




 27 

We compared the predictions of the STM model versus regression. For predictions on Non-target 
patterns and all Target perturbations except synchronous temporal shifts, the fitted regression 
model was a combination of the linear spatial and temporal models (Equation 1 and 4): 
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For predictions on synchronous temporal shifts, the fitted regression model was 
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Where!!!!"#$ is the amount of synchronous shift.  
 
Model fitting and evaluation 
Logistic regression models 
To quantify the effect of individual spatial or temporal perturbations (Fig. 2), we fit regression 
models using statsmodels in Python (50). We also implemented the same fits using glmnet in R 
(51), with elastic net regression and the elastic net parameter set to 0.5, yielding similar results.  
All other fits were performed with glmnet. For any model comparison, a cross-validation 
procedure was performed. To compare between spatial regression models, 5-fold cross-
validation was performed on all spatial perturbation trials plus Target and Non-target trials, from 
the dataset from all animals pooled together. For comparing regression models to the STM 
model, the full dataset was split into a training set (75% of total trials) and a test set (25% of total 
trials). To fit each model, we performed 5-fold cross-validation on the training set. The 
proportion of each trial type (Target, Non-Target and each type of Probe trial) was kept the same 
within each fold and the test set to match the proportion in the overall dataset. The same splits 
were used across all models we considered. To compare among temporal regression models (Fig. 
S2), the same splitting procedure was used, but restricted to temporal perturbations only. We 
selected as best-fitting parameters those parameters that returned the lowest cross-validated 
prediction error (measured as percentage of incorrectly predicted trials) averaged across folds. 
We then evaluated the accuracy of each model by computing the Brier Score (BS) on the test set. 
For a binary variable x, the Brier Score is defined as 
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where 𝑁 is the number of samples, 𝑝! is the predicted probability of a positive outcome in the i-
th sample and 𝑥! is the observed outcome in the i-th sample. BS ranges between 0 (perfect 
prediction of the variable outcome) and 1 (totally wrong prediction). BS is a commonly accepted 
standard for evaluating predictions of binary outcomes, and preferred over measuring the 
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fraction of correctly classified responses (52). In our case, alternatively measuring the percentage 
of correct binary classifications did not change our conclusions. 
 
STM model 
To fit the STM model we used the same training and test sets and splitting folds as for logistic 
regression. We defined a grid in the 5-dimensional parameter space and, for each grid point, we 
computed perceptual distances on the training set trials. Perceptual distances are a function of 
Δ𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, Δ𝑇!  and the bias term. We used logistic regression to find their relative weights 
𝛽!!!""#$%, 𝛽!! and 𝛽! in predicting behavioral choice under a 5-fold cross-validation procedure. 
The parameters for the logistic regression were obtained using the glmnet package in R (elastic 
net penalty parameter = 0.5). We considered as best fitting parameters for the perceptual distance 
those parameters in the grid that returned the lowest prediction error averaged across folds. For 
these parameters we ran again logistic regression on the total training set to estimate the final 
logistic regression weights. We evaluated the goodness of fit of the perceptual metric model and 
the comparison across different models using the test set in the same way we did for logistic 
regression. This grid-search procedure is a brute-force approach and does not guarantee the 
convergence to the optimal solution. Despite this, the fitted STM model performs as well as the 
separate logistic regression fits which are optimized solutions. 
 
Model comparison 
To perform statistical tests on model comparisons, we first computed the Brier Score on a N = 
500 bootstrapped version of the test set. For pairwise model comparisons, we performed a t-test 
on the Brier scores. For comparing between variants of the STM model (Fig. 5B) or variants of 
temporal coding models (Fig. S2), we compared models using ANOVA and post hoc tests 
corrected for multiple comparisons (Tukey's Honestly Significant Difference Procedure). All 
statistical tests were performed in MATLAB. 
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Supplemental Figures 
 

 
 

Figure S1. Effect of spot distances on spatial replacements. Single spot replacement trials were 
grouped by spot position (1 through 6) replaced. Within each group, trials were further 
subdivided (ten bins) by the spatial distance between the position of the Target spot being 
replaced, and the random replacing spot. Responses per bin were then normalized to the mean 
across all bins (i.e. mean response by spot position), and plotted as a single point. Linear 
regression was used to fit all the data (blue, R2 = 0.46, p < .001), or separately to trials with 
distance > 500µm (orange, R2 = 0.35, p < .001). Because the perceptual effect of distance was 
true both at small and large distances, the effect cannot be accounted for by the alternative 
explanation that adjacent spots directly stimulate shared glomeruli. 
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Figure S2. Comparisons across different models of timing (Methods): a centroid model that 
encodes center-of-latencies 𝑇! and individual spot latencies relative to 𝑇!, is compared with 
alternative models in predicting responses to temporal perturbations, on all temporal shift trials 
excluding synchronous shifts (green) and only for synchronous shifts (orange). Dashed line 
indicates mean error for 𝑇! model. Asterisks indicate p < .001 significant difference from 𝑇! 
model, corrected for multiple comparisons. The STM model, which computes centroids over 
template waveforms, is also shown.  
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Figure S3. Individual mouse responses to Target perturbations. (A) Increasing the number of 
spots replaced. (B) Changing spot position replaced in single spot replacement. (C) Changing 
spot position in multiple spot replacement. (D) Changing stimulation intensity. (E) Increasing 
Euclidean shift. (F) Increasing synchronous shift. (G) Single spot shifts. 
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