.52 (-2.06; -0.98), 18 

P = 4.7 × 10-8, Fig. 2b]. In concordance with these results, as illustrated in Fig. 2c, carriers of these 19 

variants showed significantly increased cardiovascular mortality than non-carriers [adjusted hazard ratio 20 

(HR) = 1.16, 95% CI = 1.07 – 1.27, P = 3.5 × 10-4, Supplementary Fig. 7b).  21 

Transethnic meta-analysis identified 37 novel CAD-associated loci 22 

To increase the power for detecting further associations with CAD, we conducted a transethnic meta-23 

analysis combining the current Japanese GWAS data and previously published data from two large-scale 24 

CAD GWAS, CardiogramPlusC4D (C4D) and UK Biobank (UKBB), mainly involving subjects of 25 

European descent (Supplementary Fig. 1b)7,9. To account for the ancestral heterogeneity in each study, we 26 

applied the MANTRA algorithm in the analysis30. By combining all three datasets, there was a total of 27 
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121,234 CAD cases (BBJ: 25,892, C4D: 60,801, UKBB: 34,541) and 527,824 controls (BBJ: 142,336, 1 

C4D: 123,504, UKBB: 261,984). A total of 4,804,024 SNPs was tested and 176 loci reached the genome-2 

wide significance threshold [log10 Bayes factor (BF) > 6, Fig. 3, Supplementary Table 9, Supplementary 3 

Data Set 3,4]31. Forty-three of these loci were not previously reported (Table 2), including six loci that we 4 

detected in the current Japanese GWAS. In total, we found 46 previously unreported loci in the Japanese 5 

GWAS and the transethnic meta-analysis. Among these loci, we found a novel association on chromosome 6 

5q13, which harbours HMGCR encoding the late limiting enzyme in endogenous cholesterol synthesis, 3-7 

hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. This is the target enzyme of statins, the 8 

most prevalent lipid lowering agents. The lead variant rs13354746 is located in 13kb upstream of HMGCR, 9 

and the risk allele of this variant is highly associated with increased serum TC levels in the Japanese 10 

population32. 11 

Transethnic fine mapping of CAD-associated loci 12 

For the fine mapping of the CAD-associated loci, we constructed credible sets for the genome-wide 13 

significant loci detected in the transethnic meta-analysis. To assess the contribution of the transethnic 14 

meta-analysis to the sizes of the credible sets, we compared the numbers of variants included in the 99% 15 

credible sets derived from the transethnic meta-analysis (BBJ, C4D, and UKBB) and the meta-analysis of 16 

the two previous European studies (C4D and UKBB, Supplementary Table 10). The sizes of the 99% 17 

credible sets in the previously established loci derived from the transethnic meta-analysis were 18 

significantly decreased compared to those from the European only analysis [Median number of variants 19 

(1st– 3rd quantile value) = 13.5 (5 – 33.5) and 19 (6 – 55.5), respectively, P = 8.7 × 10-9, paired Wilcoxon 20 

rank-sum test, Supplementary Fig. 8]. We found 28 and 55 lead variants with a posterior probability of 21 

association (PPA) greater than 80% and 50%, respectively (Supplementary Table 11), including four 22 

coding variants (rs11556924 in ZC3HC1, rs11601507 in TRIM5, rs3741380 in EHBP1L1, and rs1169288 23 

in HNF1A). A previous study implicated three of these variants (rs11556924, rs11601507, and rs3741380) 24 

as a causal variant for each locus9. rs1169288, a non-synonymous variant in HNF1A (Ile27Leu), which 25 

encodes a crucial transcription factor highly expressed in the liver and intestine33, was also previously 26 

implicated in cholesterol homeostasis and glucose tolerance32,34, and was predicted to be highly protein 27 

damaging (CADD PHREAD score of 23.4)35. 28 
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Shared allelic effects in the transethnic meta-analysis, and derivation of the transethnic PRS 1 

To assess the heterogeneity of allelic effects on CAD development among the studies, we next compared 2 

the alternate allele frequency (AAF) and βCAD between the Japanese and two European studies 3 

(Supplementary Fig. 9). We observed considerably different allele frequencies between the Japanese and 4 

European studies for the 176 lead variants detected in the transethnic meta-analysis. Nevertheless, we 5 

found a significant positive correlation and concordant allelic effects of these variants (Spearman’s ρBBJ-6 

C4D = 0.81, PBBJ-C4D = 6.2 × 10-42; ρBBJ-UKBB = 0.79, PBBJ-UKBB = 8.0 × 10-39. directional consistencies were 7 

95.5% for BBJ vs. C4D and 94.9% for BBJ vs. UKBB). 8 

For further exploration of allelic effect consistency, we compared the allelic effect directions of 9 

the variants with various significances (Supplementary Fig. 10). We observed strong correlations of allelic 10 

effect direction in the variants with genome-wide significance (concordant rate of allelic effect was 95.9% 11 

for variants with Pfixed-effect < 5 × 10-8, 100% for Prandom-effect < 5 × 10-8) as mentioned above. Moreover, we 12 

found significant concordance of allelic effect direction in variants even with nominal significance (82.0% 13 

for Pfixed-effect < 0.05, 93.7% for Prandom-effect < 0.05). In addition, we noted that the random-effect model 14 

consistently gives better estimates for variants with shared allelic effect across these P-value thresholds. 15 

The transethnic meta-analysis substantially increased the number of significant associations and 16 

suggested a shared allelic effect among ethnicities. These results indicate that transethnic meta-analysis 17 

could improve the performance of a PRS. To determine the best PRS under such circumstances, we 18 

derived the PRS exhaustively from all combinations of summary statistics, reference LD structure, and 19 

parameters for derivation. As a result, the random-effects transethnic meta-analysis showed the best 20 

performance [Nagelkerke’s R2 = 0.0776, the area under the receiver-operator curve (AUC) = 0.664, OR = 21 

8.30, Supplementary Fig. 11, Supplementary Table 12], in the independent Japanese case-control 22 

validation cohort (1,827 cases, 9,172 controls). This transethnic CAD-PRS outperformed the previously 23 

derived CAD-PRS from a European study16 (Nagelkerke’s R2 = 0.0479, AUC = 0.628, OR = 3.70, P = 1.3 24 

× 10-6 vs. transethnic CAD-PRS) or the PRS derived from the current Japanese GWAS (Nagelkerke’s R2 = 25 

0.0498, AUC = 0.634, OR = 4.24, P = 7.1 × 10-7, vs. transethnic CAD-PRS). 26 

Associations of CAD-PRS with clinical risk factors 27 
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To determine the clinical pathways explaining the involvement of the CAD-PRS in CAD pathophysiology, 1 

we assessed the correlation between the CAD-PRS and various phenotypes as denoted above. Among the 2 

34 variables tested, significant correlations were observed between 13 clinical factors and CAD-PRS after 3 

multiple-testing correction (Fig. 4a, Supplementary Fig. 12, Supplementary Fig. 13, Supplementary Table 4 

13). Most of the traditional CAD risk factors, including blood pressure and lipid or diabetic measurements, 5 

showed significant correlations with the CAD-PRS. SBP showed the most significant positive correlation 6 

[Spearman’s ρ (95% CI) = 0.052 (0.042 – 0.061), P = 1.9 × 10-24], and HDLC showed the third most 7 

significant, negative correlation as expected from its clinical consequence [ρ (95% CI) = -0.045 (-0.057; -8 

0.033), P = 2.9 × 10-13]. The CAD-PRS was also significantly correlated with inflammatory markers 9 

[white blood cell count (WBC), ρ (95% CI) = 0.018 (0.008 – 0.027), P = 3.2 × 10-4], alcohol drinking [β 10 

(95% CI) = -0.048 (-0.069; -0.027), P = 6.8 × 10-6], and cigarette smoking [β (95% CI) = 0.040 (0.016 – 11 

0.065), P = 1.3 × 10-3]. 12 

CAD-PRS and cardiovascular mortality 13 

Considering the strong correlation between the CAD-PRS and CAD risk factors (e.g., blood pressure, 14 

serum lipid profiles), we hypothesized that CAD-PRS reflects the severity of the genetic background for 15 

CAD development, and as a result, the individuals who have a high CAD-PRS will have a poor prognosis. 16 

To test this hypothesis, we assessed the impact of the CAD-PRS on mortality in long-term follow-up data. 17 

As illustrated in Fig. 4b, individuals with high CAD-PRS showed significantly increased mortality from 18 

diseases classified as circulatory system-related [International Statistical Classification of Diseases 19 

(ICD)10-I, HR for increasing the CAD-PRS by 1 standard deviation (95% CI) = 1.14 (1.09 – 1.20), P = 4.4 20 

× 10-7, Supplementary Fig. 14, Supplementary Table 14]. Of note, this association was highly specific to 21 

circulatory diseases, and other causes of death were not associated with the CAD-PRS. We found 22 

significant association between CAD-PRS and all-cause mortality [HR (95% CI) = 1.05 (1.02 – 1.07), P = 23 

3.4 × 10-4], but, when we excluded ICD10-I disease from all-cause mortality, the significance was 24 

diminished [HR (95% CI) = 1.02 (0.99 – 1.05), P = 0.183]. Furthermore, we divided individuals who died 25 

from ICD10-I into three sub-categories: ischemic heart disease (ICD-10 I21-I25), congestive heart failure 26 

(ICD-10 I50), and stroke (ICD-10 I60-I69). Two of them showed significant associations with CAD-PRS 27 

(i.e., HR (95% CI) = 1.20 (1.07 – 1.34), P = 1.6 × 10-3 for ischemic heart disease, HR (95% CI) = 1.22 28 
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(1.08 – 1.37), P = 1.8 × 10-3 for congestive heart failure, HR (95% CI) = 1.06 (0.96 – 1.16), P = 0.25 for 1 

stroke, Fig. 4c, Supplementary Table 14). 2 

Genetic basis of CAD-PRS-associated traits 3 

Finally, to assess the related loci of these CAD-PRS associated traits, we performed association analyses 4 

for the 176 lead variants detected in the transethnic meta-analysis and the 13 CAD-PRS-associated traits in 5 

the BBJ dataset. Ninety-seven variant-phenotype pairs showed Bonferroni-corrected significance (P < 6 

0.05/2,288, Supplementary Fig. 15, Supplementary Table 15). Serum TC level was the most frequently 7 

associated trait (18 associations) and the directions of allelic effect (CAD-risk and TC-increasing) were 8 

completely concordant (18/18). To further characterize the relationships between the CAD-associated loci 9 

and pleiotropic effects on CAD risk factors, we performed unsupervised clustering for the Z-value matrix 10 

of these variants, revealing distinct functional clusters (Supplementary Fig. 16). The loci with positive 11 

impacts on serum TC or LDLC levels segregated in Cluster 1. This cluster contains well-characterized loci 12 

associated with serum lipid profiles, exemplified by PCSK9, APOB, HMGCR, and LDLR. Cluster 2 13 

harbours the loci associated with glycaemic traits. The loci in Cluster 3 positively impact on WBCs; the 14 

9p21 (CDKN2B-AS1) locus is included in this cluster. The loci in cluster 4 positively impact serum 15 

triglyceride levels and negatively impact HDLC levels; this cluster also contains APOA5 and LPL loci, 16 

which are crucial genes for lipoprotein metabolism. Cluster 5 includes lead variants that affect BMI. 17 

Cluster 6, the second largest cluster, contains loci associated with blood pressure. 18 

Discussion 19 

We performed a large-scale CAD GWAS in the Japanese population in combination with whole-genome 20 

sequencing, transethnic meta-analysis, and analyses of various types of biobank-based datasets, including 21 

clinical phenotypes and long-term follow-up data. In addition to discovering 46 novel loci, we confirmed 22 

the clinical relevance of the CAD-PRS to survival prediction and its association with various CAD-23 

associated phenotypes. 24 

 The use of a population- and disease-specific reference haplotypes improved the imputation 25 

quality and enabled assessments of very rare variants with a high impact36–38. In the current study, we 26 
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found significant associations between a loss-of-function variant in LDLR and a high OR for CAD. This 1 

variant was not even found in the large-scale sequencing database (gnomAD) that included a substantial 2 

number of individuals of East Asian ancestry. In addition, such disease-relevant rare variants identified in 3 

this study are highly population specific (Supplementary table 8). These findings warrant further effort for 4 

sequencing of diseased individuals in diverse populations to explore disease mechanisms and molecular 5 

targets. Although the contribution of these rare and very rare variants to the total disease heritability is 6 

small, accurate information on the effects of these variants is essential to provide better medical advice or 7 

genetic counselling for the carriers. Therefore, continuous efforts should be devoted to research on the 8 

behaviour and the impact of such rare variants in the population. 9 

 In addition to these population-specific rare variants, we found 176 genome-wide associated loci 10 

for CAD including 43 novel loci in the transethnic meta-analysis. The allelic effects of these lead variants 11 

showed almost the same directionality between our Japanese GWAS and previously reported European 12 

GWAS. This result coincides with previous findings that allelic effects of complex diseases or traits are 13 

shared between individuals of East Asian and European descent19,20. Moreover, we observed that a large 14 

proportion of variants with nominal significance showed directional consistency. This shared allelic effect 15 

enabled us to derive a CAD-PRS from a transethnic meta-analysis for Japanese, which outperformed those 16 

derived from either Japanese or European GWAS results. Recently, it was reported that a PRS derived 17 

from a specific ethnic group could not achieve the same performance with other ethnic groups39. Before 18 

the implementation of PRS in clinical practice or public health policies, it is essential to develop PRS that 19 

are impartial and applicable to diverse populations. Therefore, it is crucial to develop a reliable method to 20 

share GWAS results between different ethnic groups effectively. Our results indicate that a transethnic 21 

meta-analysis could assist in the extrapolation of existing data that was obtained with a different ancestry.  22 

 In the phenome-wide analysis, we found significant dose-dependent relationships between the 23 

CAD-PRS and 13 CAD-relevant traits. This result suggests that the CAD-PRS not only distinguishes case-24 

control status as a binary trait but also reflects the severity of the genetic background of CAD. Supporting 25 

this hypothesis, survival analysis revealed tight relationships between the CAD-PRS and mortality in long-26 

term follow-up data. These observations support the feasibility of polygenic risk stratification in non-27 
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European populations, especially utilizing the data from European populations, and this warrants further 1 

follow-up study. 2 

In conclusion, our large-scale genetic analysis allowed us to revise the genetic architecture of 3 

CAD and revealed 46 previously unreported loci associated with CAD susceptibility. The transethnic 4 

analysis also significantly improved the performance of the CAD-PRS compared to that of population-5 

specific ones. Moreover, biobank-based phenome-wide analysis and survival analysis revealed the 6 

behaviour of CAD-PRS in clinical settings through the correlation with clinical risk factors and survival 7 

implications. These data provide a fundamental resource for future research, and the clinical 8 

implementation of CAD genetics for precision medicine. 9 

URLs. BioBank Japan, https://biobankjp.org; Nagahama cohort, http://zeroji-cohort.com; JPHC, 10 

https://epi.ncc.go.jp; J-MICC, http://www.jmicc.com; CARDIoGRAMplusC4D, 11 

http://www.cardiogramplusc4d.org; Cardiovascular Disease Knowledge portal; http://www.broadcvdi.org; 12 

UK Biobank, http://www.ukbiobank.ac.uk; HapMap project, http://hapmap.ncbi.nlm.nih.gov; 1000 13 

Genomes Project, http://www.1000genomes.org; gnomAD, https://gnomad.broadinstitute.org; ClinVar, 14 

https://www.ncbi.nlm.nih.gov/clinvar; LDSC, https://github.com/bulik/ldsc/; Eagle, 15 

https://data.broadinstitute.org/alkesgroup/Eagle; Minimac3, https://genome.sph.umich.edu/wiki/Minimac3; 16 

PLINK, https://www.cog-genomics.org/plink/1.9; METASOFT, http://genetics.cs.ucla.edu/meta; 17 

ANNOVAR, http://annovar.openbioinformatics.org; LocusZoom, http://locuszoom.sph.umich.edu; NBDC 18 

Human Database, https://humandbs.biosciencedbc.jp.  19 
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Online Methods 1 

Subjects. Biobank Japan (BBJ)40,41 is a hospital-based Japanese national biobank project including data of 2 

approximately 200,000 patients enrolled between 2003 and 2007. Participants were recruited at 12 medical 3 

institutes throughout Japan (Osaka Medical Center for Cancer and Cardiovascular Diseases, the Cancer 4 

Institute Hospital of Japanese Foundation for Cancer Research, Juntendo University, Tokyo Metropolitan 5 

Geriatric Hospital, Nippon Medical School, Nihon University School of Medicine, Iwate Medical 6 

University, Tokushukai Hospitals, Shiga University of Medical Science, Fukujuji Hospital, National 7 

Hospital Organization Osaka National Hospital, and Iizuka Hospital). The Nagahama study is a 8 

community-based cohort study, conducted in Shiga, Japan. Participants were recruited from the general 9 

population aged 30 – 74 years in Nagahama city from 2008 to 2010. The Japan Public Health Center-based 10 

Prospective Study (JPHC)42 is an ongoing community-based prospective study conducted in 11 public 11 

health center areas nationwide since 1990. The JPHC enrolled residents aged 40 – 69 years. Japan Multi-12 

Institutional Collaborative Cohort (J-MICC) Study, community dwellers aged 35 – 69 years were recruited 13 

between 2005 and 2013 in 13 study areas throughout Japan. The Osaka Acute Coronary Insufficiency 14 

Study (OACIS) is a hospital-based registry in which patients with acute myocardial infarction were 15 

enrolled at Osaka University and 24 collaborating hospitals in the Osaka-Hyogo area from 1998 to 2014. 16 

In the Informed consent was obtained from all participants in each study. Our study was approved by the 17 

relevant ethical committees at each facility. 18 

Whole-genome sequencing, quality control, and construction of reference panels. We sequenced 19 

1,782 samples from patients with early-onset CAD (cases) and 3,148 controls. Whole-genome sequencing 20 

was performed on the HiSeqX5 platform aiming at a 15 × depth, using 2 × 150-bp paired-end reads. All 21 

case samples were obtained from the BBJ cohort (n = 1,782), and control samples were obtained from the 22 

BBJ (n = 1,007) or Nagahama (n = 2,141) cohort. Sequenced data were processed using Picard and aligned 23 

to the hs37d5 reference genome in the BBJ cohort and to hg19 in the Nagahama cohort using the Burrows-24 

Wheeler algorithm. Genotypes of the samples were called individually in each centre using the 25 

HaplotypeCaller according to Genome Analysis Toolkit best practice for germline SNPs and indels. Per-26 

sample GVCF genotype data were merged and jointly called using GenotypeGVCFs. We defined 27 

exclusion filters for genotypes as follows: (1) filtered depth (DP) < 5 and (2) quality of the assigned 28 
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genotype (GQ) < 20. We set these genotypes as missing and excluded variants with call rates < 90% before 1 

variant quality score recalibration (VQSR). After VQSR filtering, sample quality control was performed 2 

by excluding samples with excess heterozygosity, excess singletons, and closely related samples estimated 3 

based on identity by states (PIHAT > 0.2). Principal component analysis restricted samples in the Japanese 4 

mainland cluster. After excluding these samples, 1,781 CAD cases and 2,636 controls remained. Then 5 

variant quality control was performed excluding variants (1) with more than 5% missing data, (2) with a 6 

Hardy Weinberg equilibrium P-value < 1 × 10-6, (3) with an allele frequency difference in control samples 7 

between data processing centres (BBJ and Nagahama cohort, Fisher’s exact test P < 1 × 10-6), (4) in the 8 

low complexity region, and (5) overlapping with insertions or deletions. After these procedures, we 9 

performed case control association analysis using genotypes in whole genome sequence data, and 10 

confirmed that the variant quality was well controlled (Supplementary Fig. 17). To construct the reference 11 

panel, we excluded singletons from the quality-controlled whole-genome sequencing data, and then 12 

haplotype phasing was performed using Eagle (v2.4.1)43. Phased VCFs were transformed into m3vcf 13 

format using minimac3 (v2.0.1)44. For comparison purposes, we obtained genotypes from the 1000 14 

Genomes Project phase 3 (version 5). We then constructed the reference panel under the same pipeline for 15 

all subjects (n = 2,504) and for East Asian subjects (n = 504) separately. 16 

Haplotype phasing and imputation of case-control samples. The subjects included in the GWAS were 17 

genotyped using the HumanOmniExpressExome platform (Illumina) or in combination with 18 

HumanOmniExpress and HumanExomeBeadChip (Illumina). For variant quality control, we excluded 19 

variants with (1) call rates < 99%, (2) Hardy Weinberg Equilibrium P-values < 1.0 × 10-6, and (3) 20 

heterozygous counts less than five. After exclusion of these variants, we performed pre-phasing using 21 

Eagle. Phased haplotypes were imputed to the reference panels by minimac344. For evaluation of the 22 

imputation quality, we created a phased genotype dataset comprised only of the OmniExpress13 array, 23 

imputed up to the 1KGEAS, 1KGALL, and BBJCAD panels. After imputation, we compared the imputed 24 

dosage and genotypes directly determined by the exome array. Correlations were assessed by Pearson’s 25 

correlation coefficients. For all downstream analyses, we excluded variants with R2 < 0.3. Genotyped or 26 

imputed variants were annotated by ANNOVAR (Build 2017 Jul 745), or the ClinVar database downloaded 27 

4 February 2019. 28 
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Phenotype. CAD was defined as a composite of stable angina, unstable angina, and myocardial infarction, 1 

which were determined by a physician upon study inclusion. The demographic features of the case-control 2 

cohort are provided in Supplementary Table 16. The quantitative trait data were obtained from medical 3 

records. Quantitative traits were normalized and adjusted as described below. Before normalization, we 4 

excluded samples from patients younger than 18 years and using the phenotype-specific criteria provided 5 

in Supplementary Table 17. We then corrected the effect of medication as follows. For individuals taking 6 

cholesterol-lowering drugs, TC and LDLC levels were corrected by dividing by 0.7 as previously 7 

reported46,47. For individuals taking antihypertensive drugs, 15 mmHg was added to the SBP and 10 8 

mmHg to the diastolic blood pressure readings48. We next constructed a linear model for these phenotypes 9 

with sex, age, age2, the top 10 principal components and disease status. For WBC and C-reactive protein 10 

(CRP), smoking status was also introduced to the model. Using these models, we computed the residuals 11 

of the phenotype for each individual. The residuals were normalized by inverse-rank normalization and 12 

used as continuous variables49. Samples with excess heterozygosity, excess missing genotypes, a non-13 

Japanese outlier identified by principal component analysis, and closely related samples estimated based 14 

on identity by states (PIHAT > 0.2) were excluded from the case-control or quantitative phenotype 15 

association studies. 16 

GWAS. The case-control association analysis was performed by logistic regression, implemented in 17 

PLINK250. Sex, age, age2, and the top 10 principal components were included in the model as covariates. 18 

We tested 19,707,525 variants with a minor allele frequency (MAF) ≥ 0.02% in case-control population, 19 

because our reference panel contained almost ten thousand haplotypes and variants with minor allele 20 

counts ≥ 2 (0.02%). The genome-wide significance threshold was set at P < 5 × 10-8 for variants with MAF 21 

≥ 1%, and P < 3.93 × 10-9 (0.05/12,710,563) for those with MAF < 1% (number of variants with MAF < 22 

1% = 12,710,563). To define a locus, we created a set of genomic ranges adding 500 kb bilaterally for all 23 

variants with genome-wide significance, and then merged overlapping ranges. In the MHC region 24 

(chromosome 6: 25,000,000–35,000,000 bp), we added 1 Mb to the signal bilaterally. Previously reported 25 

loci were also created in the same manner based on the curated top variants. Significant loci without 26 

overlap and a lead variant not in LD (<0.10) in both the East Asian or European population with 27 

previously reported loci were considered novel. LD was estimated using genotypes of the 1KG dataset. For 28 
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quantitative traits, we performed linear regression analysis implemented in PLINK2 for normalized 1 

phenotypes as described above. 2 

LD score regression and heritability estimation. We performed LD score regression with ldsc software 3 

to estimate bias from population stratification and explained heritability24. We used the 1KG EAS 4 

population as the reference LD panel and included only variants present in HapMap3 SNPs. For the 5 

calculation of liability scale heritability, we assumed that the CAD prevalence in the Japanese population 6 

is 0.8% based on a Japanese government report published in 2009 (https://www.mhlw.go.jp/). 7 

Stepwise conditional analysis. To identify statistically independent signals in the loci, we performed 8 

sample-level stepwise conditional analysis for each genome-wide significant locus defined as denoted 9 

above. In the first step, we added the dosage of the lead variant to the covariates and performed logistic 10 

regression for all variants in the locus. If we found a locus-wide significant association (P < 1 × 10-5), we 11 

additionally introduced the dosage of the most significant variant to the covariates. This procedure was 12 

repeated until none of the variants showed locus-wide significance. 13 

Meta-analysis. We obtained summary statistics for the European CAD-GWAS from the website of the 14 

CARDIoGRAM plus C4D consortiums (http://www.cardiogramplusc4d.org/data-downloads/)7 and online 15 

supplementation of a previous report (https://data.mendeley.com/datasets/2zdd47c94h/1)9. We aligned the 16 

β and allele frequency to the alternate allele of hg19 and then merged only SNPs with an MAF ≥ 1% in all 17 

the summary statistics. The transethnic meta-analysis was performed using MANTRA(v2)30 and genome-18 

wide significance was set at log10 BF > 6 according to a previous simulation result31. We excluded log10 19 

BF for heterogeneity > 6. For PRS derivation, β and P-values were calculated by fixed- and random-effects 20 

meta-analyses using METASOFT (v2)51. 21 

Estimation of allelic concordance. To obtain LD-independent variant sets at various significance levels, 22 

we performed P-value thresholding for each P-value threshold from the summary statistics obtained from 23 

the fixed-effect transethnic meta-analysis and random-effect transethnic meta-analyses. For these variant 24 

sets, we calculated the Pearson’s correlation coefficient of the β between the European study and Japanese 25 

studies. The 1KG European population was used as the LD reference and the LD threshold was fixed at 0.8. 26 
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Credible set analysis. To construct sets of variants that likely include causal variants in each significant 1 

locus identified by the transethnic meta-analysis, we performed a credible set analysis. For each genome-2 

wide associated locus, we calculated the PPA (π)52 for all variants as follows:  3 

 4 

Here, λ denotes the BF for variant j, and k denotes all of the variants included in the locus. We listed the 5 

variants in order of decreasing PPA, and then constructed the 99% credible set including variants from the 6 

top PPA until the cumulative PPA reached 0.99. For comparison, we performed the European meta-7 

analysis using the C4D and the UKBB datasets (referred to as the European analysis). 8 

PRS. We derived the PRS by the P-value thresholding (P/T) method using summary statistics from the 1) 9 

the Japanese GWAS with MAF > 0.01, 2) the transethnic meta-analysis of the fixed-effect model, and 3) 10 

the mixed-effect model. We used the P-value thresholds 1.0, 0.5, 0.1, 0.05, 0.01, 1× 10-3, 5 × 10-4, 5 × 10-6, 11 

5 × 10-8, and R2 thresholds 0.2, 0.4, 0.6, and 0.8. Pruning and thresholding procedure was performed by 12 

PLINK software version 1.90b3.37. Individual risk scores were computed with derived weights in 13 

independent case-control cohorts (case = 1,827, control = 9,172) by multiplying the genotype dosage and 14 

corresponding weight using PLINK2 software. To assess the performance of the PRS, we calculated the 15 

Nagelkerke’s R2, the AUC values and OR using a logistic regression model adjusted by age and sex. OR 16 

indicates the ratio of disease prevalence in the top decile to that in the bottom decile. For a comparison of 17 

AUC values, we performed DeLong’s test implemented in the pROC package for R. The previously 18 

derived PRS from the European study16 was downloaded from Cardiovascular Disease Knowledge Portal 19 

(http://www.broadcvdi.org).  20 

Survival analysis. For survival analysis, we obtained survival follow-up data with the cause of death 21 

under the ICD-10 code for 132,737 individuals from the BBJ project. Data collection and feasibility were 22 

reported previously40,41. Briefly, survival status was collected from medical records or resident card. Then 23 

we obtained vital statistics from the Statistics and Information Department of Ministry of Health, Labor 24 

and Welfare in Japan, and identified the cause of death according to ICD-10. The follow-up rate was 97% 25 

and the median follow-up period was 7.7 years. We divided the cause of death based on ICD-10 26 
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classifications and excluded categories with fewer than 100 events. HRs and associated P-values were 1 

calculated for genotype dosage or PRS by the proportional hazard model adjusting for sex, age, age2, top 2 

10 principal components, and disease status. Analyses were performed with the R package survival, and 3 

survival curves were estimated using the R package survminer with modification. 4 

PRS associated phenotypes. For clinical evaluation of the CAD-PRS, we randomly split and withheld 1/3 5 

of the control samples. Using the remaining control samples and all case samples, we re-performed the 6 

Japanese GWAS, transethnic meta-analysis, and PRS derivation (Supplementary Fig. 1c). Using the 7 

derived model, we calculated the PRS for the withheld control samples, and assessed relationships between 8 

the CAD-PRS and clinical indices including 32 numerical clinical traits and two binary lifestyle traits (i.e., 9 

cigarette smoking and alcohol drinking). For the numerical traits, we calculated Spearman’s correlation 10 

coefficients, associated confidence intervals, and P-values. For the binomial traits, we performed logistic 11 

regression adjusted by sex, age, age2, top ten principal components, and disease status. We set the 12 

significance threshold at P < 0.05/34. 13 

Data availability. Summary statistics of the Japanese GWAS will be publically available in National 14 

Bioscience Database Center (research ID hum0014, https://humandbs.biosciencedbc.jp/). 15 

  16 
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Table 1 | Novel loci identified by Japanese GWAS 
 

CHR POS 
Locus 

REF ALT rsID Gene Annotation AAF OR 
95%CI 

P 
From To Lower Upper 

2 230,007,146 229,503,354 230,514,441 C T rs62190384 PID1 Intronic 0.49 0.95 0.93 0.96 9.6E-09 

5 4,094,165 3,523,315 4,594,165 G T rs10041378 IRX1,LINC02114 Intergenic 0.24 0.93 0.91 0.96 5.6E-09 

6 74,415,868 73,915,867 74,915,868 A C rs56171536 CD109 Intronic 0.05 1.13 1.08 1.18 4.2E-08 

8 69,431,711 68,931,710 69,931,711 G A rs2380472 C8orf34 Intronic 0.13 0.92 0.89 0.95 2.5E-08 

9 107,586,238 107,085,015 108,104,394 C A rs35093463 ABCA1 Intronic 0.36 1.06 1.04 1.08 3.5E-09 

11 203,235 0 738,058 A G rs73386640 BET1L 3´UTR 0.13 1.10 1.07 1.13 2.3E-10 

12 10,876,573 10,345,946 11,393,295 C A rs2607903 YBX3 Upstream 0.61 0.94 0.92 0.96 6.6E-10 

17 78,358,945 77,612,997 79,262,582 G A rs112735431 RNF213 Nonsynonymous SNV 0.01 1.61 1.46 1.78 2.3E-21 

18 20,009,691 19,509,602 20,509,691 T C rs9951447 CTAGE1,LOC101927571 Intergenic 0.57 1.06 1.04 1.08 4.7E-09 

Summary statistics of novel loci that reached genome-wide significance in the Japanese GWAS (25,892 cases and 142,336 controls). CHR, Chromosome; POS, position(hg19); 
REF, reference allele; ALT, alternate allele; rsID, reference SNP cluster ID; AAF, alternate allele frequency; OR, odds ratio; CI, confidence interval; UTR, untranslated region. 
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Table 2 | Novel loci identified by Transethnic meta-analysis 
 
CHR POS 

Locus 
REF ALT rsID Gene Annotation 

MANTRA Fixed effect 
From To Beta SE Log10 BF Beta SE P Q PQ 

1 114,448,389 113,926,000 114,950,964 C T rs11552449 DCLRE1B Nonsynonymous SNV 0.037 0.006 8.1 0.037 0.006 3.7E-10 0.2 8.9E-01 

1 218,827,855 218,317,531 219,358,746 T C rs1481345 MIR548F3 ncRNA Intronic -0.031 0.005 7.9 -0.031 0.005 4.7E-10 2.0 3.7E-01 

2 62,878,928 62,357,974 63,679,076 G C rs7420881 TMEM17, EHBP1 Intergenic 0.032 0.005 7.1 0.032 0.005 3.9E-09 0.5 7.7E-01 

2 65,499,468 64,982,115 66,030,347 G A rs72822411 ACTR2, SPRED2 Intergenic 0.036 0.006 6.9 0.036 0.006 6.1E-09 3.1 2.2E-01 

2 112,656,652 112,155,241 113,263,025 G A rs7604403 MERTK Intronic 0.034 0.006 7.2 0.034 0.006 3.5E-09 1.5 4.7E-01 

2 144,158,418 143,651,523 144,698,216 T C rs12469628 ARHGAP15 Intronic -0.040 0.006 9.3 -0.041 0.006 1.9E-11 1.2 5.5E-01 

2 163,110,536 162,610,535 163,610,536 A G rs2111485 FAP, IFIH1 Intergenic 0.029 0.005 6.2 0.029 0.005 3.7E-08 0.9 6.5E-01 

2 230,009,317 229,480,420 230,515,954 C T rs7566501 PID1 Intronic -0.035 0.005 10.5 -0.035 0.005 1.9E-12 7.2 2.7E-02 

3 69,820,782 69,302,901 70,409,425 T C rs12714757 MITF Intronic -0.036 0.006 8.4 -0.036 0.006 1.5E-10 2.2 3.3E-01 

4 56,316,979 55,816,978 56,816,979 T C rs11133381 CLOCK Intronic -0.028 0.005 6.0 -0.027 0.005 4.8E-08 2.1 3.6E-01 

4 73,420,634 72,919,494 73,984,862 G A rs13105983 ADAMTS3 Intronic -0.029 0.005 7.3 -0.029 0.005 2.8E-09 3.4 1.8E-01 

4 146,809,998 146,259,606 147,321,725 T G rs10006310 ZNF827 Intronic -0.029 0.005 7.2 -0.029 0.005 3.2E-09 1.0 6.0E-01 

4 186,692,853 186,190,488 187,193,134 T C rs7680806 SORBS2 Intronic 0.037 0.007 6.4 0.037 0.007 3.0E-08 4.9 8.4E-02 

5 4,023,730 3,506,098 4,600,989 C T rs548581 IRX1, LINC02114 Intergenic 0.022 0.005 9.2 0.022 0.005 1.6E-05 31.0 1.8E-07 

5 74,619,132 74,119,131 75,119,132 C T rs13354746 ANKRD31, HMGCR Intergenic 0.031 0.006 6.4 0.032 0.006 2.5E-08 1.5 4.7E-01 

6 90,314,917 89,814,916 90,829,895 A G rs9351209 ANKRD6 Intronic -0.029 0.005 6.4 -0.029 0.005 1.8E-08 3.4 1.8E-01 

6 149,714,790 149,153,791 150,244,924 G T rs2744427 TAB2 Intronic -0.036 0.007 6.3 -0.036 0.007 2.4E-08 3.0 2.3E-01 

7 35,286,471 34,769,624 35,802,478 C A rs4723406 TBX20 Intronic -0.033 0.005 8.8 -0.033 0.005 7.9E-11 0.7 7.0E-01 

7 56,122,058 55,622,057 56,622,058 A T rs6593297 CCT6A Intronic -0.031 0.005 7.0 -0.031 0.005 4.0E-09 0.3 8.5E-01 

8 25,064,984 24,561,806 25,564,984 G A rs9693598 DOCK5 Intronic -0.044 0.008 6.6 -0.044 0.008 1.6E-08 0.1 9.4E-01 

8 95,260,225 94,750,557 95,781,052 A G rs2623168 CDH17, GEM Intergenic 0.047 0.008 7.8 0.047 0.008 1.1E-09 6.7 3.5E-02 

8 102,832,405 102,313,394 103,395,016 C T rs13255004 NCALD Intronic 0.034 0.006 6.7 0.034 0.006 1.1E-08 3.8 1.5E-01 

9 107,586,238 107,085,015 108,104,394 C A rs35093463 ABCA1 Intronic 0.054 0.007 11.0 0.055 0.008 3.4E-13 2.3 3.2E-01 

10 74,682,633 73,808,317 75,191,035 T G rs11000448 OIT3 Intronic -0.053 0.008 8.8 -0.052 0.008 3.9E-11 2.4 3.0E-01 

10 102,075,479 101,575,478 102,575,479 G A rs603424 PKD2L1 Intronic 0.040 0.007 6.9 0.040 0.007 5.8E-09 0.0 9.9E-01 

11 224,845 0 738,058 G C rs73392700 SIRT3 Intronic 0.064 0.010 9.2 0.064 0.010 3.3E-11 6.5 4.0E-02 

11 32,441,377 31,875,668 32,941,377 C T rs7115190 WT1 Intronic 0.032 0.005 7.5 0.032 0.005 1.6E-09 1.0 6.1E-01 

11 61,277,698 60,777,697 61,778,918 A G rs11230728 LRRC10B 3´UTR -0.036 0.006 6.3 -0.036 0.006 3.6E-08 1.5 4.8E-01 

11 118,950,217 118,428,252 119,450,217 C G rs1307145 VPS11 Intronic 0.031 0.005 6.8 0.031 0.005 7.2E-09 2.5 2.8E-01 

11 120,198,093 119,698,092 120,847,715 G A rs1893261 TMEM136 Synonymous SNV 0.028 0.005 6.3 0.028 0.005 3.1E-08 2.4 3.0E-01 

12 10,876,573 10,376,572 11,392,139 C A rs2607903 YBX3 Upstream -0.040 0.007 7.2 -0.040 0.007 4.8E-09 9.3 9.7E-03 

13 98,859,335 98,357,228 99,366,535 G A rs9556903 FARP1 Intronic -0.044 0.007 8.8 -0.044 0.007 7.9E-11 6.2 4.5E-02 

14 103,900,481 103,349,714 104,484,616 A G rs35224956 MARK3 Intronic 0.031 0.005 7.2 0.031 0.005 3.2E-09 0.7 7.2E-01 

15 74,223,716 73,721,297 74,782,343 G C rs28522673 LOXL1 Intronic 0.044 0.006 9.4 0.044 0.007 1.8E-11 4.5 1.1E-01 

15 81,377,717 80,834,756 81,898,791 C A rs1879454 TLNRD1, CFAP161 Intergenic -0.036 0.006 8.1 -0.036 0.006 4.5E-10 3.7 1.6E-01 

16 1,584,618 1,084,617 2,084,866 T C rs2076438 IFT140, TMEM204 Intronic 0.028 0.005 6.2 0.028 0.005 3.1E-08 0.9 6.4E-01 

16 15,917,838 15,412,982 16,417,838 C G rs216158 MYH11 Intronic -0.029 0.005 6.1 -0.029 0.005 3.9E-08 0.1 9.6E-01 

16 86,699,163 86,198,030 87,216,058 A G rs12444314 FOXL1, LINC02189 Intergenic 0.032 0.006 7.2 0.032 0.005 3.6E-09 0.2 9.1E-01 

17 49,308,707 48,808,706 49,808,707 C T rs4794213 MBTD1 Intronic -0.028 0.005 6.1 -0.028 0.005 3.6E-08 0.3 8.7E-01 

17 66,469,400 65,953,304 66,970,892 T G rs2952286 PRKAR1A Intronic 0.035 0.006 7.7 0.035 0.006 5.3E-10 3.6 1.6E-01 

18 19,998,810 19,498,809 20,584,756 G C rs948386 CTAGE1 Upstream 0.036 0.005 10.8 0.036 0.005 8.1E-13 5.3 7.2E-02 

20 62,709,274 62,190,682 63,025,520 G A rs12625329 RGS19 Intronic -0.031 0.005 7.4 -0.031 0.005 2.1E-09 2.8 2.5E-01 

22 30,669,883 30,167,276 31,169,883 G A rs6006426 OSM, CASTOR1 Intergenic 0.030 0.005 8.0 0.031 0.005 4.1E-10 5.7 5.7E-02 

Summary statistics of novel loci that reached genome-wide significance in the transethnic meta-analysis (121,234 cases and 527,824 controls). CHR, Chromosome; POS, 
position(hg19); REF, reference allele; ALT, alternate allele; rsID, reference SNP cluster ID; SE, standard error; BF, Bayes factor; Q, Cochran's Q value; PQ, P value for 
Chochran's Q test; SNV, single nucleotide variant; ncRNA, non-coding RNA. 
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Fig. 1 | Distinct signals in CAD development and serum TC levels. a, The odds ratio for CAD 

development of the 73 independent signals in Japanese GWAS (25,892 cases, 142,336 controls) are plotted 

against the minor allele frequency. Rare variants (MAF < 0.05) are plotted in blue, and others in grey. b, 

Beta values for serum TC levels estimated by the linear regression model (n = 134,314) are plotted against 

beta values for CAD development. Variants showing significant associations for serum TC levels are 

plotted in orange. CAD, coronary artery disease; TC, total cholesterol, GWAS, genome-wide association 

study; MAF, minor allele frequency; OR, odds ratio. 
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Fig. 2 | Impact of the deleterious variant in FH genes in CAD subtypes, age of onset of AMI, and 

long-term cardiovascular mortality. a, Each point indicates the odds ratio for developing ACS with the 

error bar indicating its 95% confidence intervals for alternate allele dosage of deleterious variants for each 

gene. Individuals with SAP were used as controls. b, Each point indicates effect sizes for the onset age of 

AMI of alternate allele dosage with the error bar indicating the 95% confidence interval. c, Adjusted 

curves for mortality from diseases of the circulatory system (ICD10.I) stratified by carrier status of 

deleterious variants in established FH genes (rs564427867 in PCSK9; rs13306206 in APOB; rs879255211, 

rs746959386, and rs778408161 in LDLR) are shown. ACS, acute coronary syndrome; SAP, stable angina 

pectoris; AMI, acute myocardial infarction; FH, familial hypercholesterolaemia. 
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Fig. 3 | Manhattan plots for transethnic meta-analysis. The results of the case-control association study 

in the transethnic meta-analysis (CAD case 121,234, control 527,824) are shown. The log10BF on the y-

axes are plotted against the genomic position (hg19) on the x-axes. Variants in 43 novel and 133 

previously reported loci are presented in orange and blue, respectively. Dashed lines indicate genome wide 

significant thresholds (Log10BF = 6). BF, Bayes Factor. 
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Fig. 4 | Correlation between transethnic CAD-PRS and clinical indices. a, Upper panel; Each point 

indicates Spearman’s correlation coefficient between CAD-PRS and clinical indices. Error bars indicates 

95% confidence intervals. Lower panel; Each point indicates a beta coefficient for 1SD increase in CAD-

PRS estimated by the logistic regression model. Significant correlations or associations are shown in 

orange (P < 0.05/34). b, Adjusted curves for mortality from ICD10.I diseases estimated by Cox’s 

proportional hazard model are shown. Individuals are stratified into high PRS (top 20 percentile, orange), 

low PRS (bottom 20 percentile, blue), and intermediate PRS (others, black). c, Each point indicates a 

hazard ratio of 1SD increase in CAD-PRS for mortality from ICD10.I subtypes. Error bars represents the 

95% confidence interval. PRS, polygenic risk score; ICD10, International Statistical Classification of 

Diseases and Related Health Problems 10th Revision; IHD, ischemic heart disease; CHF, congestive heart 

failure; SD, standard deviation. Abbreviations of other phenotypes are defined in Supplementary Table 17. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/827550doi: bioRxiv preprint 

https://doi.org/10.1101/827550

