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How does neural activity generate perception? The spatial identities and temporal latencies of 
activated units correlate with external sensory features, but finding the principal activity 
subspace that is consequential for perception, remains challenging. We trained mice to recognize 
synthetic odors constructed from parametrically-defined patterns of optogenetic activation, then 
measured perceptual changes during extensive and controlled perturbations across spatio-
temporal dimensions. We modelled recognition as the matching of patterns to learned templates, 
finding that perceptually-meaningful templates are sequences of spatially-identified units, 
ordered by latencies relative to each other (with minimal effects of sniff). Within templates, 
individual units contribute additively, with larger contributions from earlier-activated units. Our 
synthetic approach reveals the fundamental logic of the olfactory code, and provides a general 
framework for testing links between sensory activity and perception. 
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Introduction 

A familiar object evokes a complex pattern of activity in the brain, but it is possible that only a 
structured subset of this activity, representing critical combinations of sensory attributes, is 
essential for recognition. A key challenge is to identify the subspace of neural activity that 
induces the percept. This activity may consist of multiple spatial or temporal features, such as 
which cells respond and when they respond, relative to stimulus onset or each other. Do 
individual features contribute differentially to the formation of the percept? For example, the 
activity of some cells in a pattern may be more important than others. Does the formation of the 
percept depend on how features are combined? The sequential activation of multiple cells or the 
latency of their activation relative to brain rhythms are examples of feature combinations that 
may be perceptually meaningful(1-3). 
 
The difficulty in addressing these questions is two-fold. First, multiple features co-vary with 
perceptual responses, making it difficult to disentangle their independent contributions to 
perception. Previous studies have mainly focused on correlating neural activity with perception, 
where the contributions of individual features are entangled. Second, we lack a single framework 
for quantitatively comparing the perceptual contributions of individual and combined features. 
For example, we know from causal manipulation studies that single neurons (4) or small timing 
differences (5-7) can affect perception, but not their relative importance and how they come 
together in larger patterns to produce perception.  
 
Here we developed a novel framework for finding the perceptually-meaningful spatiotemporal 
subspace of neural activity. We optogenetically manipulated individual activity features 
independently of other features, manipulated combinations of features, and compared the effects 
of all manipulations under a common metric.  
 
We used mouse olfaction as our model system to study these questions, as odor perception is 
correlated with complex spatio-temporal activity patterns, and these patterns can be 
optogenetically manipulated in mice while measuring their perceptual responses. Odor-induced 
activity recruit glomeruli, discrete neuropils in the olfactory bulb which collect receptor inputs 
from the nose, grouped by receptor type. Spatio-temporal combinations of glomerular activity 
correspond to unique odorants (8, 9). Both the spatial identity or temporal latencies of glomeruli 
activated in the pattern may be perceptually meaningful(6, 7), but the relative importance of each 
is unknown. It is also unclear what forms a perceptually-meaningful combination of glomerular 
activation: ordered sequences aligned relative to each other(10-12), sequences aligned to sniff 
rhythm (6, 7, 13, 14), or the earliest activated subset of glomeruli within a sniff rhythm (15, 16).  
 
To understand how features of glomerular activity combine to produce perception, we first 
trained mice to recognize synthetic odors: optogenetically-driven spatiotemporal patterns of 
glomerular activity. We then performed precise spatial or temporal perturbations on trained 
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patterns and measured how recognition changes. Changes in recognition reflect the perceptual 
relevance of the modified feature (or groupings of features). We modelled recognition as the 
matching of glomerular activity to learned templates, and uncovered what forms a perceptually-
meaningful pattern template: activation sequences ordered by latencies relative to each other 
(latencies relative to sniff contribute little), with greater perceptual importance carried by the 
earlier glomeruli in the sequence. Spatially-identified glomeruli within the sequence contribute 
additively to perception, with minimal interactions between spatial identities. Template matching 
with these perceptually-meaningful features can account for animals’ responses, with the degree 
of mismatch predicting changes in recognition. Hence, by performing precise and parametric 
manipulation of glomerular activity and quantifying effects under a common metric, we derived 
a unifying model that explains how odor perception arises from structured glomerular activation. 
 
Results 

We first characterized the basic behavioral and neural responses to optogenetic stimulation. We 
chronically implanted OMP-ChR2-YFP mice (n=6) (6) with cranial windows to expose dorsal 
olfactory bulb, and performed optogenetic stimulation using a digital micromirror device system 
(Fig. 1A). Similar to previous reports (11, 17) and consistent with known anatomy, mitral/tufted 
(MT) cells were activated by few localized spots (Fig. 1B). We observed instantaneous MT cell 
firing rates up to ~100 Hz, with excitatory responses lasting around ~80 ms, comparable to odor-
evoked responses (13). We verified that spots at the same stimulation parameters were 
perceptually detectable, but only for ChR2-positive mice (Fig. 1C), and without systematic 
spatial biases (Fig. 1D). We then used the same basic stimulation parameters for the main 
experiments. 
 
We trained mice to discriminate Target versus Non-target synthetic odors on a two-choice task 
(Fig. 1E). While the stimulation patterns we used are unlikely to correspond to specific known 
chemical odorants, our patterns follow stimulation durations and activation latencies that fall 
within known odor-evoked distributions of glomerular activation (8). Mice learned to 
discriminate a fixed Target from any random Non-target pattern over weeks, while ChR2-
negative mice did not (Fig. 1F). 
 
We then performed systematic spatial and/or temporal perturbations within Target patterns on a 
small number (10%) of probe trials, and measured perceptual responses. Perturbations consisted 
of replacing spots with Non-target spots, or shifting spots in time. For any set of perturbations, 
we measured the fraction of trials where the mouse makes a lick choice towards the water spout 
associated with the Target (‘like-Target’ response), as opposed to the Non-target spout. This 
measurement reflects perceptual distances (18, 19): the perceived difference between the 
perturbed and original Target pattern. The larger the perceptual distance, the lower the fraction of 
like-Target responses. We performed a basic check that perceptual distances should increase as 
Target patterns are altered. In pilot mice trained on the task, we systematically decreased the 
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laser intensity below the intensity used during training. As the laser intensity for Target patterns 
was lowered, animals showed a graded decrease in like-Target responses (Fig. 1G).  

Figure 1. Optogenetic stimulation as synthetic odors. A. Schematic of the experimental setup. 
Dorsal olfactory bulb (OB) was exposed by a chronically-implanted 3 mm window. Spatio-
temporal stimulation patterns, created by a digital micromirror device, were projected onto the 
OB of a head-fixed mouse in front of lick spouts delivering water and a pressure sensor for sniff 
monitoring. B. Mitral/Tufted cell responses to single spot stimulation (120x120 µm2, 80 ms 
duration, 15 mW/mm2) across a grid of spots. Left: heatmaps of evoked firing (average firing rate 
across the stimulus duration, 80 ms) for each stimulated spot position, for two typical cells. 
Right: trial-by-trial spiking activity and PSTH corresponding to left cell in (B), for the spot 
which evoked the largest averaged response. C. Behavioral detection d’ of single spot 
stimulation at different laser intensities for ChR2-positive animals (black) or ChR2-negative 
animals (blue). Grey vertical line marks 15 mW/mm2. D. d’ for spot detection at 15 mW/mm2 
stimulation for one ChR2 mouse at different spot positions. Right: Histogram of d’ across spots. 
E. Schematics for pattern discrimination task. Animals were trained to recognize Target versus 
Non-target patterns defined on a stimulation grid. Target patterns comprised of six spots, 
initialized randomly but fixed across subsequent sessions, activated in an ordered sequence 
defined in time where ‘0’ marks inhalation onset. Non-target patterns were six off-Target spots, 
randomly chosen from trial to trial, with randomized timing within 300 ms from inhalation 
(~single sniff). F. Learning curves on pattern discrimination task. Mice were initially shaped by 
discriminating one Target pattern versus one Non-target pattern (left) to criterion performance of 
0.8, then trained on the same Target versus multiple Non-target patterns (right). Note: 
performance below chance level (0.5) for some mice at the beginning of training is explained by 
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We found that spatial perturbations led to graded changes in perceptual distances, dependent on 
the timing of the spot perturbed. To perform spatial perturbations, we kept Target pattern timing 
fixed while replacing spots with random Non-target spots (Fig. 2A). One or more spots in Target 
patterns were replaced in every possible combination of the six spot positions. We found a 
graded relationship between the number of spots replaced and perceptual distance (Fig. 2B). Spot 
replacement effects also depended on spot timing: replacing earlier-activated spots had a greater 
effect than later-activated spots, both within single-spot or multiple-spot replacement trials (Fig. 
2C). We refer to this temporal dependence as ‘primacy’ (15). We additionally found that the 
effect of spot replacement depends on spatial distance on the olfactory bulb. The perceptual 
distance is small between a Target, and a Target with one spot replaced by a proximal spot. This 
perceptual distance is larger when the new, replacing spot is distant from the old, replaced spot 
(Fig. S1). This is consistent with studies suggesting that close-by glomeruli may be more likely 
to be chemically, and hence perceptually, related, at least on a coarse scale (20, 21). We cannot 
completely rule out the alternative possibility that these effects may arise from activating fibres 
of passage, with strength of activation dependent on distance. However, these effects are likely 
to be weak given our observed mitral cell responses (Fig. 1B) and also previous reports using 
similar stimulation parameters (11). 
 
Temporal perturbations also led to graded changes in perceptual distances dependent on the 
timing of the spot perturbed. To perform temporal perturbations, we shifted one or more spots of 
the Target pattern in 10 ms increments, in randomly-chosen combinations of spot and shift 
magnitude (Fig. 2D). We found that increasing the overall amount of temporal shift (defined as 

Euclidean shift = 𝛥𝑡!!!  where 𝛥𝑡! are individual spot shifts) led to an increase in perceptual 

distance (Fig. 2E). Similar to spatial perturbations, temporal perturbations also exhibit primacy. 
In trials where only one spot was shifted, shifting earlier-activated spots has stronger effects than 
shifting later-activated spots (Fig. 2F). Furthermore, we observed an asymmetry in temporal shift 
effects: shifting spots earlier - towards the beginning of the sniff cycle, has a stronger effect than 
shifting spots later - towards the end of the sniff cycle. This asymmetry is consistent with 
primacy: while later-activated spots are less important perceptually, shifting them earlier may 
interfere with the early, more important spots, hence inducing larger behavioral effects. 

a strong initial side bias (see Methods). Blue stars indicate performance of control, ChR2-
negative mice after >40 sessions of training. G. Effect of laser intensity on pattern recognition 
for mice previously trained to discriminate Target vs Non-target patterns. Probability of like-
Target responses (mean and SEM across mice) on probe trials with randomly chosen low 
intensity Target patterns (black) and Non-target patterns (red). Horizontal dashed lines 
correspond to baseline responses to Target and Non-target patterns. 
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Figure 2. Perceptual effects of spatial and temporal perturbations. A. Illustration of spatial 
perturbations: one or multiple spots in Target patterns were randomly replaced with Non-
target spots. B. Probability of like-Target responses as a function of number of replaced spots 
in Target patterns, averaged across animals. Here and later in plots of like-Target responses, 
horizontal dashed lines correspond to baseline responses to Target and Non-target patterns, 
and blue lines show the corresponding regression fits. C. Probability of like-Target responses 
as a function of a spot position for single spot replacement. Inset: Probability of like-Target 
responses as a function of a spot position, marginalized over trials with multiple spots 
replaced. D. Illustration of temporal perturbations, where one or multiple spots in Target 
patterns were temporally shifted. E. Probability of like-Target responses as a function of the 
amount of temporal shift (‘Euclidean shift’) in the pattern. F. Effect of single spot shifts 
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To quantify the effect of spatial and temporal perturbations, we performed regression analyses 
using either binary variables for spot replacement (𝑥! = 1, if the spot is replaced and 𝑥! = 0, if 
not), or continuous variables for temporal shifts (𝛥𝑡!). The regression models quantify primacy 
in spatial perturbations (Fig. 2G), and primacy and asymmetry for temporal perturbations (Fig. 
2H). Primacy is reflected in larger magnitude coefficients for earlier spots; temporal asymmetry 
is reflected in larger magnitude coefficients for shifting spots earlier as opposed to later. 
Regression fits are presented in all data plots as blue lines (Figs. 2B,C,E&F), and responses of 
individual mice are plotted in Fig. S3. 
 
The effects of temporal perturbations suggest that animals encode spot latencies referenced to 
sniff: as spots were shifted with respect to inhalation onset, animals’ responses changed. An 
alternative possibility is that spot latencies are encoded with respect to other spots in the pattern. 
To test this, we considered the synchronous shift of the Target pattern, where all spots are shifted 
by the same amount with respect to inhalation (Fig. 3A). Synchronous shifts alter sniff-
referenced timing while keeping pattern-referenced timing constant. We found that perceptual 
distances vary, but only weakly, with synchronous shifts (Fig. 3B). Critically, we attempted to 
predict the effect of any synchronous shift, by summing the effects of single spots shifted by 
equal amounts referenced to inhalation. The prediction significantly over-estimates the weak 
perceptual effect of synchronous shifts, suggesting an important role for pattern-referenced 
timing. Pattern-referenced timing can also be reflected in the order or sequence of spot 
activation. We found that order-changing temporal perturbations had a larger effect than order-
preserving perturbations, controlling for equivalent amounts of sniff-referenced shift from the 

plotted by spot position. G. Regression coefficients showing the effect of replacing each spot 
in all trials, including single or multiple spot replacement. Negative coefficients imply that 
replacing the spot lowers like-Target responses, coefficients of zero imply no effect on 
responses. H. Same as for (G) but for temporal perturbations. Separate coefficients were fitted 
for positive shifts (towards the end of the sniff cycle) (solid) and negative shifts (towards the 
beginning of the sniff cycle) (dashed). 

  
Figure 3. Animals encode pattern-referenced timing. A. Illustration of temporal perturbations 
where Target patterns were shifted synchronously from inhalation by Δ𝑡!"#$. B. like-Target 
response as a function of Δ𝑡!"#$ (black), with the predicted response from summing up effects 
of single spots shifted relative to inhalation (blue). C.  Comparison of average responses to 
temporal perturbations which preserve (green) and do not preserve (orange) temporal spot 
sequence for the same amount of Euclidean shift. 
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Target (Fig. 3C). Taken together, the results demonstrate that pattern-referenced timing is a key 
component of spatio-temporal olfactory activity. 
 
To explain the whole spectrum of behavioral results, we propose a spatiotemporal template 
matching (STM) model, inspired by template matching models in the broader literature. 
Template matching is described in psychological theories of pattern recognition as the general 
process of comparing new inputs to templates stored in memory (22). In systems neuroscience, 
template matching can refer to methods used by experimenters to compare spatio-temporal 
neural population activity (23-25). We propose that olfactory circuits compute similar forms of 
matching of neural activity for odor recognition.  
 
The STM model consists of input transformation followed by template matching (Fig. 4A). Any 
olfactory input is transformed to temporal activations in discrete spatial channels (spots, or more 
generally, glomeruli). Activations decay over time and are represented by exponential 
waveforms. The decay slope reflects animals’ sensitivity to temporal perturbations, with slower 
decays corresponding to higher invariance to temporal shifts. The strength of activations is 
further multiplicatively modulated by primacy, such that earlier-activated channels within the 
pattern evoke larger waveforms. Each learned target input is transformed and stored as a 
template which new patterns are compared to. 
 
A template matching procedure then determines the perceptual distance between new patterns 
and target templates. Template matching considers two effects independently: the difference in 
the center-of-activity, and differences within individual spatial channels. The center-of-activity 
captures the average position of each template within a sniff cycle; similar centroid measures 
have been defined to characterize the mean response latency across multiple neurons (26). To 
perform within-channel comparisons, the model measures the amount of non-overlap between 
waveforms. Critically, this comparison is done in reference to each template’s center-of-activity. 
Consider synchronous shifts of Target patterns (Fig. 3B): only the center-of-activity changes, but 
not waveforms relative to the center-of-activity (Fig. 4C). Hence, within-channel comparisons 
are primarily sensitive to changes in pattern-referenced timing as opposed to sniff-referenced 
timing. The choice of using a centroid model for pattern-referenced timing was further 
corroborated by regression analyses showing that the centroid model best predicts responses to 
temporal perturbations, compared to other models (Fig. S2). Within-channel comparisons are 
also sensitive to differences in spatial activations, for example in the spot replacement of patterns 
(Fig. 4D). The non-overlap per channel is then linearly summed across all channels to produce 
an overall channel difference value. Channel differences and the difference in center-of-activity 
are separately weighted, then combined to produce perceptual distances. 
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The STM model succeeds at predicting animals’ responses to the whole spectrum of pattern 
perturbations (Fig. 4B) and reproduces the observed trends for individual perturbations (Fig. 

 
Figure 4. Spatio-temporal Template Matching (STM) maps olfactory inputs to perceptual 
outputs. A.  A learned pattern stored in memory (Target, blue) is compared with a new input 
pattern (Probe, red). Patterns are transformed into waveform representations: pulse activations 
convolved with exponentials, with decay of activation parameter 𝜏!"# and an amplitude, which is 
a different exponential function (𝜏!"#$) of the pulse timing from the onset of the pattern. For 
each set of waveforms, the center-of-activity (𝑇!

!"#$%!, 𝑇!
!"#$%) and their absolute difference, 

Δ𝑇! = 𝑇!
!"#$%! − 𝑇!

!"#$% , are calculated. Individual waveforms are then aligned to their 
respective pattern’s center-of-activity, and the difference in non-overlapping area per waveform 
channel is integrated. This non-overlapping area is summed linearly across all channels 
(Δ channels). Δ𝑇!  is exponentiated, weighted, then added to the weighted Δ channels value, 
producing a perceptual distance value. A logistic function on perceptual distances produces a 
probability of making a like-Target response to the given Probe pattern. B. STM model 
predictions against mouse responses, across all trial types. Within each trial type, trials were 
sorted by perceptual distance in the model and grouped. Each dot represents a set of 50 trials. 
The dashed unity line indicates perfect prediction. Different colors indicate different types of 
perturbation: spatial (blue), synchronous temporal shifts (green), all other temporal shifts 
(white), Non-targets (grey), spatial and temporal perturbation in same pattern (red). The model 
has the following fitting parameters: 𝜏!"#, 𝜏!"#$, 𝜏!!, 𝛽!!!""#$%, 𝛽!!  and bias term 𝛽!. C. 
Example of template matching for synchronously shifted patterns: only 𝑇!  changes, but not 
waveform differences within channels. D. Template matching for patterns where activation in 
one channel is replaced by another channel:  𝑇!  does not change but waveform differences arise. 
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5A). The model captures the graded effects of both spatial and temporal perturbations, with 
primacy in spatial perturbations, and primacy and asymmetry in temporal perturbations. The 
model also captures the weak effects of synchronous shifts. We further confirmed that changing 
any component in the model decreases model performance (Fig. 5B).  
 
The STM model essentially performs a linear readout of spatial channels, as within-channel 
differences are summed up linearly without added interactions between channels. If animals 
respond to patterns according to model predictions, the observed effects of spatial perturbations 
should also sum linearly. This is because replacing spots while keeping timing fixed, produces 
only changes within channels (which are summed linearly) (Fig. 4D). We directly tested if a 
simple linear readout could indeed account for animals’ responses to spatial perturbations. We 
compared a regression model containing only linear terms, versus a regression model allowing 
for non-linear effects. The linear model performed better than the non-linear model (Fig. 5C, 
model error = 0.158 vs 0.16, p < 0.001, t-test), and coefficients for non-linear interactions were 
negligible (Fig. 5D). Hence, the olfactory system performs a linear readout of spatial glomerular 
activity: glomeruli contribute additively to the overall percept, largely independently of the 
identity of the other activated glomeruli in the pattern. 
 
On the other hand, the STM model predicts strong temporal interactions between channel 
activations: shifting any spot changes the latencies of all other spots encoded in reference to the 
whole pattern. Hence, the effect of shifting any spot depends on how other spots are shifted. For 
example, the effect of synchronous shifts cannot be predicted from single spot shifts (Fig. 3B). 
We confirm the existence of temporal interactions with regression: a regression model allowing 
temporal interactions between spots, is superior to one that does not (model error = 0.1647 vs 
0.1725, p < .001, t-test). Critically, we found that the STM model run on a large simulated 
dataset of random temporal perturbations produces the same pattern of temporal interactions as 
observed in the data (Fig. 5E, pearson correlation = 0.83).  
 
We then quantitatively compared the STM model to the best regression model fitted separately 
for each individual class of spatial or temporal perturbations. The regression models form a 
standard for comparison, as they place minimal prior assumptions on the structure of the data. 
Despite the STM model having fewer parameters than the regressions (6 vs 21), the STM model 
performs slightly better (prediction error = 0.159 vs 0.160 p <.001, t-test). Furthermore, for any 
given pattern, the STM model and regression models produce responses that are tightly 
correlated (Fig. 5F); the correlation between models is greater than the correlation between the 
STM model and the data (r = 0.997 vs r = 0.97). Hence, the STM model produces similar 
patterns of responses to regression analyses which could in principle to capture more complex 
relationships within the data. This implies that the several key computations modelled by STM 
are sufficient to account for animals’ responses. 
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Figure 5. Validation of the STM model. A. Fits of the STM model (red) to individual spatial 
or temporal perturbations. B. STM model compared against modified models. Dashed line 
indicates prediction error of STM Model. ‘short 𝜏!"#’ and ‘long 𝜏!"#’: changing 𝜏!"#  from the 
fitted value (~60ms) to 10 ms or 200 ms respectively. ‘𝜏!"#$→∞’: setting 𝜏!"#$  to a large 
value, essentially removing the primacy effect. ‘sniff reference’: Within-channel comparisons 
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We further validated the STM model with unseen classes of spatio-temporal perturbations. In our 
described experiments and model fitting so far, Target pattern perturbations were either spatial or 
temporal, but not both. We tested the fitted STM model on additional patterns containing both 
temporal shifts and spatial replacements within the same pattern. We found that the model could 
predict animals’ responses to spatio-temporal perturbations despite never encountering these 
manipulations during model fitting (Fig. 4B, prediction error on spatio-temporal perturbations = 
0.23, spatial perturbations alone = 0.23, temporal perturbations alone = 0.21). Another form of 
spatio-temporal perturbations is inherent in Non-target trials, where all Target spots were 
replaced and randomly shifted. No Non-target pattern was ever repeated for each animal, 
guaranteeing that all Non-target stimuli in model fitting are distinct from Non-target stimuli in 
model testing. The STM model was able to predict responses across different Non-targets (Fig. 
4B, error = 0.10). 
 
Hence, spatio-temporal template matching of olfactory bulb activity, linearly summed, 
constrained by activity-centered timing, and with preferential weighting on early activations, can 
account for how the olfactory system maps complex activity to perceptual outputs. 
 
Discussion 

We developed a novel framework for finding the perceptually-meaningful subspace of spatio-
temporal sensory activity. We optogenetically manipulated features in glomerular activity 
independently of other features, with manipulations that finely and extensively tile spatio-
temporal dimensions, in a model-agnostic manner. By comparing all manipulations under a 
common metric, we derived a unifying, model-based account of olfactory computations. Hence, 
while previous studies establish the relevance of single feature changes within patterns (4, 5, 7), 
our approach allows us to understand how features combine in complex patterns to generate 
perception.  

referenced to sniff and not center-of-activity. ‘null’: Null model. Asterisks indicate p < .001 
significant difference in model prediction error versus STM Model, obtained from ANOVA 
corrected for multiple comparisons. C. Comparison of regression models for spatial 
perturbations, with non-linear interactions (orange) or without (grey). The unity line (dashed) 
indicates perfectly predicted responses. Each dot represents a unique combination of spatial 
replacement by spot position. D. Coefficients for models in (C), for model with interactions 
(orange) or without (black), plotted by spot position replaced. Right: histogram of coefficient 
values for interaction terms. E. Comparison of temporal interactions, in data as quantified by 
regression (top), and in simulated data run through STM model (bottom). We considered 
pairwise interactions of directional shifts of spots (numbered). Left: shifting two spots later 
(+,+), Middle: shifting two spots earlier (-,-), Right: shifting one spot later (+) and another 
spot earlier (-). Colors indicate magnitude and direction of interaction, red / teal indicates sub-
linear / super-linear interactions, meaning that the effect of paired shift is less / more than 
predicted from linear sum. F. Predictions of STM model plotted against regression models for 
all data, for the same grouping of trials as in Fig. 4B.  
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In our study, we chose to measure perceptual distances across manipulations of neural activity. 
The approach originates from psychology, where the measurement of perceptual distances across 
manipulations of sensory stimuli (e.g. images, sounds) have revealed underlying models of 
sensory representation (18, 19). By measuring perceptual distances across changes in neural 
activity, we derived models of neural representation.  
 
The STM model resolves several open issues in olfactory coding. Firstly, the model suggests a 
linear readout of spatial glomerular patterns. It has been proposed that odors are encoded in 
unique spatial combinations of glomeruli (27), but there are multiple possible combinatorial 
coding schemes which have not been tested. For example, one extreme possibility is a ‘barcode’ 
representation, where any slight change to the combination leads to a completely un-related odor,  
maximizing the system’s representational capacity for odors. Instead, we found a perceptual 
readout of spatial patterns that is linear. This is consistent with studies which imaged odor-
evoked glomerular activity(28-30) or directly stimulated individual glomeuruli (31). A linear 
readout implies that two patterns will generate odors that are perceptually similar depending on 
the degree of glomerular overlap. While a linear readout has lower representational capacity, it 
may explain the generalization of odor percepts across varying concentrations or backgrounds, 
where activated glomeruli differ slightly.  
 
Our work causally establishes the role of temporal sequences in odor perception, which has long 
been hypothesized (8, 13) but not directly tested: temporal codes are not theoretically required to 
support odor perception (32). We presently demonstrated that mice trained to recognize a 
synthetic odor pattern, use temporal sequences in odor recognition even though other (spatial) 
cues are sufficient to solve the task. Surprisingly, we further found that these sequences were 
defined with relative latencies within a pattern(10), as opposed to latencies with respect to sniff 
as previously proposed (6, 8, 13). Pattern-referenced timing may reflect how inputs compete or 
are integrated downstream, as competition or integration can depend on temporal proximity 
between inputs (11, 33, 34). We found a weak perceptual effect for changing the overall position 
(center-of-activity) of the pattern within sniff, possibly arising from weak modulation of 
glomerular activity by sniff-coupled mechanosensory responses (14). Alternatively, mice may be 
using the overall position of the pattern in sniff as a weak cue to solve the task, as the average 
randomly-generated Non-target pattern has a different position within sniff compared to the 
Target pattern. 
 
We found a primacy effect where earlier-activated glomeruli have larger effects on perceptual 
responses. Primacy has been suggested as a strategy for animals to recognize the same odor 
across varying concentrations, as early-activated glomeruli remain stable across different 
concentrations. Animals trained to recognize odors across varying concentrations were impaired 
during coarse optogenetic disruption, but only when the disruption occurred in the initial ~100ms 
of inhalation (15). In the present study, animals were trained to recognize a single Target 
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synthetic odor, and displayed a primacy effect without explicit training to ‘concentration-
variants’ of the Target. Hence, the preferential weighting of early inputs occurs under different 
task demands, suggesting that primacy is a fundamental property of the olfactory system. 
Primacy may be supported by downstream computations, at the level of mitral cells (35) or 
piriform cortex (16, 36). 
 
We cannot rule out the possibility that fibers of passage were activated during our spot 
stimulation. However, this effect is likely to be weak—MT cells were activated by few localized 
spots at the laser intensity chosen for our experiments. Another study also using OMP-ChR2 
mice, with similar stimulation size, duration and intensity have also found negligible effects of 
fibers of passage (11). Increasing the stimulation intensity led to more apparent recruitment of 
fibers of passage, reflected in increased number of active spots located anteriorly (unpublished). 
Furthermore, we observed negligible non-linear interactions between spots during spatial 
replacements, which is not expected if there is widespread co-activation of glomeruli from fibres 
of passage. 
 
Another limitation of the study is that our synthetic stimuli may not capture the full complexity 
of glomerular activity evoked by natural odors. We instead view the synthetic approach as 
complementary to approaches using more naturalistic stimuli. The claim is not that these 
synthetic stimuli are direct proxies for naturalistic stimuli—rather, synthetic stimuli afford well-
controlled experiments with precise parameterization and causal manipulation, and can be used 
to establish basic principles of the neural code. In other well-studied sensory systems, 
foundational understanding of sensory processing has been built upon synthetic, reduced stimuli 
(37), while naturalistic stimuli have been used to test and refine foundational models (38). Future 
experiments may test the STM model by measuring perceptual distances between large sets of 
chemical odors while recording calcium responses to these odors in parallel. 
 
Future studies may elucidate the specific circuit mechanisms for spatio-temporal template 
matching, by recording MT cells or piriform cortex responses to parametric patterned 
stimulation. Specific parameters or operations in the model may eventually be mapped to 
specific circuit computations. For example, the time constant in waveform activation, may 
strongly depend on rapid inhibition of MT cell activity after initial excitation (13, 39). The time 
constant for primacy may depend on a combination of recurrent inhibition in MT and cortical 
circuits (16, 35). Template matching procedures may be implemented by biologically-plausible 
circuits that implement delay lines (40, 41). 
 
We developed a novel experimental and theoretical approach that links the complex spatio-
temporal language of the brain with perception and behavior. This is especially pertinent, given 
continued advancements in optical techniques that allow direct access and manipulation of the 
spatiotemporal neural codes, at the level of computations consequential to behavior (42-45). 
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Methods 
  
Mice. Behavior and electrophysiology experiments were conducted in OMP-ChR2-YFP 
heterozygous mice. Control experiments were conducted in B6(Cg)-Tyrc2J/J (albino B6) mice 
(Jackson labs). Subjects were 8–12 weeks old at implantation and were maintained on 12hr 
light–dark cycle in isolated cages after implantation. All procedures were approved by the 
IACUC of NYULMC in compliance with the NIH guidelines for the care and use of laboratory 
animals. 
  
Surgery. Mice were anesthetized with isoflurane during surgical implantation (2.0% during 
induction, 1.5% during surgery). A circular craniotomy was performed to expose both 
hemispheres of the dorsal olfactory bulb (3 mm craniotomy extending from the rostral rhinal 
vein to the naso-frontal suture, centered on the midline) using either an air-driven dental drill 
(Midwest Tradition, FG 1/8 drill bit), or a 3mm biopsy punch (Miltex). A cranial window was 
implanted, replacing a circular piece of skull by a glass coverslip (3 mm diameter, Warner 
Instruments) that was secured in place using a mix of self-curing resin (Orthojet, Lang Dental) 
and cyanoacrylate glue (Krazy Glue). For electrophysiological recordings, the cranial window 
contained two ~1 mm diameter holes pre-drilled and filled with a silicone elastomer (Kwik-Sil, 
World Precision Instruments). A custom 3D-printed headpost was placed around the cranial 
window and affixed to the skull using C&B Metabond dental cement (Parkell). Each animal 
recovered for at least 10 days prior to experiments. 
  
Patterned photostimulation. To activate olfactory bulb glomeruli in specific temporal 
sequences we used a digital micromirror device (DMD) projector system (Mightex Polygon 
400). We also custom built a similar system, using a 473 nm fiber-coupled diode-pumped solid 
state laser (CNI Laser MBL-N-473, 1.5W). The fiber output was passed through a piezo-driven 
homogenizer (Mightex) to remove laser speckle, and collimated and expanded (Thorlabs). The 
beam was then modulated by a DMD (ALP-4.2, Vialux, Germany) to produce light patterns with 
10 µm spatial and 1 ms temporal resolution. These light patterns were projected off a 90/10 
beam-splitter (Thorlabs) into a 4x objective (Olympus) which focused the patterns onto the 
surface of the olfactory bulb. 
 
Mitral cell responses to spot stimulation. NeuroNexus A64 Poly5 2 × 32 probes were used to 
record acutely from two awake animals. Units were detected using Spyking Circus (v0.3.0). 
Single 120µm square spots were stimulated at 15mW/mm2 on the olfactory bulb with ~10 
repetitions per spot, randomly interleaved within a single session. To construct response 
heatmaps, responses are represented as the change in firing rate during the stimulus onset (80ms) 
compared with each unit’s average firing rate within the session. PSTHs were smoothed with a 
3-sigma Gaussian kernel of width 30 ms. 
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Behavioral training. All behavioral events (sniff, stimulus delivery, water delivery, and lick 
detection) were monitored and controlled by custom programs written in Python interfacing with 
a custom behavioral control system (Janelia Research Campus) based on an Arduino Mega 2560 
microcontroller. Behavioral experiments began after at least 7 days of water restriction 
(1ml/day). Mice were housed on a reverse light/dark cycle, and training took place during the 
day. To acclimatize animals to head-fixation and the behavioral setup, animals were shaped by 
water given through a single lick tube until they received their entire 1 ml water ration during a 
session. In subsequent sessions, a second lick tube was introduced. To encourage exploratory 
behavior in subsequent training, animals were rewarded for alternating licks between left and 
right lick tubes. Two-lick shaping sessions persisted until animals successfully received entire 1 
ml water ration in a session. Licking was detected using a capacitive touch sensor (Sparkfun) 
coupled to hypodermic tubing which triggered the release of water droplets by a pinch valve. 
Sniff was monitored using a pressure transducer coupled to a custom Teflon odor port 
(https://github.com/c-
wilson/olfactometry/tree/d885d09d5d9544bc746e732705ecb4618f15dbd0/parts/odor_ports).  
 
Animals performed a 2-alternative forced choice task, in which ‘left lick’ and ‘right lick’ were 
randomly assigned to Target and Non-target patterns for each animal. Trials were randomly 
interleaved in each session (~600 trials/day). Each trial consisted of a stimulus period, a grace 
(600 ms), response period (1 s), and an inter-trial interval with variable duration (5-6 s). On all 
trials, masking LEDs signaled the start of the stimulus period and persisted through the stimulus 
period and delay. A broadband tone (piezo buzzer) signaled the start of the response period. The 
masking LEDs were chosen such that the central wavelength matched that of the optogenetic 
stimulation (473 nm) and were positioned near the animals’ eyes to prevent task performance 
based on visual cues. The animal’s choice is recorded as the first lick during the response 
window. The trial ends as soon as the animal makes a choice during the response window, or 
after the entire window duration has elapsed. During initial training, some mice displayed side-
biased licking, consistent with previous reports in the literature (46). We employed a de-biasing 
procedure which would increase the incidence of trials on the biased-against side(47), and was 
successful at removing this bias and not used after the training period.  
 
Each animal was first trained to discriminate one Target from one Non-target pattern, and after 
exceeding criterion performance of 80%, animals were trained to discriminate the same assigned 
Target from randomly-initialized Non-target patterns. Because of the combinatorial possibilities, 
Non-target patterns were never repeated. During initial training, correct choices were rewarded 
100% of the time but the animal was gradually shaped towards 70% reinforcement. In test 
sessions, probe trials (Target perturbations) were introduced. Probe trials were never rewarded 
regardless of the animals’ responses, substituting a portion of the unrewarded Target or Non-
target trials. Probe trials formed 10% of total trials while Targets and Non-targets formed 45% of 
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trials. Olfactory experiments using a similar trial structure (learned versus probe stimuli) have 
been previously reported(15, 48). 
 
We presented several different types of probe trials. In spatial perturbations, one or more Target 
spots were replaced with randomly selected Non-Target spots, while the activation timing of all 
spots was fixed and equal to the Target pattern activation timing. On any spatial perturbation 
trial, there was an equal probability of having n spots replaced where n ranges from 1 to 5. For a 
given n spot replacement, the combination of spots replaced was randomly chosen.  
 
In random temporal perturbations, the spatial identity of stimulated spots was the same as the 
Target pattern, but the activation onset of one or more spots was changed, with spot duration 
unchanged. For single spot shifts, one randomly-chosen spot with latency 𝑡! is shifted randomly 
by 𝛥𝑡! ∈ {−100,−90,… ,0,10,… ,100} ms. Positive (negative) shifts indicate shifting the spot 
later (earlier) within sniff. Here and later, all temporal shifts are constrained such that the new 
stimulation time 𝑡! + 𝛥𝑡! does not precede inhalation (or 𝑡! + 𝛥𝑡! ≥ 0). For earlier activated 
spots in the pattern, this leads to a range of shift that is asymmetric. This constraint is due to the 
fact that our stimulation patterns are always triggered after inhalation is detected, and it would be 
practically difficult to initiate a pattern at some consistent defined duration before inhalation.  
 
For random shifts of multiple spots simultaneously, we included various shift procedures. 
Because it is practically impossible to sample every combination of spot shifted and shift 
amount, we constrained our shifts in different ways. In one shift paradigm, each spot 𝑖 is shifted 
randomly by 𝛥𝑡! ∈ {−80,−70,… ,0,10,… ,80} ms. In another shift paradigm, we performed 
random scrambling of the order of spots while keeping the timing structure within the pattern 
fixed.  
 
Because these random shifts tend to induce large amounts of shift in the pattern, we also 
introduced an additional shift paradigm biased towards smaller shifts: any spot 𝑖 is shifted 
randomly by 𝛥𝑡! ∈ {−40,−20, 0,20,40} ms with 𝛥𝑡!! ≤ 180 ms. Finally, because of 
differential effects of shifting spot latencies relative to each other versus shifting the entire 
pattern synchronously, we also introduced a shift paradigm where a “global” shift 𝛥𝑡!"#$ ∈
{30,60} ms was applied equally to all spots, in addition to single spot shifts of 
𝛥𝑡! ∈ {−80,−70,… ,0,10,… ,80} ms. To summarize the overall amount of temporal shift in the 
pattern regardless of which combination of spot shifts occurred across all paradigms, we defined 

a value of Euclidean shift = 𝛥𝑡!!! . 

 
In combined spatio-temporal perturbations, one, two, or three spots were first chosen to be 
replaced. The probability of replacements for one spot = 0.6, two spots = 0.3, three spots = 0.1. A 
separate set of spots were temporally shifted randomly by 𝛥𝑡! ∈ {−80,−60,… ,20,… ,80} ms 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2019. ; https://doi.org/10.1101/841916doi: bioRxiv preprint 

https://doi.org/10.1101/841916
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

with 𝛥𝑡! > 0. The probability of temporal shifts for one spot = 0.6, two spots = 0.3, three spots = 
0.1. 
 
Detection thresholds for single spot stimulation.  
3 OMP-ChR2 mice and 2 control albino B6 mice were tested on a Go / NoGo task. Blue masking 
LEDs signaled the start of the trial and persisted through the stimulus period and response 
window (1s), with an inter-trial interval of 4-4.2 s. NoGo trials consisted of a randomly chosen 
single square spot (120µm, 80ms duration) over the olfactory bulb activated between 10 and 
80ms after inhalation onset. If animals licked during the response period of a NoGo trial, the 
interval preceding the next trial was doubled to 8-8.4s as punishment. The intensity of 
stimulation was randomized across NoGo trials, chosen in steps between 2mW/mm2 and 
50mW/mm2. Successful withholding of responses during NoGo trials was not rewarded. On Go 
trials, no optogenetic stimulation occurred, and animals were given water reward for a lick 
response. If animals did not lick, there was no further punishment. 
 
Perceptual distances for lowered laser intensity 
4 OMP-ChR2 mice were trained to discriminate Target from Non-target patterns. For two mice, 
Targets comprised of two spots stimulated at 10 and 50 ms from inhalation, with Non-Targets 
containing two randomly-chosen, off-Target spots. For the other two mice, Targets comprised of 
four spots stimulated at 10, 50, 90 and 130 ms from inhalation, with Non-Targets containing four 
randomly-chosen, off-Target spots. The stimulation intensity used during training was 
100mW/mm2, and all other stimulation parameters, shaping and training procedures, were 
identical to the main perceptual distance experiments. After training, Probe trials were 
introduced, which are Target patterns with different stimulation intensities, randomly chosen in 
integer increments from 0 to 255, with 255 corresponding to the intensity used during training 
and 0 corresponding to no stimulation. 
 
Logistic regression models 
Quantifying spatial and temporal perturbations with logistic regression 
To quantify the effects of spatial and temporal perturbations (Fig. 2) we fit logistic regression 
models (49) with linear terms. For spatial perturbations, we fit: 
 
 logit 𝑝 =  𝛽! + 𝛽!𝑥!

!

 (1) 

 
where p is the probability of making a like-Target response. xi is a binary variable taking the 
value 1 during trials where spot i is replaced and 0 otherwise. Here and later, 𝛽! is the weight on 
spot i, and 𝛽! is the bias. For temporal perturbations, we fit:  
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 logit 𝑝 =  𝛽! + 𝛽!! 𝛥𝑡!!

!

+ 𝛽!! 𝛥𝑡!!

!

 (2) 

 
Where 𝛥𝑡!! ( 𝛥𝑡!! ) is the amount in ms that spot i has been shifted later (earlier) within the sniff 
cycle. 
 
Regression models with interaction terms 
To test the prediction that a linear readout of single spot effects is sufficient to account for spatial 
perturbations, we tested the linear model (Equation 1) against a model that allows for non-linear 
interactions between spots during replacement (Fig. 5C,D): 
 
 logit 𝑝 =  𝛽! +  𝛽!𝑥!

!

+ 𝛾!"𝑥!𝑥!
!!!

 (3) 

 
The model is similar to Equation 1, with an additional weighted term 𝑥!𝑥!, which equals 1 if both 
spots i and j were replaced on the same trial, and 0 otherwise.  
 
To test the prediction of non-linear temporal interactions between spots, we fitted a logistic 
regression model that allows for non-linear interactions between spots during temporal shifts 
(Fig. 5E), which we refer to as 
 
𝛥𝑡 + paired shifts model:  
 
 logit 𝑝 =  𝛽! + 𝛽!! 𝛥𝑡!!

!

+ 𝛽!! 𝛥𝑡!!

!

+ 𝛾!,!∗

!,!

|𝛥𝑡!∗||𝛥𝑡!∗| (4) 

 
The model is similar to Equation 2, with an additional weighted term |𝛥𝑡!∗||𝛥𝑡!∗|, which is the 
magnitude of temporal shift in spot i multipled by the magnitude of temporal shift in spot j, in 
each unique combination of positive or negative shift in spot i and j, with corresponding 
coefficient 𝛾!,!∗ . A positive (negative) coefficient implies that the effect of shifting both spots in 
their specified directions is larger (smaller) than predicted from the sum of effects from shifting 
either spot individually—super-linear (sub-linear) additivity.    
 
Alternative temporal coding regression models 
 
Center-of-latencies (𝑇! model): 
 
 logit 𝑝 =  𝛽! + 𝛽!! 𝛿𝑡!!

!

+ 𝛽!! 𝛿𝑡!!

!

+ 𝛽!!𝛥𝑇! (5) 
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With the center-of-latencies of the pattern defined as 𝑇! =
!!
!

!
!  . 𝛥𝑇! is the difference in center-

of-latencies of the probe pattern compared to the Target pattern. 𝛿𝑡!! ( 𝛿𝑡!! ) is the amount in ms 
that spot i has been shifted later (earlier) within the sniff cycle, but for latency defined relative to 
𝑇!. For example, if spot i in the Target pattern occurred 20 ms before 𝑇!

!"#$%!, and the same spot 
in a probe pattern occurred 40 ms later than 𝑇!

!"#$%, then 𝛿𝑡!! = 40 - (-20) = 60 ms. 
 
𝛥𝑡 + paired time: 
 
 logit 𝑝 =  𝛽! + 𝛽!! 𝛥𝑡!!

!

+ 𝛽!! 𝛥𝑡!!

!

+ 𝛽!,!(𝑡! − 𝑡!)
!!!

 (6) 

 
Similar to Equation (2) but with additional 𝑡! − 𝑡! that considers the relative latencies between all 
pairs of spots. 
 
𝛥𝑡 + reduced pairs: 
 
Same as Equation (6), but only consider 𝑡! − 𝑡! where 𝑖, 𝑗 ∈ {(1,2), (2,3), (3,4), (4,5), (5,6)}. 
 
 
𝑇! model + reduced pairs: 
 
 logit 𝑝 =  𝛽! + 𝛽!! 𝛿𝑡!!

!

+ 𝛽!! 𝛿𝑡!!

!

+ 𝛽!!𝛥𝑇! + 𝛽!,!(𝑡! − 𝑡!)
!!!

 (7) 

 
Same as Equation (5) but with additional 𝑡! − 𝑡!, for 𝑖, 𝑗 ∈ {(1,2), (2,3), (3,4), (4,5), (5,6)}. 
 
Rank order: 
 
We consider a model of the rank order of spots, ignoring the exact latencies of activation. We 
denote with 𝑅! the ranking of spot i in the Target pattern and with 𝑍! the ranking of the same spot 
in the considered probe pattern. In case of ties, we average 𝑍! across simultaneously activated 
spots. The predictor relative to each spot is the change in its rank order, computed as 𝑑𝑟! =
𝑅! − 𝑍! ! 

 
 logit 𝑝 =  𝛽! + 𝛽!𝑑𝑟!

!

 (8) 

 
Null model: 
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 logit 𝑝 =  𝛽! (9) 
 

 
Spatio-temporal Template Matching (STM) model 
We define neural activation space as a N-dimensional space, where N is the number of channels 
(neurons, or glomeruli, or activated spots) conveying neural signals. We represent a spatio-
temporal pattern of neural activity P as a (𝑁 ∗ 2)-dimensional array: 
 
 𝑃 = { 𝑥!, 𝑡! , 𝑥!, 𝑡! ,… , 𝑥! , 𝑡! } (10) 
 
Where 𝑥! is a binary variable indicating whether the i-th channel is active, and 𝑡! is the activation 
onset of the i-th channel. If the i-th channel is not active, then we set 𝑡! to 0. 
 
Given P that is defined as a discrete object, we map it onto a set of continuous waveforms, 
applying the convolution with an exponential decaying kernel ℎ(𝑡; 𝜏!"#) defined as: 
 
 

ℎ(𝑡; 𝜏!"#) = 𝑒! !
!!"# , if 𝑡 > 0

0, if 𝑡 ≤ 0
 (11) 

 
with 𝜏!"# > 0. 
 
The mapping to continuous functions through convolution is defined as: 
 
 𝑃 = 𝑥!, 𝑡! , 𝑥!, 𝑡! ,… , 𝑥! , 𝑡! ↦ 𝛟! 𝑡; 𝜏!"#$, 𝜏!"#  

 

=

𝜙!!(𝑡; 𝜏!"#$, 𝜏!"#)
𝜙!!(𝑡; 𝜏!"#$, 𝜏!"#)
. . .
𝜙!!(𝑡; 𝜏!"#$, 𝜏!"#)

 
(12) 

 
   
 
where 
 
 

𝜙!!(𝑡; 𝜏!"#$, 𝜏!"#) = 𝑒
!!!!!!!!"#$ ∗ ℎ(𝑡 − 𝑡!), if 𝑥! = 1
0, otherwise

 (13) 

 
 
and 𝜏!"#$ > 0. 
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Given an angle 𝜃 ∈ [0, !
!
], we consider in the N-dimensional space N axes rotated by an angle 𝜃. 

We denote with 𝐞!(𝜃) the direction of the i-th axis and project the components of the function 
𝛟𝐏 on these axes: 
 
 

𝑃 ↦ 𝐟!(𝑡; 𝜏!"#$, 𝜏!"# ,𝜃) = 𝜙!!
!

!!!

(𝑡; 𝜏!"#$, 𝜏!"#)𝐞!(𝜃) (14) 

 
The angle 𝜃 can be interpreted as a parameter that represents the relevance of channel identity in 
the readout. For example if, 𝜃 = 0, then channel identity is not relevant and signals from all 
channels are summed up before within-channel comparisons. If 𝜃 = !

!
, then each channel is 

considered independently. For our model fitting, we set 𝜃 = !
!
. We have alternatively fit 𝜃 as a 

free parameter, finding 𝜃 close to !
!
. 

 
Once the patterns are represented through continuous functions, we assign to each pattern P its 
center-of-activity. We defined the center-of-activity 𝑇!  as the timepoint which covers half of the 
waveform area in P: 
 
 

𝑓!!
!!

!!
𝑡; 𝜏!"#$, 𝜏!"# ,𝜃 = 0 𝑑𝑡 =  

1
2 𝑓!!

!

!!
𝑡; 𝜏!"#$, 𝜏!"# ,𝜃 = 0 𝑑𝑡 (15) 

 
 
The center-of-activity essentially represents the overall position of the pattern within the sniff 
cycle. Alternative definitions of center-of-activity yield comparable or poorer fits, such as by 
considering the mean (center-of-mass) of the waveform area, the center-of-latencies or just the 
latency of the earliest-activated spot in the pattern.  
 
Given a target pattern P and a probe pattern Q, we define the perceptual distance between P and 
Q in the following steps: 
 
1. Calculate for each pattern its center-of-activity, 𝑇!  

2. Compute the difference between the centers of activity of the two patterns: Δ𝑇! = |𝑇!! −

𝑇!
!|. 

3. Align the patterns to their center-of-activity. We denote with 𝑃′ the shifted pattern 

 𝑃′ = {(𝑥!, 𝑡! − 𝑇!!), (𝑥!, 𝑡! − 𝑇!!), . . . , (𝑥! , 𝑡! − 𝑇!!)} (16) 

And we do the same for 𝑄!. 
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4. The perceptual distance between the two patterns is given by: 

 𝑑 𝑃,𝑄; 𝜏!"#$, 𝜏!"# ,𝛽!!!""#$%,𝛽!! , 𝜏!!  

= 𝛽!!!""#!" Δ𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝑃′,𝑄′; 𝜏!"#$, 𝜏!"#)+ 𝛽!!(1− 𝑒
!!!!!!! ) 

  

(17) 

Where 

 
Δ𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝑃′,𝑄′; 𝜏!"#$, 𝜏!"#)
= 𝐟! 𝑡; 𝜏!"#$, 𝜏!"# − 𝐟! 𝑡; 𝜏!"#$, 𝜏!"# !

= 𝑓!! 𝑡; 𝜏!"#$, 𝜏!"# − 𝑓!
! 𝑡; 𝜏!"#$, 𝜏!"#

!
𝑑𝑡

!

!!

!

!

!!/! 

 

(18) 

with 𝛽!! , 𝜏!! > 0.  

The animal’s probability p of making a like-Target response to any given pattern then decreases 
with increasing perceptual distance d, given by the logistic function on d: 
 

𝑝 =
1

1+ exp (−𝑑 + 𝛽!)
 

 
Where 𝛽! is the bias term. 
 
Comparison of STM model with regression 
Temporal interactions 
For quantifying temporal interactions produced by the STM model, we first simulated a temporal 
shift dataset of 400,000 trials starting from Target patterns with the same timing structure as in 
the behavioral experiment. On each simulated trial, each spot 𝑖 is shifted randomly by 
𝛥𝑡! ∈ {−100,−99,… ,0,1,… 99,100} ms such that 𝑡! + 𝛥𝑡! ≥ 0. 
 
The responses of the STM model to temporally-perturbed patterns are then fitted with a logistic 
regression model allowing for temporal interactions (Equation 4). The regression coefficients are 
then compared to the same regression coefficients obtained by fitting to animals’ responses for 
all temporal perturbation data excluding synchronous shifts (Fig. 5E). Both sets of correlation 
coefficients were also compared by with Pearson’s correlation.  
 
STM model versus regressions on all data 
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We compared the predictions of the STM model versus regression. For predictions on Non-target 
patterns and all Target perturbations except synchronous temporal shifts, the fitted regression 
model was a combination of the linear spatial and temporal models (Equation 1 and 4): 
 
 logit 𝑝 =  𝛽! + 𝛽!𝑥!

!

+ 𝛽!! 𝛥𝑡!!

!

+ 𝛽!! 𝛥𝑡!!

!

 

 
(19) 

For predictions on synchronous temporal shifts, the fitted regression model was 
 
 logit 𝑝 =  𝛽! + 𝛽!!"#$𝛥𝑡!"#$ 

 
(20) 

Where 𝛥𝑡!"#$ is the amount of synchronous shift.  
 
Model fitting and evaluation 
Logistic regression models 
To quantify the effect of individual spatial or temporal perturbations (Fig. 2), we fit regression 
models using statsmodels in Python (50). We also implemented the same fits using glmnet in R 
(51), with elastic net regression and the elastic net parameter set to 0.5, yielding similar results.  
All other fits were performed with glmnet. For any model comparison, a cross-validation 
procedure was performed. To compare between spatial regression models, 5-fold cross-
validation was performed on all spatial perturbation trials plus Target and Non-target trials, from 
the dataset from all animals pooled together. For comparing regression models to the STM 
model, the full dataset was split into a training set (75% of total trials) and a test set (25% of total 
trials). To fit each model, we performed 5-fold cross-validation on the training set. The 
proportion of each trial type (Target, Non-Target and each type of Probe trial) was kept the same 
within each fold and the test set to match the proportion in the overall dataset. The same splits 
were used across all models we considered. To compare among temporal regression models (Fig. 
S2), the same splitting procedure was used, but restricted to temporal perturbations only. We 
selected as best-fitting parameters those parameters that returned the lowest cross-validated 
prediction error (measured as percentage of incorrectly predicted trials) averaged across folds. 
We then evaluated the accuracy of each model by computing the Brier Score (BS) on the test set. 
For a binary variable x, the Brier Score is defined as 
 
 

𝐵𝑆 =
1
𝑁 (

!

!!!

𝑝! − 𝑥!)! (21) 

 
where 𝑁 is the number of samples, 𝑝! is the predicted probability of a positive outcome in the i-
th sample and 𝑥! is the observed outcome in the i-th sample. BS ranges between 0 (perfect 
prediction of the variable outcome) and 1 (totally wrong prediction). BS is a commonly accepted 
standard for evaluating predictions of binary outcomes, and preferred over measuring the 
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fraction of correctly classified responses (52). In our case, alternatively measuring the percentage 
of correct binary classifications did not change our conclusions. 
 
STM model 
To fit the STM model we used the same training and test sets and splitting folds as for logistic 
regression. We defined a grid in the 5-dimensional parameter space and, for each grid point, we 
computed perceptual distances on the training set trials. Perceptual distances are a function of 
Δ𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, Δ𝑇!  and the bias term. We used logistic regression to find their relative weights 
𝛽!!!""#$%, 𝛽!! and 𝛽! in predicting behavioral choice under a 5-fold cross-validation procedure. 
The parameters for the logistic regression were obtained using the glmnet package in R (elastic 
net penalty parameter = 0.5). We considered as best fitting parameters for the perceptual distance 
those parameters in the grid that returned the lowest prediction error averaged across folds. For 
these parameters we ran again logistic regression on the total training set to estimate the final 
logistic regression weights. We evaluated the goodness of fit of the perceptual metric model and 
the comparison across different models using the test set in the same way we did for logistic 
regression. This grid-search procedure is a brute-force approach and does not guarantee the 
convergence to the optimal solution. Despite this, the fitted STM model performs as well as the 
separate logistic regression fits which are optimized solutions. 
 
Model comparison 
To perform statistical tests on model comparisons, we first computed the Brier Score on a N = 
500 bootstrapped version of the test set. For pairwise model comparisons, we performed a t-test 
on the Brier scores. For comparing between variants of the STM model (Fig. 5B) or variants of 
temporal coding models (Fig. S2), we compared models using ANOVA and post hoc tests 
corrected for multiple comparisons (Tukey's Honestly Significant Difference Procedure). All 
statistical tests were performed in MATLAB. 
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Supplemental Figures 
 

 
 

Figure S1. Effect of spot distances on spatial replacements. Single spot replacement trials were 
grouped by spot position (1 through 6) replaced. Within each group, trials were further 
subdivided (ten bins) by the spatial distance between the position of the Target spot being 
replaced, and the random replacing spot. Responses per bin were then normalized to the mean 
across all bins (i.e. mean response by spot position), and plotted as a single point. Linear 
regression was used to fit all the data (blue, R2 = 0.46, p < .001), or separately to trials with 
distance > 500µm (orange, R2 = 0.35, p < .001). Because the perceptual effect of distance was 
true both at small and large distances, the effect cannot be accounted for by the alternative 
explanation that adjacent spots directly stimulate shared glomeruli. 
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Figure S2. Comparisons across different models of timing (Methods): a centroid model that 
encodes center-of-latencies 𝑇! and individual spot latencies relative to 𝑇!, is compared with 
alternative models in predicting responses to temporal perturbations, on all temporal shift trials 
excluding synchronous shifts (green) and only for synchronous shifts (orange). Dashed line 
indicates mean error for 𝑇! model. Asterisks indicate p < .001 significant difference from 𝑇! 
model, corrected for multiple comparisons. The STM model, which computes centroids over 
template waveforms, is also shown.  
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Figure S3. Individual mouse responses to Target perturbations. (A) Increasing the number of 
spots replaced. (B) Changing spot position replaced in single spot replacement. (C) Changing 
spot position in multiple spot replacement. (D) Changing stimulation intensity. (E) Increasing 
Euclidean shift. (F) Increasing synchronous shift. (G) Single spot shifts. 
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