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Abstract 
Deep learning models have been applied on various tissues in order to recognize malignancies. However, 

these models focus on relatively narrow tissue context or well-defined pathologies. Here, instead of 

focusing on pathologies, we introduce models characterizing the diversity of normal tissues. We obtained 

1,690 slides with rat tissue samples from the control groups of six preclinical toxicology studies, on which 

tissue regions were outlined and annotated by pathologists into 46 different tissue classes. From these 

annotated regions, we sampled small patches of 224 x 224 pixels at six different levels of magnification. 

Using four studies as training set and two studies as test set, we trained VGG-16, ResNet-50, and 

Inception-v3 networks separately at each of these magnification levels. Among these models, Inception-

v3 consistently outperformed the other networks and attained accuracies up to 83.4% (top-3 accuracy: 

96.3%). Further analysis showed that most tissue confusions occurred within clusters of histologically 

similar tissues. Investigation of the embedding layer using the UMAP method revealed not only 

pronounced clusters corresponding to the individual tissues, but also subclusters corresponding to 

histologically meaningful structures that had neither been annotated nor trained for. This suggests that 

the histological representation learned by the normal histology network could also be used to flag 

abnormal tissue as outliers in the embedding space without a need to explicitly train for specific types of 

abnormalities. Finally, we found that models trained on rat tissues can be used on non-human primate 

and minipig tissues with minimal retraining. 

Significance statement 
Like many other scientific disciplines, histopathology has been profoundly impacted by recent advances 

in machine learning with deep neural networks. In this field, most deep learning models reported in the 

literature are trained on pathologies in specific tissues/contexts. Here, we aim to establish a model of 

normal tissues as a foundation for future models of histopathology. We build models that are specific to 

histopathology images and we show that their embeddings are better feature vectors for describing the 

underlying images than those of off-the shelf CNN models. Therefore, our models could be useful for 

transfer learning to improve the accuracy of other histopathology models. 
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Introduction 
After breakthrough results in the ImageNet challenge 2012 (Krizhevsky et al., 2012) and subsequent 

challenges, deep neural networks have led to a radical transformation of many scientific disciplines, 

including medicine. In particular, deep learning-based diagnostics have achieved physician-level accuracy 

across a wide range of diagnostic tasks (Esteva et al., 2019; Liu et al., 2019), and the potential of deep 

learning to transform health care has been broadly recognized by regulatory agencies as well as in the 

literature (Hinton, 2018; Naylor, 2018). 

The deep learning transformation of computational pathology (Litjens et al., 2017) faces specific 

challenges posed by whole-slide imaging (WSI) of tissue sections stained with hematoxylin and eosin 

(H&E) including large image sizes, color variation and other artefacts, and more importantly the multiscale 

nature of the data – with various emergent structures from the nuclei to the organ level (Komura and 

Ishikawa, 2018). Moreover, obtaining annotations is more challenging for histopathology than other 

disciplines: it is highly time-consuming and requires input from trained pathologists.  

To date, the bulk of machine learning approaches to digital pathology have focused on detection and 

segmentation of histologic primitives such as nuclear size and shape, grading of lesions (Campanella et 

al., 2019), prediction of clinical outcomes, and linking histopathology with other data types (Komura and 

Ishikawa, 2018; Madabhushi and Lee, 2016). Recent community challenges aimed at detecting lymph 

node metastases (CAMELYON16: Bandi et al., 2019; CAMELYON 17: Ehteshami Bejnordi et al., 2017), 

assessing tumor proliferation in breast cancer (TUPAC16: Veta et al., 2019), or detecting and classifying 

lung cancer (ACDC-LungHP, 2019). Other recent work has explored the prediction of genetic alterations 

from H&E-stained slides (Coudray et al., 2018; Kather et al., 2019). 

All these applications operate in a disease-specific context, which presupposes a histopathological 

diagnosis to be established prior to submitting slides to the application. That is, the morphological 

features learned by such models are optimized for the differentiation of particular outcomes given the 

initial diagnosis. Therefore, it is difficult to imagine how such models could contribute to applications 

aiming at assisting the diagnosis, i.e. identify key diagnostic features from a non-predetermined 

histopathological slide. On the contrary, a model based on features that differentiate all possible tissue 

characteristics pertaining to identifying any type of tissue or histological lesion would provide invaluable 

support for the development of applications assisting pathological diagnosis. The mere automated 

identification of samples devoid of lesion could tremendously improve the efficiency and quality of 

pathology evaluation in areas of clinical practice providing screening for lesions, but also in preclinical 

development of medicines, where pathology is pivotal for the assessment of drug safety.  

Our work focused on the development of a holistic model of histology, which, from our perspective, will 

lay the foundation of more complex models suitable for assistance to diagnosis. Obtaining a complete and 

homogeneous set of normal human tissues through autopsies is hindered by several factors, including the 

necessary consents, the age of the patients, or the delays between death and collection. In contrast, 

preclinical toxicology studies comprise control animals which are not exposed to chemical compounds 

and where all organs are systematically collected. This immense collection of histological slides of normal 

animal tissues represents a significant opportunity to develop holistic tissue models. Moreover, the 

histological structure of the tissues is largely conserved between the species used in drug development 

and humans. 
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The three key contributions of this article are the following: 

Tissue recognition. First, we show that a comprehensive set of mammalian tissues can be recognized by 

standard convolutional neural networks (CNNs) trained on small patches extracted, at various 

magnifications, from H&E-stained WSI of rat tissue sections. The Inception-v3 network outperformed 

other architectures, with a patch-level test set accuracy of up to 83.4% (top-3 accuracy: 96.3%), and was 

therefore used for the subsequent analyses. 

Analysis of neural network embeddings. The penultimate layer of the Inception-v3 network can be 

considered an “embedding” of an input image patch in a high-dimensional vector space. We collected the 

embedding vectors for all patches from the rat test set and used nonlinear dimensionality reduction in 

order to visualize and interpret tissue topology in the two-dimensional plane. Patches from the same 

tissue formed one or more groups, often distinct from other tissues. Overlaps between groups often 

corresponded to similar histological structures present in more than one tissue. More in-depth 

exploration of the embeddings revealed that the network had learned a representation for histologically 

relevant substructures that had neither been annotated nor trained for. 

Cross-species predictions and transfer learning. Using control animals from studies in minipig and non-

human primates (NHP), we first show that the rat histology model is able to recognize some tissues in 

other species, but that overall tissue recognition does not generalize well across species. However, we 

then demonstrate that the rat histology model is a better starting point for new tasks in the histology 

domain than a generic ImageNet model. In particular, we show that it leads to improved accuracy with 

reduced amounts of required training data when developing a new model of NHP histology. We suggest 

that similar observations will hold true for other machine learning tasks in a histopathological context, for 

which our model might provide a suitable starting point. 

Results 

Tissue recognition 
Our primary objective was to assess the predictive performance of three standard neural network 

architectures, VGG-16 (Simonyan and Zisserman, 2015), Inception-v3 (Szegedy et al., 2016), and ResNet-

50 (He et al., 2016), at recognizing a comprehensive catalogue of 46 tissues at different magnifications. 

In addition, to assess how the models perform in complex situations, we have included samples 

corresponding either to anatomical morphological variations in the brain or along the gastrointestinal 

tract, or complex tissues such as the eye. 

The accuracy of tissue recognition was assessed using manually curated and annotated whole slide 

images (WSIs) from 46 normal rat tissues (Table 1) collected in six independent preclinical toxicology 

studies and split into training (4 studies; 1,183 slides) and test (2 studies; 507 slides) sets. Separate 

models were trained from patches extracted from the outlined tissues at different magnifications 

ranging from the scanned resolution (0.252 microns per pixel or mpp) to a 32-fold downsampling (8.064 

mpp). As the pixel size of the patches was kept constant across magnifications, the actual area sampled 

from the slide varied from 0.003 to 3.26 mm2, and hence also the amount of contextual information 

available on a patch. For each magnification, VGG-16, Inception-v3 and ResNet-50 networks – initialized 

on ImageNet – were trained on patches generated at the given magnification. During training, each 

patch was subjected to a random rotation and a random staining modulation according to the method 
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described in (Tellez et al., 2018). This sample augmentation aims to render the classifiers robust to 

changes in orientation and variations in staining. 

The accuracy of patch classification ranged from 55.1 to 83.4%, depending on magnification and 

architecture (Figure 1A). It was higher at low magnification, likely due to the higher amount of context 

available at higher mpp levels. At all magnification levels, Inception-v3 outperformed the other network 

architectures. The performance gap to VGG-16 was especially large, with 74.9% patch-accuracy at 8.064 

mpp compared to 81.4 and 83.4% for ResNet-50 and Inception-v3, respectively. Therefore, the 

Inception-v3-based models were chosen as the basis for all subsequent analyses. 

Given that the models were intentionally trained to differentiate morphologically similar tissues such as 

the different segments of the intestinal tract, the absolute accuracy of tissue prediction may not reflect 

fully the learning of histologically relevant high-level features. To explore this concept, the top-N 

accuracy was measured for models based on the Inception-v3 architecture. This metric considers a class 

prediction as correct if it is among the top N predictions (ranked by the probability assigned to the tissue 

classes by the network). At 8.064 mpp, these accuracies are 83.4% for top-1 (as reported above), 93.9% 

for top-2 and 96.3% for top-3 (Figure 1B). The performance gap between top-1 and top-2 was 

particularly large (10.5 percent points) but subsided between top-2 and -3 (2.4 percent points) and even 

lower for higher N.  

Beyond patch classification, we also investigated test set predictive performance at the region level by 

combining the predictions for all patches extracted from any given test set tissue outline using a 

majority vote (Figure 1C). This region-level test set accuracy was much higher than patch-level accuracy 

for 0.252 and 0.504 mpp, and it generally appeared almost constant across magnifications. Only at 8.064 

mpp was the region-level accuracy exceeded by patch-level accuracy. 

Patch-level sensitivity and positive predictive value (PPV) for individual tissues showed striking 

differences varying with magnification (Figure 1D). Unsurprisingly, the prediction of morphologically 

similar regions of the large intestine such as cecum (CE), colon (CO) and rectum (RE) showed low PPV 

and sensitivity at any magnification. The predictions for the femoro-tibial joint (JO) and bone (BON) had 

low PPV and sensitivity at 0.504 and 2.016 mpp but not at 8.064, probably as patches at this 

magnification provide a larger context with inclusion of bone and sternum. Interestingly, the predictions 

for parathyroid (PTG) had high PPV and sensitivity at high magnification (0.504 mpp) but while PPV 

remained high, the sensitivity dropped at 2.016 and further at 8.064 mpp. 

Confusion happened more often among histologically related types of tissues, where morphologies were 

shared at higher magnification (Supplementary Figures 1–3). Not surprisingly, regions of the large 

intestine (CE, CO, RE) and the small intestine (DM, JE, IL) were often confused with each other, either as 

a single group (0.504 mpp), or as two groups corresponding to the mid- and hindgut (2.032 mpp). As 

shown in Supplementary Figures 1–3, similar confusions occurred between spinal cord (SPC), brain (BR) 

and nerve (NE), or joint (JO), bone (BON) and skeletal muscle (SM), or between thyroid (TYD) and 

parathyroid gland (PTG).   

Analysis of neural network embeddings 
The embedding layer of the Inception-v3 network was explored through dimensionality reduction using 

Uniform Manifold Approximation and Projection (UMAP; McInnes et al., 2018). The UMAP projections 
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were calculated exclusively using the embedding vector; the information about the true tissue class of 

the patch was only used for coloring the plot. 

A distinct projection of the embedding vectors for all test set patches was generated for each 

magnification as the corresponding models were trained independently (Figures 2 A, D, G, J). Projections 

at all magnifications revealed groups corresponding to a large extent to true tissue classes. Groups were 

better separated at lower magnification (i.e. higher mpp). Projections from models trained at high 

magnification showed a central aggregate of unresolvable patches, the size of which decreased with 

increasing mpp. Starting from 1.008 mpp, adjacent groups corresponded to tissue classes with similar 

morphology. 

Many clusters were not compact when given a closer inspection, and showed subclusters variably 

interconnected depending on the magnification at which the embeddings were generated (Figures 2 B, 

E, H, K, N). These subclusters corresponded to histologically meaningful regions of the tissue. For 

example, patches corresponding to the adrenal gland (AG) were clustered in subgroups showing 

different morphologies (Figures 2 B, E, H). Further exploration of the morphology of these patches 

showed that they correspond to distinct regions of the adrenal gland, namely, the medulla and the 

cortex, and within the cortex to the zonae glomerulosa, fasciculata, and reticularis (Figures 2 C, F, I). 

Similar histologically meaningful clustering was observed for the eye, where patches corresponding to 

the retina, the cornea and the lens were clearly separated from each other (Figures 2 K, L), and for the 

brain (Figures 2 N, O), with separation of the cerebellum, hippocampus, cerebral cortex and spinal cord. 

The analysis of the embeddings also shed light onto magnification-dependent confusion between 

thyroid (TYD) and parathyroid (PTG), which are contiguous organs on histological sections. While at 

0.504 mpp, patches from TYD and PTG were well separated (Figure 3A), at 8.064 mpp, TYP and PTG 

overlapped (Figure 3C). At this magnification, the parathyroid gland represents only a small part of the 

patch. Moreover, some thyroid or parathyroid patches containing skeletal muscle at low magnification 

clustered away from the glandular patches, closer to the skeletal muscle tissue group.  

Cross-species predictions and transfer learning 
To assess generalizability, the Inception-v3 based rat model was then used – without any retraining – for 

cross-species prediction of novel datasets obtained from NHP and minipig which covered 21 (NHP) and 

36 (minipig) of the 46 tissues from the rat data set.  At 0.504 mpp, patch-level accuracy of the 

predictions was 34.6% (NHP) and 39.3% (minipig). At 2.016 mpp, accuracy increased to 39.3% (NHP) and 

45.2% (minipig). Finally, at 8.064 mpp, accuracy was 40.5% (NHP) and 42.0% (minipig). Many 

misclassifications corresponded to predicted tissues that were absent from the NHP or minipig datasets 

(Supplementary Figures 4 and 5). Aside from these, confusions among histologically similar tissues, as 

observed with the rat data, were also present. Some tissues – brain, liver, kidney, thymus, spleen, lymph 

node and thyroid gland – were recognizable at high accuracy in both NHP and minipig using the rat 

model, while other tissues – oesophagus, white fat, and tongue – were recognized well in only one 

species. 

Given this relatively poor performance at cross-species classification without retraining, we next 

explored a scenario that allowed for retraining in order to adapt to a novel species. In particular, our 

goal was to assess whether the rat histology model would be a better starting point for species 

adaptation than a generic ImageNet model. To this end, another independent study consisting of WSIs 
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from 12 NHPs was used for training, while the NHP test set was the same as in the previous cross-

species prediction without retraining. Two Inception-v3 networks were trained for each magnification: 

one initialized with ImageNet weights, and one with the rat model weights. In addition, to determine 

the amount of training data necessary to achieve reasonable accuracy, a series of smaller training sets 

(using slides from 1, 2, 3, and 4 NHPs, respectively) was constructed from the full NHP training set of 12 

animals. 

Patch-level accuracies (Figure 4) were 85.8% (0.504 mpp), 92.4% (2.016 mpp), and 93.9% (8.064 mpp) 

when using the full training dataset (N=12 NHPs). These accuracies were substantially higher than those 

observed on the rat dataset, as only 21 tissue classes were available for NHP, compared to the 46 tissue 

classes of the rat model, with some of the most difficult tissue classes missing. 

Importantly, as shown in Figure 4, when only limited NHP training data (1, 2, 3, or 4 NHPs) was made 

available, accuracies obtained by the NHP models initialized with the weights learned from the rat 

dataset were consistently higher than those obtained with the standard initialization via ImageNet. For 

instance, the rat-initialized model using samples from 2 NHPs attained an accuracy of 82.7% at 0.504 

mpp, whereas this same accuracy was only reached for the ImageNet-initialized model when using the 

full dataset of 12 NHPs (accuracy 83%). Likewise, at 2.016 mpp the ImageNet-initialized network 

required samples from 4 NHPs in order to achieve the same performance as the rat-initialized network 

with 1 NHP (86.3% versus 86.8%, respectively). The benefit of the rat-initialized models was less 

pronounced at 8.064 mpp. 

Discussion 
Tissue recognition 
We have shown that standard convolutional neural network architectures can be trained to recognize a 

comprehensive set of rat tissues at high accuracy across a broad range of magnifications. This even 

applied to some extent to subtle variations of histological structure, such as segments of the small 

(duodenum, jejunum and ileum) and large (caecum, colon and rectum) intestine, as well as to complex 

organs made of several tissue types (e.g. eye or joint), for which small patches extracted at high 

magnification are typically difficult to classify by a pathologist in the absence of larger context. This 

suggests that a whole tissue model could retain some specificity towards subtle histological features. 

In general, tissue prediction was increasingly reliable with decreasing magnification. This can be easily 

understood given that a 224 x 224 pixel patch exhibits only minimal context at high magnification (56 x 

56 microns at 0.252 mpp). With decreasing magnification, more structures are present on the patches, 

thus facilitating tissue recognition. However, small tissues such as the parathyroid gland represented an 

exception. While it is recognized with consistently high PPV (meaning that if it is predicted, the 

prediction is usually correct) at all magnifications, the sensitivity decreased with decreasing 

magnification. In this case, increasing the context is detrimental to the network’s recognition as other 

tissues occupy increasing amounts of space on a patch (see Figure 3C for a visual example). 

The majority of misclassifications were not due to unsystematic noise, but rather a result of confusions 

among histologically similar tissues. This was particularly prominent among segments of the large and 

small intestine, but also within the groups nerve, brain, spinal cord, and joint, bone, skeletal muscle, 

respectively (Supplementary Figures 1-3). For the latter group, the confusion is likely due to joint as a 
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tissue being subject to interpretation, with variable amounts of bone and skeletal muscle included in the 

manual outlines from which the patches are generated. Misclassification also occurred based on local 

histological similarity in some areas of the tissue regions such as between the periarteriolar lymphoid 

sheaths of the spleen, and the cortex of lymph nodes (not shown). Finally, the confusion between the 

contiguous thyroid and parathyroid glands illustrated the role of magnification as discussed above. 

For practical tissue type classification, prediction on the level of large tissue regions would be more 

relevant than on individual patches. The performance at the region level across magnifications was 

counter-intuitively constant compared to the patch-level. This may be due to predictions for patches 

with low mpp being more variable – and thus a majority vote being more impactful – than for patches 

with high mpp, which would be in line with well-known results from ensemble learning (Krogh, A. and 

Vedelsby, J., 1995). Our majority voting scheme can be considered a simple case of such an ensemble 

classifier.  

Data considerations 
The reason for basing our approach on normal animal tissues as opposed to human clinical samples is 

tissue quality. In order to build a comprehensive atlas of normal human histology, specimens would 

have to be taken at autopsy, when their histological quality is usually poor due to autolysis. 

Notwithstanding dedicated efforts such as the GTEx tissue collection, autolysis is still an impediment, 

with several tissues (e.g. pancreas, stomach, prostate) having a median grade of autolysis of 2.0 (data 

not shown). On the contrary, large collections of tissues of high histological quality are easier to collect 

at the necropsy of laboratory animals used for toxicology studies. Moreover, unlike clinical surgical 

specimens often resected at an advanced stage of disease, a large proportion of samples from 

preclinical toxicology studies contain elementary lesions at various stages in relatively pure forms. This 

material offers a unique opportunity for the development of holistic histology and histopathology 

models. 

A second data consideration is related to the substantial risks of overfitting or inadvertently introducing 

an undesired bias via the composition of the training set: In earlier stages of this work, due to limited 

amounts of available data, the split into training and test sets had been performed on the level of 

animals rather than studies. Under these conditions, test set accuracies were substantially higher than 

those reported here. However, as we obtained data from additional rat studies, we found that the 

predictive performance on these new datasets was lower. This suggested that while stratified 

randomization on the animal level had prevented the network from overfitting to individual animals, it 

instead overfitted on the study level. In order to mitigate this effect, more studies were collected, and 

training and test sets were split by study. 

Analysis of neural network embeddings 
A popular misconception about neural networks is that they are “black box” models, i.e. harder to 

interpret than other machine learning methods. However, as the nature of the learned weights and the 

neuron activations of CNNs are eminently visual concepts, a wide variety of methods for interpreting 

them have been suggested. In particular, the embedding vector, i.e. the activations of the penultimate 

layer of a CNN can be considered a mapping from a visual into a semantic space. Proximity in this space 

may be thought of as semantic, rather than purely visual similarity.  
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As shown above, the UMAP projections at all magnifications revealed clusters that correspond to a large 

extent to the true tissue classes. Adjacent or partially overlapping clusters often corresponded to tissues 

of similar morphology. Studying the UMAP projections also aided in the interpretation of the apparent 

magnification-dependent confusion between thyroid and parathyroid. 

Most strikingly, even though the annotations used for training the model only corresponded to coarse 

tissue/organ classes, the embedding layer learned by the network exhibited a degree of granularity that 

allowed for localizing histological substructures which had found a distinct representation without prior 

annotation. This suggests that our model of normal histology could be applicable beyond the task it was 

defined for, such as in lesion detection or in content-based image retrieval.  

Cross-species predictions and transfer learning 

When applied to tissues from other species, the Inception-v3 models trained on rat showed high 

sensitivity and PPV only for some tissues. At the level of the individual tissues, it is interesting to note 

that those with very conserved structure such as liver, kidney, brain, thyroid and the lymphoid organs 

were classified with high accuracy across species. Not surprisingly, the gastrointestinal tract was often 

misclassified, which is not different from the prediction made on rat tissues.  

Despite high predictive performance for some tissues, the rat model did not show sufficient overall 

accuracy on the cross-species prediction task to be immediately applicable. However, it provided a good 

basis for transfer learning to a novel species (NHP), superior to a model that had been initialized with 

ImageNet weights. The rat-initialized model showed its biggest benefits when training data was scarce 

or the training task was hard (i.e. at high magnification levels). Of note, some of the tissues for which 

prediction was poor in the rat dataset where not part of the NHP dataset, which – along with the lower 

number of classes to predict (21 in NHP vs. 46 in rat) – can explain the substantially higher accuracies 

seen in NHP, as compared to the original rat data. 

In addition to being beneficial in the close-at-hand task of cross-species tissue classification, this 

approach of transfer learning from a domain-specific model may also be a suitable starting point when 

training for other tasks in the histology domain, e.g. the recognition of a specific type of lesion for which 

only limited training data is available. 

Related work 
Our suggestion of reusing domain-specific models relates to the notion of pretext tasks in machine 

learning (Noroozi and Favaro, 2016; Noroozi et al., 2017), in which a task is learned not (only) for its own 

sake, but to learn a feature representation which can be useful for other tasks in the same domain. 

Below, we discuss a few other topics that are relevant in the context of our work. 

During the writing of this article, another study appeared which also aimed at predicting tissue types 

from patches, and with a similar approach to ours, however with a focus on a software framework for 

reproducible machine learning (Bizzego et al., 2019). While this effort is in parts overlapping with our 

work, there are important differences between the two efforts. Our work focuses on several animal 

models (rat, NHP, minipig) instead of the human GTEx dataset alone. For each animal model, we 

collected several independent studies and ensured that our training and test sets come from separate 

studies. As was discussed in detail above, these are crucially important features required for obtaining 

robust models and reliable (non-inflated) performance estimates. In addition, we evaluate the effect of 
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different magnification levels on the models. On the deep learning side, we train all our models end-to-

end, including the convolutional feature generation layers and we evaluate transfer learning between 

species. In the remaining paragraphs, we discuss further lines of related work.  

Multi-scale CNNs. The scanned slide images are of such high resolution that they contain diverse 

structural and textural information on different levels of magnification, from the level of individual 

nuclei to the level of entire tissues. Instead of training a separate network for each level of 

magnification, as we have done in this work, an obvious extension would be to build a convolutional 

network which accepts such hierarchical input, i.e. patches at several levels of magnification. This could 

potentially combine the benefits of having enough context on a patch with the advantages of lower-

magnification patches in recognizing smaller tissue structures, as was observed in an application of 

multi-scale CNNs to high-content cellular images (Godinez et al., 2017). 

Visual explanations. In terms of interpreting the representations learned by the network, besides 

analyzing the embedding layer by means of nonlinear dimensionality reduction, a great number of 

approaches has been suggested that focus on different aspects of the model. One approach that will 

likely yield to greatly improved insight into what kind of structures or textural features are most relevant 

for a given class prediction is the Grad-CAM method (Selvaraju et al., 2016). Initial experiments with this 

technique for deriving “visual explanations” have been promising (data not shown). 

Semantic segmentation; weakly supervised approaches. Besides our patch-based approach, several 

other machine learning paradigms have been applied to histopathology images. The most relevant of 

these are semantic segmentation using fully convolutional neural networks (rewieved in Wang et al., 

2019) and weakly supervised learning (multiple instance learning). The advantage of the latter approach 

is that unlike our approach or semantic segmentation, it does not rely on outlining structures within an 

image (which is often resource-intensive) but rather only requires a slide-level label. Weakly supervised 

learning is most applicable when large numbers of slides with reported findings are already available 

(e.g. Campanella et al., 2019). 

General conclusion 
Our results show that it is possible to train models on the extensive diversity of tissue histology. Both 

the UMAP analysis and the cross-species transfer learning indicate that training on the coarse tissue 

annotations on one species yields embeddings that are much richer from a feature perspective than the 

original task would suggest. This is closely related to the concept of a pretext task, which is a useful form 

of reusing a learned representation when labeled data for a task of interest is scarce, but much more 

data is available that is either unlabeled or labeled for a different task. This opens the perspective of 

creating general-purpose models for the classification of lesions. Such models would reduce the need 

for difficult and labor-intensive manual labeling of individual lesions and allow to work from entire 

tissues.  

Holistic histology classification models such as those described here can also be useful to generate 

numerical data from any histological picture or series of tiles from WSIs, thereby enabling content-based 

image retrieval and mining of morphological data in the histopathology domain. 
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Materials & Methods 
Dataset  
Hematoxylin and eosin (H&E) stained slides from independently processed preclinical toxicology studies 

were retrieved from archives. To establish the rat models, six studies performed in Han-Wistar rats 

(Rattus norvegicus) provided 1,690 WSIs of 46 different tissues with at least 20 slides per tissue, 

covering nine organ systems (Table 1; for simplicity the slide background was included as a tissue class). 

Organs representing subtle variation of tissue structure (such as different segments of the intestine), or 

complex arrangements of tissues (eye, joint) were intentionally included as extreme cases. 

Four studies were selected for the training dataset (1,183 slides) and two for the test dataset (507 

slides). To evaluate the cross-species translatability and species-specific models, WSIs from minipig (Sus 
scrofa domesticus) and cynomolgus NHP (Macaca fascicularis) were generated from the control arm of 

one (minipig) and two (NHP) studies, covering subsets of 36 and 21 tissues, respectively. 

Whole slide images (WSIs) were generated at 40x magnification (0.252 microns per pixel — mpp) using 

either Aperio or Hamamatsu scanners. All WSIs were reviewed by pathologists to ensure absence of 

lesions. Then, tissues were outlined and labeled according to a catalog of tissue types (see Table 1). 

Manual outlines defined regions on the WSIs from which patches of size 224 x 224 pixels were extracted 

at the various magnification levels corresponding to 0.252, 0.504, 1.008, 2.016, 4.032 and 8.064 mpp. As 

the pixel size of patches is constant across all magnifications, low magnification (high mpp) patches 

cover a larger area of the underlying slide as compared to high magnification patches. For example, a 

patch at 0.252 mpp covers an area of 56.4 x 56.4 microns on the slide while a patch created at 8.064 

mpp covers an area of 1.8 x 1.8 mm (7,168 x 7,168 pixels at the original scanning magnification). 

To support the learning of tissue boundaries, we also allowed patches to overlap with the outside of a 

tissue: A patch is valid for a region if its center is contained within the region. This approach is suggested 

by empirical findings of improved predictive performance when incorporating challenging boundary 

patches into the training set (Janowczyk and Madabhushi, 2016). 

To ensure that the training and test sets are well balanced, we aimed at having equal numbers of 

patches for each tissue in each dataset (approx. 30,000 and 2,000 patches/tissue in the training and test 

set, respectively). However, the vastly different macroscopic size of some of these tissues made it 

problematic to sample the same number of patches for each tissue due to oversampling concerns.  For 

example, in the training set, 32,600 mm2 of brain tissue and 27,200 mm2 of lung tissue were available, in 

contrast to only 25 mm2 of parathyroid gland tissue (Supplementary Table 1). In order to address this 

issue, the following scheme was implemented:  

The midpoints of the patches were picked at random from the tissue area. The patches were then 

generated at all mpp levels for the same patch midpoint and the same random rotation. In order to 

avoid oversampling for tissues with low areas, the number of patches was decreased so that the average 

patch density at the mpp level of 0.504 was at most 1. For the training set, 34 of 46 tissues had the full 

30,000 patches, another 11 tissues between 10,000 and 30,000 patches and parathyroid gland with 

about 2,000 training patches. For the test set, 2,000 patches were sampled which was low enough to 

create the full set of patches for each tissue. For a complete list of tissue areas as well as number of 

sampled patches for the training and test sets see Supplementary Table 1. 
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Machine learning approach 
For the three network architectures adopted in this study, VGG-16, Inception-v3, and ResNet-50, we 

used their implementations available in keras (with tensorflow back-end). The weights trained on the 

ImageNet dataset were used for initialization of the convolutional layers. For all fully connected layers, 

we use random initialization of the weights. The final layer has one unit for each tissue class (and one 

unit for the additional “slide background” class) and is set to have a softmax activation function 

outputting a probability vector.  

The RGB channels of the image patches are scaled to the interval [0,1]. The training and test set patches 

were created and saved not during but before the learning process and subjected to a random rotation. 

This was done beforehand in order to avoid having to store additional slide context which would be 

necessary for obtaining a novel rotated rectangular patch “on the fly”. This means that in our approach 

each patch is used with the same rotation during each epoch. On the other hand, the stain modulation is 

performed during the training process (and thus differently also for the same patch across different 

epochs) according to the method described in (Tellez et al., 2018). Briefly, this method is based on first 

transforming from RGB color space to a color space consisting of one channel each for eosin, 

hematoxylin, and a third channel for the remaining color variation. These channels are then modified 

individually by a random linear transformation with parameters sampled from uniform distributions. 

Finally, the modified patch is back-transformed into RGB color space. We experimented with different 

widths for the uniform distributions, and found that a parameter choice that doubles the variation 

reported in (Tellez et al., 2018) as ‘typical’ resulted in the best generalization ability, while leading to 

pronounced changes in the visual appearance of the patches. Note that even patches from a single slide 

will be oriented and stained independently from each other during the training process. Patches from 

the test set are not subjected to any staining modulations.  

For training, we use the Adam optimizer with a learning rate reduction once learning stagnates. We start 

out with an initial learning rate of 10-6 and a reduction of the learning rate by a factor 5 after 5 epochs of 

no improvement. We apply early stopping after 10 epochs of no improvement. During training, we 

updated all weights, not just the fully connected layer weights, thereby tuning the feature extraction 

stack of the architectures that had been pretrained on ImageNet to be better adapted to histopathology 

images. The same approach was also employed for the cross-species transfer learning in which we 

adapted the rat model to NHP. We considered an “epoch” not a full run through the entire training data, 

but rather through a randomized subset of 10% of the data, in order to get more fine-grained metrics of 

the training progress. 

The performance metrics used in this work are accuracy (the fraction of samples for which the predicted 

class equals the true class), error rate (1-accuracy), sensitivity for class t (the fraction of samples from 

class t that are correctly recognized), and positive predictive value for class t (PPV; the fraction of 

samples predicted as t that truly belong to class t). 

For the UMAP projection of the embeddings we use the software library provided by the UMAP authors 

(github.com/lmcinnes/umap).  
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Figure and table legends 
Figure 1. Accuracy of prediction by CNN architecture and magnification level (A). Accuracy of the top-5 

predictions at the patch level by magnification, using the Inception-v3 network (B). Accuracy of the top-

5 predictions at the region level by magnification, using the Inception-v3 network (C). Positive predictive 

value and sensitivity of the Inception-v3-based models at 0.504, 2.016, and 8.064 mpp, for each tissue 

(D). Tissue class abbreviations (labels are shown only below a threshold of positive predictive value and 

sensitivity: 0.6 was used for 0.504 mpp, and 0.7 for 2.016 and 8.064 mpp): AO: aorta, SG: salivary gland, 

WF: white fat, NE: nerve, JO: joint, PI: pituitary gland, OD: oviduct, BON: bone, BKG: background, PR: 

prostate, MG: mammary gland, UB: urinary bladder, IL: ileum, ST: stomach, RE: rectum, CE: caecum, CO: 

colon, VA: vagina, UT: uterus, PTG: parathyroid gland, SM: skeletal muscle, AG: adrenal gland, TYD: 

thyroid gland. 

Figure 2. UMAP plots (left hand column) of all rat test set tissues at increasing mpp (A 0.504, D 1.008, G 

2.016, J 8.064 and M 8.064), with a specific tissue cluster (circled) further represented in the clusters of 

the central column (B, E and H  = adrenal gland, K = eye and N = brain and spinal cord). Sub-anatomical 

sites are represented in each central column cluster and in the respective histological images of the right 

hand column (adrenal gland: G = zona glomerulosa, F = zona fasciculata, R = zona reticularis, M = 

medulla; eye: R = retina, C = cornea, L = lens; brain and spinal cord: B = cerebellum, H = hippocampus, C 

= cerebral cortex, S = spinal cord). 
Figure 3. UMAP plots and respective histological images of thyroid and parathyroid gland at increasing 

mpp levels (light blue: thyroid, mustard: parathyroid, red: skeletal muscle). 

Figure 4. NHP test set accuracy of generic (ImageNet-pretrained) vs. domain-specific (rat-pretrained) 

models, after training on N=1, 2, 3, 4, and 12 (max. available) NHPs, at 0.504, 2.016, and 8.064 mpp. 

Table 1. The rat tissue catalog (N=46), consisting of 45 tissues and one non-tissue class, BKG, to predict 

the slide background, grouped by organ system. Additional columns indicate which of these classes were 

available for the other species: NHP (N=21), minipig (N=36). 

Supplementary Table 1: List of annotated areas as well as number of sampled 224 x 224 pixel patches per 

tissue type for the rat training and test datasets. 

Supplementary Figure 1. Confusion matrix for the rat model test set, 0.504 mpp, predicted using the 

Inception-v3 model trained on the rat training data. Prominent confusion clusters are shown enlarged on 

the right-hand side. 

Supplementary Figure 2. Confusion matrix rat the model test set, 2.016 mpp, predicted using the 

Inception-v3 model trained on the rat training data. Prominent confusion clusters are shown enlarged on 

the right-hand side. 

Supplementary Figure 3. Confusion matrix rat the model test set, 8.064 mpp, predicted using the 

Inception-v3 model trained on the rat training data. Prominent confusion clusters are shown enlarged on 

the right-hand side. 

Supplementary Figure 4. Tissue confusion matrix for the NHP test dataset at 8.064 mpp, predicted using 

the model trained on the rat training data. 
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Supplementary Figure 5. Tissue confusion matrix for the minipig test dataset at 8.064 mpp, predicted 

using the model trained on rat training data. 
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Organ Tissue Name (Abbr.) – Rat Monkey Minipig
Adipose tissue Adipose tissue, brown (BF)

Adipose tissue, white (WF) X X

Circulatory system Aorta (AO) X

Heart (HT) X X

Digestive system Esophagus (ES) X X

Large intestine, cecum (CE) X

Large intestine, colon (CO) X

Large intestine, rectum (RE) X

Liver (LI) X X

Pancreas (PAN) X X

Small intestine, duodenum 

(DM)

X

Small intestine, ileum (IL) X

Stomach (ST) X

Tongue (TO) X

Endocrine system Gland, adrenal (AG) X X

Gland, harderian (HG)

Gland, parathyroid (PTG) X X

Gland, pituitary (PI) X

Gland, salivary, NOS (SG) X X

Gland, thyroid (TYD) X X

Lymphatic system Lymph node (LN) X X

Spleen (SP) X X

Thymus (TH) X X

Musculoskeletal 
system

Bone (BON) X

Joint (JO)

Muscle, skeletal (SM) X X

Skin (SKN) X X

Spinal cord (SPC) X

Nervous system Brain (BR) X X

Eye (EY) X

Gland, lacrimal (LG)

Nerve, peripheral (NE) X X

Renal system Kidney (KD) X X

Urinary bladder (UB)

Reproductive system Epididymis (EP) X X

Gland, mammary (MG) X

Gland, prostate (PR)

Gland, seminal vesicle (SEV)

Ovary (OV) X

Oviduct (OD)

Testis (TE) X

Uterus (UT) X

Vagina (VA)

Respiratory system Lung (LU) X X

Trachea (TR) X X

Slide Background Background (BKG) X

Table 1
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Supplementary Table 1

Tissue name Area (mm2) # of patches

Training Test Training Test
Brain 32641.4 11751.6 30053 2038

Lung 27261.1 3295.2 30063 2007

Liver 17577.7 2390.9 30049 2006

Kidney 15861.8 11874.5 30039 2028

Background 8644.4 187.7 30337 2011

Heart 6305.8 1129.4 30027 2005

Epididymis 6012.1 5401.0 30017 2025

Testis 5125.4 3960.0 30015 2021

Bone 4878.0 280.1 30041 2005

Eye 4658.1 264.0 30033 2004

Spinal cord 4533.0 558.8 30033 2016

Gland, salivary, NOS 4322.6 348.3 30035 2012

Stomach 4006.9 2011.1 30031 2014

Joint 3818.5 504.2 30012 2002

Muscle, skeletal 2620.3 2229.9 30061 2032

Uterus 2567.4 156.9 30024 2003

Tongue 2213.2 5051.0 30029 2024

Pancreas 2168.2 626.7 30058 2011

Lymph node 1992.7 2167.6 30077 2030

Gland, harderian 1725.9 321.0 30030 2004

Thymus 1564.4 571.7 30036 2011

Spleen 1305.4 966.3 30040 2024

Skin 1224.9 90.7 30030 2002

Urinary bladder 1202.1 856.4 30025 2022

Gland, mammary 1153.4 39.0 30027 2003

Vagina 1080.5 194.7 30023 2002

Gland, lacrimal 884.8 3163.3 30027 2017

Ovary 837.2 175.6 30026 2003

Gland, seminal vesicle 700.1 1339.5 30011 2021

Gland, prostate 670.2 5825.2 30008 2017

Gland, adrenal 626.5 295.5 30035 2006

Nerve, peripheral 521.4 604.7 30047 2044

Small intestine, duodenum 435.2 152.5 30024 2004

Gland, thyroid 408.2 648.7 30022 2025

Large intestine, cecum 366.1 319.1 28735 2010

Adipose tissue, brown 318.5 69.8 25044 2026

Large intestine, colon 284.8 191.9 22357 2011

Large intestine, rectum 279.4 378.0 21932 2009

Small intestine, ileum 246.7 144.9 19370 2010

Oviduct 222.4 30.5 17465 2002

Adipose tissue, white 215.5 474.5 16935 2041

Gland, pituitary 185.2 319.4 14541 2021

Trachea 143.8 118.7 11307 2025

Esophagus 132.1 177.2 10380 2030

Aorta 129.0 121.2 10148 2027

Gland, parathyroid 24.5 30.2 1936 2024
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 5
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