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1 Abstract

Abstract. The con�dent high-throughput identi�cation of small molecules remains one of the most
challenging tasks in mass spectrometry-based metabolomics. SIRIUS has become a powerful tool for
the interpretation of tandem mass spectra, and shows outstanding performance for identifying the
molecular formula of a query compound, being the �rst step of structure identi�cation. Nevertheless, the
identi�cation of both molecular formulas for large compounds above 500 Daltons and novel molecular
formulas remains highly challenging. Here, we present ZODIAC, a network-based algorithm for the
de novo estimation of molecular formulas. ZODIAC reranks SIRIUS' molecular formula candidates,
combining fragmentation tree computation with Bayesian statistics using Gibbs sampling. Through
careful algorithm engineering, ZODIAC's Gibbs sampling is very swift in practice. ZODIAC decreases
incorrect annotations 16.2-fold on a challenging plant extract dataset with most compounds above
700 Dalton; we then show improvements on four additional, diverse datasets. Our analysis led to the
discovery of compounds with novel molecular formulas such as C24H47BrNO8P which, as of today, is
not present in any publicly available molecular structure databases.

2 Introduction

Metabolomics characterizes metabolites with high-throughput techniques. In the past decade, liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS) became widely adopted
by the metabolomics community as a powerful and sensitive analytical platform, but yet only
a fraction of the detected compounds can be e�ectively annotated, even partially. In untargeted
LC-MS/MS experiments, thousands of metabolites can be detected and fragmented from a single
biological sample. The measured fragmentation spectra (MS/MS spectra) are then used to examine
the metabolite's structure. But con�dent high-throughput annotation of those MS/MS spectra
remains highly challenging; this prevents the building of comprehensive knowledge in �elds where
metabolomics has become central, such as biomedical research, natural products drug discovery1,
environmental science, and food science. Tandem mass spectrometry data is often searched against
spectral libraries2; unfortunately, spectral libraries are of limited size, in particular when it comes
to biomolecules3. Although public spectral libraries are being expanded, only a fraction of acquired
MS/MS spectra can be annotated by spectral library searches1,4�6.

Computational methods have been developed that do not search in spectral libraries but rather
in molecular structure databases7. Among these methods, CSI:FingerID8 has repeatedly shown the
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best performance9�12. One reason for CSI:FingerID's improved performance is the integration of
SIRIUS10, deducing the molecular formula of each query as the �rst step of its analysis. Other
tools �lter candidates using the query precursor mass, reducing molecular formula annotation to a
�byproduct�. This worsens identi�cation rates11 and can result in severe �hidden prior� problems13,14.
Identifying the molecular formula is also the very �rst step in structural elucidation using Nuclear
Magnetic Resonance (NMR) or X-ray crystallography, guiding data interpretation based on atoms
and unsaturation degree. The con�dent annotation of molecular formulas from mass spectrometry
data is far from trivial, especially if executed de novo (without a structure database): Here, the
number of candidate molecular formula grows rapidly with the compound size and elements beyond
CHNOPS. To counter this growth, one can use heuristic constraints15 or use only molecular formulas
from some structure database16,17. Restricting the search space will improve the performance of a
method in evaluation, but will prevent the discovery of novel molecular formulas in application.

Arguably the best-performing computational method for molecular formula annotation is
SIRIUS 410, which combines isotope pattern matching15,18�23 and MS/MS fragmentation tree
computation22,24�26. SIRIUS reaches best-of-class performance without �ltering or meta-scores24.
But even SIRIUS has problems annotating molecular formula for compounds above 500 Da:
Böcker & Dührkop24 found that the percentage of correctly identi�ed molecular formulas dropped
substantially for larger masses.

An alternative approach to annotate molecular formulas for a complete LC-MS run uses Gibbs
sampling and Bayesian statistics, utilizing co-occurrence of molecular formulas di�ering by a
prede�ned set of biotransformations27�30. Implicitly, these approaches try to identify molecular
structures (or their isomers) from a restricted structure database, and cannot annotate novel
molecular formulas. Network visualization approaches which connect compounds by hypothetical
biotransformations and common chemical functional groups have been demonstrated to ease
manual molecular formula annotation31. Independently, network-based methods were developed
for structural elucidation and dereplication1,32,33. All of these approaches are based on the fact that
compounds in an LC-MS run usually co-occur in a network of derivatives.

3 Results and Discussion

We present ZODIAC (ZODIAC: Organic compound Determination by Integral Assignment of
elemental Compositions) for con�dent, database-independent molecular formula annotation in LC-
MS/MS data. ZODIAC takes advantage of the fact that an organism produces related metabolites
that are derived from multiple, but limited, biosynthetic pathways. ZODIAC builds upon SIRIUS
and uses, say, the top 50 molecular formula annotations from SIRIUS as candidates for one
compound. ZODIAC then reranks molecular formula candidates using Bayesian statistics. Prior
probabilities are derived from fragmentation tree similarity, which supports reciprocal plausibility
within an LC-MS/MS dataset. On the theoretical side, we establish that �nding an optimal solution
to the resulting computational problem is non-deterministic polynomial time (NP)-hard; to this end,
we resort to Gibbs sampling. Using extensive algorithm engineering, Gibbs sampling running times
were reduced to a practical level. To boost robustness, ZODIAC can integrate spectral library
search hits. We show that ZODIAC improves molecular formula annotation on a diverse set of
biological samples. Furthermore, ZODIAC scores allow us to rank molecular formula annotations
by con�dence. ZODIAC is not limited to molecular formulas from some structure database, allowing
us to discover novel molecular formulas not present in any structural databases.

ZODIAC was evaluated on �ve diverse datasets representing samples from plants, human plasma,
marine microalgae and mice fecal sample, see Supplementary Table 1, 5 and 6 and Supplementary
Fig. 6. Input mzML/mzXML �les were processed with OpenMS34 and low-quality MS/MS spectra

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/842740doi: bioRxiv preprint 

https://doi.org/10.1101/842740
http://creativecommons.org/licenses/by-nc-nd/4.0/


ZODIAC: database-independent molecular formula annotation 3

dendroides

NIST1950
tomato

diatoms

mice stool
0%

10%

20%

30%

40%

50%

er
ro

r r
at

e 
of

m
ol

ec
ul

ar
 fo

rm
ul

a 
an

no
ta

tio
ns

SIRIUS
ZODIAC
ZODIAC anchors

300 400 500 600 700 800
m/z

0%

10%

20%

30%

40%

50%

60%

70%

er
ro

r r
at

e 
of

m
ol

ec
ul

ar
 fo

rm
ul

a 
an

no
ta

tio
ns

Fig. 1:Molecular formula annotation error rates. Left: Error rate on �ve datasets. The rate of incorrect molecular
formula annotations is displayed for SIRIUS and ZODIAC, with and without anchors. For number of compounds and
other statistics, see Supplementary Table 1. ZODIAC reduces error rates on all datasets, but largest improvements
are observed for the dendroides dataset which contains challenging, high molecular mass compounds. Right: Error
rates vs. mass on dendroides dataset. Error rates for SIRIUS and ZODIAC without anchors are binned by compound
m/z ; bins of width 100 are centered at 300, 400, . . . , 800 m/z.

were discarded, see Supplementary Fig. 7, Supplementary Table 2 and 7 and Section Materials &
Methods. We evaluated SIRIUS and ZODIAC against a ground truth which was established by
spectral library search and manual validation.

For all �ve datasets, we observe that ZODIAC outperforms SIRIUS, often substantially
decreasing molecular formula annotation error rates (Fig. 1, left). We �rst consider the dendroides
dataset, for which improvements are most distinctive: This dataset contains many larger compounds,
and 75% of the ground truth compounds have an m/z of 605 or higher (Supplementary Fig. 6).
Hence, this dataset is particularly challenging for molecular formula assignment. Out of the 201
ground truth compounds, the preprocessing assigned an incorrect adduct to three; for these, the
correct molecular formula is not contained in the candidate list considered by ZODIAC. For one
compound, the corrected molecular formula was not ranked into the top 50. For the remaining 197
compounds, SIRIUS correctly annotated 50.76% (100), compared to 96.95% (191) for ZODIAC
without anchors. This represents an 16.17-fold decrease in error rate. Error rates improves for
compounds over the whole mass range, see Fig. 1 (right).

On the NIST1950 and tomato datasets, SIRIUS already showed excellent performance, with
more than 90% correctly annotated molecular formulas. ZODIAC further decreased error rates,
from 8.51% to 5.32% for NIST1950 and 4.44% to 2.22% for tomato. The diatoms dataset is rather
complex, and many compounds may contain halogens and silicon. Here, SIRIUS reaches an error
rate of 12.90%, which is reduced two-fold to 6.45% by ZODIAC.

Mice stool MS/MS spectra were measured with a broader isolation window, and the dataset
contains numerous chimeric and low quality spectra, most of which were discarded before running
ZODIAC. Consequently, ZODIAC has a much smaller network of interdependent compounds than
for the other datasets. But even spectra that were not discarded often have substantially worse
quality than spectra from other datasets: For example, these spectra often contain isotope peaks of
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Fig. 2: Percentage of correct annotations and number of compounds in relation to ZODIAC score. Left:
Percentage of correct molecular formula annotations for di�erent ZODIAC score thresholds for �ve datasets. We
sort compounds by ZODIAC score and calculate the rate of correct annotations for all compounds above the given
thresholds. Right: Percentage of total compounds with a ZODIAC score above di�erent thresholds on �ve datasets.
Here, we consider all compounds, with and without established ground truth. Note that scores on the x-axis are not
equidistant.

fragments or are undetected chimeric spectra. Our evaluation shows that even for this extremely
challenging dataset, ZODIAC improves annotation results, decreasing the error rate from 30.23%
for SIRIUS to 20.93% for ZODIAC.

Some compounds in an LC-MS/MS run can result in high-scoring hits when searching in a
MS/MS spectral library. ZODIAC's stochastic model allows us to integrate these hits as anchors,
assuming that we can trust assigned molecular formulas to a high degree. We performed a 10-fold
cross-validation to assess the improvement using anchors. We ensured structure-disjoint evaluation
on the library hits, as multiple �compounds� in the dataset may correspond to the same structure;
see ref. 8 on the importance of structure-disjoint evaluation. ZODIAC with anchors improves the
error rate on the tomato dataset to 1.48% and on mice stool to 18.60%, but does not improve
results for the other datasets.

For four datasets, ground truth molecular formulas were established by library searching only.
We tested if there is a distinct di�erence between the cosine score of ZODIAC's correct and incorrect
molecular formula assignments, but did not �nd such a di�erence (Supplementary Fig. 8).

We �nd that di�erentiating between adducts [M+H]+ and [M+Na]+ is sometimes challenging for
SIRIUS and ZODIAC. This is observable for the dendroides dataset, where all six incorrect ZODIAC
annotations show an incorrect adduct annotation, mistaking [M+H]+ for [M+Na]+ or vice versa.
In all six cases, the molecular formula of the best ZODIAC hit and the ground truth di�er by
exactly two carbon minus two hydrogen atoms (21.984349 Da), with mass di�erence highly similar
to that between [M+H]+ and [M+Na]+ (21.981944 Da). Sodium-ionized compounds can produce
protonated fragments, making the interpretation of these spectra challenging. We reran ZODIAC on
the dendroides dataset, assuming we knew the correct adduct for each reference compound. For all
201 compounds, the correct hit is contained in the SIRIUS top 50 candidate list. SIRIUS correctly
annotated 67.17% (135) and ZODIAC 99.50% (200) of the compounds, corresponding to a 66-fold
decrease of the error rate. The other four datasets contain fewer sodium adducts.

ZODIAC implicitly tries to estimate the probability that an annotated molecular formula is
correct; as expected from the statistical theory, we �nd these estimates to be imprecise, see Fig. 2.
But the ZODIAC score can be used to di�erentiate between true and incorrect annotations: For
each dataset, we sort molecular formula annotations by the ZODIAC score, and calculate the rate
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of correct annotations for any subset of top-scoring annotations. We �nd that high-scoring ZODIAC
annotations are more likely to be correct, see again Fig. 2. For this evaluation, we also considered
previously discarded compounds for which SIRIUS did not rank the correct molecular formula in
the top 50; for these compounds, ZODIAC cannot �nd the correct molecular formula but at best,
the incorrect molecular formula should receive low ZODIAC scores. Selecting a ZODIAC score
threshold of 0.9 results in more than 96.5% correct annotations while keeping 52.05% to 88.24%
of the compounds of each dataset (Fig. 2). In comparison, spectral library search allowed us to
annotate between 3.78% and 16.55% of a dataset, see Supplementary Table 1.

Novel molecular formulas. We now concentrate on novel molecular formulas, in the sense that
these molecular formulas are not contained in the largest public molecular structure databases
PubChem17 and ChemSpider35. As detailed in Section Materials & Methods, we cannot rule out
that the molecular formula corresponds to, say, the compound minus a water loss instead of the full
compound. Clearly, the structure of any compound with a novel molecular formula is also absent
from the structure databases.

We use strict �lters for both the ZODIAC score, the quality of the underlying MS/MS data, and
the support by other molecular formulas in the dataset. We report molecular formula annotations
from all �ve datasets with a) minimum ZODIAC score of 0.999, b) at least 95% of the MS/MS
spectrum intensity being explained by SIRIUS, and c) at least one molecular formula of the
compound is connected to 20 or more compounds in the ZODIAC similarity network. The third
criterion discards compounds where ZODIAC's results are basically identical to SIRIUS's. This
results in three novel molecular formulas in the tomato dataset and 59 in the diatoms dataset, see
Supplementary Table 3 and 4. Filtering less restrictively (ZODIAC score at least 0.99, at least 90%
of the MS/MS spectrum intensity being explained by SIRIUS), we annotate 31 in tomato, 103 novel
molecular formulas in the diatoms dataset, one in NIST1950 and one in mice stool.

It is understood that some of these annotations may be wrong; unfortunately, a complete
evaluation would require a full structural elucidation, which is experimentally infeasible. But our
results clearly show that ZODIAC allows the user to select a few, potentially highly interesting
compounds from a set of hundreds or thousands with low e�ort. Furthermore, using an example, we
show in the next section that one top-scoring annotation from Supplementary Table 3 is presumably
correct.

Detailed evaluation of a novel bromine-containing molecular formula. We now concentrate
on one particular compound in the diatoms dataset (m/z 588.230, retention time 503.97 sec): This
ZODIAC-annotated compound is protonated and has molecular formula C24H47BrNO8P, which is
indeed absent from the structure databases. The occurrence of bromine agrees with our expectation
that marine organisms can be proli�c sources of organohalogens36. The ZODIAC score of this
annotation is 1.0, the maximum value. We found multiple lines of evidence that this molecular
formula annotation is correct, both in the measured isotope pattern and the three MS/MS spectra
measured for m/z 588.230 (presumably the monoisotopic peak of the isotope pattern), 590.228
(presumably the M+2 peak) and 592.325 (presumably the M+4 peak), see Fig. 3. To annotate
fragments with molecular formulas, we used SIRIUS to compute a fragmentation tree for the MS/MS
spectrum of the monoisotopic peak at m/z 588.230 (Fig. 3e).

1. We compared MS/MS spectra for m/z 588.230, 590.228 and 592.325 (Fig. 3a) and found them
to be highly similar, con�rming that these peaks are indeed isotope peaks of one compound. One
peak �moves� between MS/MS spectra (nominal m/z 570, 572 and 574): This peak corresponds
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Fig. 3:Annotation of a novel bromine-containing compound in the diatoms dataset. (a) MS/MS spectra for
m/z 588.230, 590.228 and 592.325, corresponding to the monoisotopic, the M+2 and M+4 peak. The �moving� peak
at m/z 570, 572 and 574 corresponds to the same molecular formula but di�erent isotopes. This annotated fragment
molecular formula is based on the fragmentation tree in (e) and is the only one containing bromine in these MS/MS
spectra. (b) Partial match to 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine in the NIST library. The mirror
plot compares the MS/MS spectrum of the monoisotopic peak at m/z 588.230 (top) to the NIST library spectrum
(bottom). Displayed molecular formulas were annotated using the fragmentation tree of the query compound (e),
and are identically annotated in the NIST reference spectrum. The substructure of the NIST reference compound
which corresponds to the annotated peaks is highlighted. (c) Mirror plot of measured against simulated isotope
pattern. The top part displays m/z 587 to 595 of the MS1 spectrum with retention time 503.97 sec, measured
prior to the MS/MS spectrum for precursor m/z 588.230. The bottom part is the simulated isotope pattern for
[C24H47BrNO8P+H]+. (d) Putative structure and fragmentation pathway of the novel compound. (e) Fragmentation
tree computed by SIRIUS. Nodes correspond to fragments, edges to neutral losses. Nodes are annotated with the
(neutralized) molecular formula, peak m/z, mass deviation in mDa and relative intensity. (f) Mirror plot of measured
(top) against simulated (bottom) MS/MS spectrum for precursor M+2.

to the fragment with molecular formula C24H45BrNO7P, which is the only annotated fragment
containing bromine.

2. The measured isotope pattern agrees well with the theoretical isotope pattern of
[C24H47BrNO8P+H]+ (Fig. 3c). The M+2 peak of the measured isotope pattern has a relative

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/842740doi: bioRxiv preprint 

https://doi.org/10.1101/842740
http://creativecommons.org/licenses/by-nc-nd/4.0/


ZODIAC: database-independent molecular formula annotation 7

intensity of 106.0% of the monoisotopic peak, which is characteristic for the presence of a
bromine atom.

3. The MS/MS spectrum for m/z 588.230 contains a precursor loss of 79.925 Da, and the only
possible molecular formula explanation of this loss is BrH, considering a mass error of 100 ppm
and elements CHNOPSFIClBrNaKSi.

4. We can simulate an MS/MS spectrum of the M+2 peak that includes isotope patterns of
fragments: We use peak intensities from the MS/MS spectrum of the monoisotopic peak, and
simulate isotope patterns of fragments as described in ref. 37. This allows us to verify whether
the isotope patterns of fragments agree with our theoretical expectations. Indeed, simulated and
measured MS/MS spectra of the M+2 peak show very high similarity, see Fig. 3f. The MS/MS
spectrum of the M+4 peak must be treated with caution, as the precursor's intensity is much
lower and a second compound of higher intensity is present within the isolation window, see
Supplementary Fig. 10. With regards to the moving peak, we can observe matching peaks in the
simulated spectra, too.

5. We do not �nd peaks in the MS1 spectrum at m/z plus 18.01 (indicating water loss), plus 43.99
(carbon dioxide loss) or minus 17.03 (ammonium adduct); similarly, we do not �nd molecular
formulas in PubChem or ChemSpider that correspond to the novel molecular formula plus H2O,
plus CO2 or minus NH3. To this end, we argue that the reported molecular formula indeed
corresponds to the protonated molecule, not an adduct or fragment.

6. The spectrum matches to multiple NIST17 library spectra with di�erent m/z, all of which
are phosphatidylcholines. The top 18 matches have a cosine score above 0.9 and share a set
of characteristic peaks which match to the query spectrum: See Fig. 3b for the best hit, and
Supplementary Fig. 11 and 12 for additional hits. For the set of shared peaks, the molecular
formula annotations of the NIST reference spectrum (as provided by NIST) are identical to
those of the SIRIUS fragmentation tree computed for the query compound (Fig. 3e).

Considering the matching NIST reference spectra, we propose that the query compound is a
brominated phosphatidylcholine. Marine algae are known producers of halogenated compounds38.
Moreover, diatoms posess the biosynthetic pathways to produce halogenated lipids39. Based on the
fragmentation tree analysis and supported by biosynthetical considerations, we propose that the
bromine atom is located on the fatty acid tail40,41. The putative structure and their mass fragments
are shown in Fig. 3d.

Finally, note that there is another novel molecular formula in the diatoms dataset annotated with
high con�dence, namely C24H49BrNO8P, which di�ers from the molecular formula C24H47BrNO8P
by one degree of unsaturation. The corresponding compounds have m/z 590.246 and retention times
523.39 sec and 539.29 sec.

Running times and stability. In practice, application of Gibbs sampling can be limited by high
time demand for burn-in and for sampling a reasonable number of epochs. To avoid this problem, we
have used extensive algorithm engineering to reduce running times, as detailed in Section Materials
& Methods. Running times were measured on a computer with 40 cores (2x Intel XEON 20 Core
E5-2698). We used ten parallel chain, a burn-in of 1,000 epochs and sampling of 2,000 epochs.
ZODIAC required between 1 and 14 min per dataset, whereas SIRIUS required between 3 and 42
min per dataset, see Fig. 4. SIRIUS required most time for the dendroides dataset, which contains
many high mass compounds. For dendroides, NIST1950 and mice stool, ZODIAC computation did
not add much to the total running time whereas for tomato and diatoms, ZODIAC accounts for
roughly one-third of the total running time. In all cases, ZODIAC running time is governed by
constructing the similarity network of molecular formula candidates, whereas running the Gibbs
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Fig. 4: Running time comparison of SIRIUS and ZODIAC on �ve datasets. We run SIRIUS and ZODIAC
on 2× Intel XEON E5-2698 with 40 cores total. �ZODIAC total� running time includes estimation of the edge score
distribution, construction of the similarity graph and computation of ZODIAC scores via Gibbs sampling; the later
running time is also given separately. ZODIAC requires SIRIUS results as input, and total processing time is SIRIUS
time plus ZODIAC time.

sampler has a negligible impact. We did not evaluate our optimized Gibbs sampler against a naïve
version but from theoretical considerations in Section Materials & Methods, we estimate that the
achieved speedup is about 25-fold.

In practice, we can speed up the construction of the similarity network, which depends
quadratically on the total number of candidates: Here, we used the top 50 candidates for each
compound; this conservative approach avoids the exclusion of correct molecular formulas, and also
demonstrates the swiftness of our Gibbs sampling method. But running times can easily be reduced
by considering fewer candidates, in particular for low mass compounds where SIRIUS usually ranks
correct molecular formula much higher. Consequently, ZODIAC can be integrated into existing
pipelines without substantial increase in running times.

With regards to stability and required number of epochs, we see that in the beginning both,
the total network score and the number of correct molecular formula annotations, are increasing.
After 500 to 1,000 epochs the Markov chains reach di�erent local optima. Nevertheless, estimating
the most likely candidates from each chain individually results in 96.95% correct molecular formula
annotation in all 10 cases. In practice, we run 10 parallel Markov chains to allow for parallelization
and to make sampling more robust.

4 Conclusion

We have presented ZODIAC, a Gibbs sampling-based approach for assigning molecular formulas in
biological samples analyzed by LC-MS/MS. Using ZODIAC, we observed substantial improvements
of correct molecular formula annotations, in particular for large compounds; error rates decrease

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/842740doi: bioRxiv preprint 

https://doi.org/10.1101/842740
http://creativecommons.org/licenses/by-nc-nd/4.0/


ZODIAC: database-independent molecular formula annotation 9

a

b c

C35H46O12

[M + Na]+

C30H46N2O14

[M + Na]+

C31H42N6O10

[M + Na]+

C33H44N2O13

[M + Na]+

C38H44O11

[M + Na]+

C33H44N2O13

[M + Na]+

C37H48O12

[M + Na]+

C38H44N4O8

[M + Na]+

C32H48N2O14

[M + Na]+

C34H36N6O10

[M + H]+

C33H40N2O14

[M + H]+
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Fig. 5: Gibbs sampling. (a) Illustration of the Gibbs sampling process. Left: During each epoch compounds are
iterated in random order. For each compound a new active molecular formula candidate is sampled based on prior
probabilities and active candidates of all other compounds. Right: Sampling step for one compound. This illustrated
sub-network with four compounds is based on the dendroides dataset. Each circle corresponds to a molecular formula
candidate. The size depicts the rank estimated by SIRIUS. Orange rings mark active candidates. Edge width depicts
fragmentation tree based similarity between candidates. The candidates which are sampled in this step are colored
cyan. The bottom �gures show the total assignment score of the molecular formula candidate network (b) and
identi�cation rate over the course of epochs (c) for Gibbs sampling on the dendroides dataset.

up to 16-fold. Furthermore, the ZODIAC score allows to select the most con�dent annotations.
Di�erent from many other approaches, ZODIAC is not limited to molecular formulas present in any
(spectral or structural) databases. We have seen that this is not only of theoretical interest: We
con�rmed a novel molecular formula discovered by ZODIAC which is, as of today, not contained in
PubChem or ChemSpider.

We found that adduct annotations are very important for molecular formula assignment, as
it is challenging to deduce this information from isotope pattern and MS/MS data. Hence, high-
quality adduct annotations should be established during preprocessing. In contrast, we observed
that anchors (library hits) have only a small e�ect on molecular formula annotations.

Searching an unknown compound with novel molecular formula in a structure database will
always result in an incorrect hit, and this will often go unnoticed. In contrast, a metabolite
identi�cation work�ow which makes use of de novo annotation methods facilitates the identi�cation
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of highly interesting, new metabolites. Here, ZODIAC constitutes a major step in the discovery
and structural elucidation of novel metabolites, natural products, and other molecules of biological
interest.

Code availability. ZODIAC has been implemented in the SIRIUS software and is publicly available
at https://bio.informatik.uni-jena.de/software/sirius/. The modi�ed version of OpenMS
2.4.0 is available on GitHub (https://github.com/marcus-ludwig/OpenMS/tree/release_2.4.
0_modifications_ZODIAC_workflow). A patch �le containing changes to OpenMs 2.4.0 is available
at https://bio.informatik.uni-jena.de/data/.

Data availability. Input mzML/mzXML �les for the �ve datasets are available at MassIVE (https:
//massive.ucsd.edu/), with the following accession numbers: dendroides (MSV000080502),
NIST1950 (MSV000081364), tomato (MSV000081463), diatoms (MSV000081731) and mice stool
dataset (MSV000079949). SIRIUS and ZODIAC results and a virtual machine to reproduce the
data are available from https://bio.informatik.uni-jena.de/data/.
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5 Online Materials & Methods

Throughout this paper, the entities of interest consist of signals detected by mass spectrometry
where one or more MS/MS spectra have been recorded by the instrument. It is understood that not
all of these signals correspond to compounds in the biological sample; but clearly, only those signals
that do correspond are of interest for our analysis. It is also understood that we usually cannot
ultimately decide whether a certain signal stems from the protonated molecule [M+H]+ or, say, the
protonated molecule with a water loss [M−H2O+H]+ or an ammonia adduct [M+NH3 +H]+. This
is not a problem of our method but rather a general problem of mass spectrometry. For the sake
of readability, we will nevertheless use the term �compound� instead of �hypothetical compound�,
�feature�, �adduct� or �ion�. In contrast, our methods decide for each compound if it is protonated
[M+H]+, a sodium adduct [M+Na]+ or a potassium adduct [M+K]+; in evaluation, compounds
that are assigned a wrong adduct are also assigned a wrong molecular formula and, hence, are always
counted as misannotations.

5.1 Datasets

Dendroides. The extract and fractions of Euphorbia dendroides plants collected in Corsica were
analyzed by HPLC-MS/MS in data dependent acquisition mode on a Orbitrap (LTQ-XL Orbitrap)
in positive ionization mode. These same samples42 were previously investigated and enabled
the isolation and identi�cation of novel diterpene esters, including some endowed with antiviral
activities against the chikungunya and the human immunode�ciency virus43. These structurally
complex and large molecules are characteristic of the Euphorbia genus, and the MS/MS spectra
of the isolated diterpene esters were deposited in the GNPS library (CCMSLIB00000840316 to
CCMSLIB00000840340).

NIST1950. A serial dilution of a plasma methanol extract prepared from the human plasma NIST
reference material (SRM 1950)44, was analyzed in data dependent acquisition mode by UHPLC-
MS/MS on the Q Exactive Orbitrap mass spectrometer in positive ionization mode. Previously,
more than 322 compounds were identi�ed by LC-MS in the SRM 1950 reference material44. Here,
we consider only compounds that were annotated by MS/MS spectral matching with spectra from
the NIST17 MS/MS library.

Tomato. Fresh tomato seedlings samples (Solanum lycopersicum) were extracted in acidic aqueous
methanol, o�ering a wide range of plant metabolites45. Samples were analyzed in data dependent
acquisition mode by UHPLC-MS/MS on a Q Exactive Orbitrap mass spectrometer in positive
ionization mode. Chromatographic separation was performed on mixed-mode C18 columns allowing
weak anion/cation exchange, that results in the retention of both medium polarity compounds and
apolar compounds. We expect a large number of plant metabolite annotations by spectral library
search, including phenylpropanoids and terpenoids.

Diatoms. This dataset consists of solid phase (PPL, Agilent) extracts of the intra- and exo-
metabolomes of a single diatom genus, a major group of marine microalgae. In total, �ve culture
samples of the species Pseudo-nitzschia subpaci�ca (2×), Pseudo-nitzschia delicatissima (2×) and
Pseudo-nitzschia multiseries (1×) were grown in culture from environmental isolates. Cultures
included each diatom species and its associated microbiome resulting in a complex and diverse pool
of metabolites. We expect the occurrence of compounds containing uncommon elements: Marine
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microorganisms can contain halogenated organic compounds such as brominated molecules36;
additionally, the growth medium contained uncommon elements such as silicon and selenium. The
samples were analyzed in data dependent acquisition (DDA) mode by UHPLC-MS/MS on a Q
Exactive Orbitrap mass spectrometer in positive ionization mode. Metabolomics studies of marine
algae are rare, and so, existing libraries are not expected to have many relevant entries, making this
an interesting dataset for testing novel compound identi�cation.

Mice stool. Quinn et al. used this dataset to examine the di�erence between germ free and
colonized mice by metabolomics46. In particular, some molecules were only observed in colonized
mice, including novel conjugated bile acids and other food derived plant metabolites, which showed
the role of the microbiome in their metabolization. Mice stool samples from a microbiome study were
analyzed by UHPLC-MS/MS in data dependent acquisition mode mode on a maXis QTOF mass
spectrometer in positive ionization mode. Due to technical limitations, the maXis QTOF used for
mass spectrometry employs a broader isolation window of (at least 4 m/z ), and makes identi�cation
by computational methods challenging, because isotope peaks can be found in the MS/MS; it also
strongly increases the chance of chimeric spectra (fragmentation spectra comprised of fragments
from multiple compounds, see below).

5.2 Sample preparation and LC-MS/MS analysis

Mass spectrometry data is deposited on MassIVE (https://massive.ucsd.edu/) and MassIVE
accession numbers are speci�ed. The exact set of analyzed mzML/mzXML input �les is listed in
Supplementary Table 7.

Dendroides dataset. Sample Preparation. The latex of Euphorbia dendroides was collected
and an ethyl acetate extract was prepared as described by Esposito et al.42. The extract was
then fractionated in 17 fractions that were subjected to mass spectrometry analysis. Subsequent
puri�cation led to the isolation and structural isolation of thirteen diterpene esters characterized by
extensive NMR spectroscopy and X-ray crystallography di�raction analysis.

Mass Spectrometry Analysis. Mass spectra were acquired between m/z 150 and m/z 1,000. In
the full scan mode, full width at half maximum mass resolution of the Orbitrap mass analyzer was
�xed at 30,000 for MS spectra and at 15,000 for MS2 spectra. Data-dependent MSn mode was
used to monitor 1 to 3 most intense ions with an exclusion duration of 40 sec after 8 repetitions.
Instrumental parameters were set as follows: source voltage: 5 kV, lens 1 voltage: -15 V, capillary
temperature: 275�, gate lens voltage: -35 V, capillary voltage: 25V, tube lens voltage: 65 V. The
CID parameters were set as follow: CE at 30% of the maximum and an activation time of 30 ms.
HPLC was performed with an HPLC Ultimate 3000 system (Dionex, Voisins-le-Bretonneux, France)
consisting of a degasser, a quaternary pump, an autosampler, a column oven, and a photodiode array
detector. Separation was achieved using an octadecyl column (Sun�re, 150 mm × 2.1 mm × 3.5
µm; Waters, Guyancourt, France), equipped with a guard column. Column oven temperature was
set at 25�. Elution was conducted with a mobile phase consisting of water + 0.1% formic acid (A)
and MeCN + 0.1% formic acid (B), following the gradient 5 to 95% B in 40 min, then maintaining
100% B for 10 min at a �ow rate of 250 µL/min. Injection volume was �xed at 10 µL.

Data Availability. The mass spectrometry data were deposited on MassIVE (MSV000080502).

NIST1950 dataset. Sample Preparation. The NIST SRM-1950 human plasma samples were
prepared and extracted with 80% ethanol as proposed in the SRM 1950 paper44.
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Mass Spectrometry Analysis. The SRM1950 samples were analyzed using an ultra-high
performance liquid chromatography system (Vanquish, Thermo) coupled to an Orbitrap mass
spectrometer (Q Exactive, Thermo) �tted with a heated electrospray ionization (HESI-II, Thermo)
probe. Chromatographic separation was accomplished using a Kinetex C18 1.3 µm, 100 Å, 2.1 mm
× 50 mm column �tted with a C18 guard cartridge (Phenomenex) with a �ow rate of 0.5 mL/min.
5 µL of extract was injected per sample/QC. The column compartment and autosampler were held
at 40� and 4� respectively throughout all runs. Mobile phase composition was: A, LC-MS grade
water with 0.1% formic acid (v/v) and B, LC-MS grade acetonitrile with 0.1% formic acid (v/v).
The chromatographic elution gradient was: 0.0 � 2.0 min, 5% B; 2.0 � 10.0 min, 100% B; 10.0 � 12.0
min, 100% B; 12..0 � 12.5 min, 5% B; and 12.5 � 14.5 min, 5% B. Heated electrospray ionization
parameters were: spray voltage, 3.5 kV; capillary temperature, 268.0 �; sheath gas �ow rate, 52.0
(arb. units); auxiliary gas �ow rate, 14.0 (arb. units); auxiliary gas heater temperature, 433.0�;
and S-lens RF, 60 (arb. units). MS data was acquired in positive mode using a data dependent
method with a resolution of 35,000 in MS1 and a resolution of 17,000 in MS2. An MS1 scan from
100-1,500 m/z was followed by an MS2 scan, using collision induced dissociation, of the �ve most
abundant ions from the prior MS1 scan.

Data Availability. The mass spectrometry data were deposited on MassIVE (MSV000081364).

Tomato dataset. Sample Preparation. Tomato (Solanum lycopersicum var. Better Boy) seeds
were surface sterilized in 1.0% (v/v) sodium hypochlorite for 15 min with moderate agitation,
rinsed with 20 volumes of sterile distilled water �ve times, and sown in pots containing peat. Seeds
were incubated in a growth chamber with 16h light/ 8h dark photoperiod and 25± 2� temperature.
Two-weeks after germination, roots were washed, dried and whole seedlings were frozen in liquid
nitrogen and stored at -80C until further extraction. Three seedlings were pooled into 2 mL tubes
and 1.2 mL of acidi�ed aqueous methanol was added (75% methanol (v/v), 24.9% water (v/v),
and 0.1% formic acid (v/v)) to obtain a wide range of plant metabolites45. The samples were then
homogenized in a tissue-lyser (QIAGEN) at 25 Hz for 5 min, and then centrifuged at 15,000 rpm for
15 min. The supernatant was collected in 96 well plates and dried with a vacuum centrifuge. The
samples were resuspended in 130 µL of 7/3 MeOH/H2O containing 0.2µM of amitriptyline (m/z
278.189, 542 sec) as an internal standard. After the plates centrifugation at 2,000 rpm for 15 min
at 4C, 100 µL of samples were transferred into a new 96 well plate for mass spectrometry analysis.

Mass Spectrometry Analysis. Samples were analyzed with an ultra high performance liquid
chromatography device (Vanquish, Thermo Scienti�c) coupled to a quadrupole-Orbitrap mass
spectrometer (Q Exactive, Thermo Scienti�c). Chromatographic separation was performed in mixed-
mode on a Scherzo SM-C18 (Imtakt, Torrance, USA) column allowing weak anion/cation exchange
(250 × 2 mm, 3 µm) with a guard cartridge (Imtakt). The column was maintained at 40�. The
mobile phases used were 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B),
and �ow rate was set to 0.5 mL/min. Chromatographic elution method was set as follows: 0.00�5.00
min, isocratic 2% B; 5.00 to 8.00 min, gradient 2% to 50% B; 8.00 to 13.00 min, gradient 50% to
100% B; 13.00 �14.00 min, isocratic 100% B; 14.00 � 14.10 min, 100% to 2% B;14.10 to 18.00 min,
isocratic 2% B. The injection volume was set to 10 µL. The analyses were performed in electrospray
ionization, operating either in positive or in negative ionization mode with a heated electrospray
ionization source. In positive ionization mode, the following source parameters were used: spray
voltage, +3,000 V; heater temperature, 370�; capillary temperature, 350�; S-lens RF, 55 (arb.
units); sheath gas �ow rate, 55 (arb. units); and auxiliary gas �ow rate, 20 (arb. units). In negative
ionization mode, the following source parameters were used: -3000.0 V; heater temperature, 375�;
capillary temperature, 350�; S-lens RF, 55 (arb. units); sheath gas �ow rate, 55 (arb. units); and
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auxiliary gas �ow rate, 20 (arb. units). The MS1 scans were acquired at a resolution of 35,000 (at
m/z 200) for the 100�1,500 m/z range, and the MS2 scans at a resolution of 17,500 from 0.48 to 16.0
min. The automatic gain control (AGC) target and maximum injection time were set at 5 × 105
and 150ms for MS1 and MS2 scans. Up to four MS2 scans in data-dependent mode were acquired
for most abundant ions per duty cycle, with a starting value of m/z 70. Higher-energy collision
induced dissociation was performed with a normalized collision energy of 20, 35, 50 eV. The apex
trigger mode was used (2�7 sec) and the isotopes were excluded. The exclusion parameter was for
the data dependent parameter was set to 9 sec.

Data Availability. The mass spectrometry data were deposited on MassIVE (MSV000081463).

Diatoms dataset. Sample Preparation. Diatoms of the genus Pseudo-nitzschia, were isolated
from waters o� the Scripps Pier and their associated microbiome were cultured in �ltered Natural
Seawater Media, supplemented with inorganic nutrients (NaNO3, NaH2PO4, Na2SiO3), vitamins
and AQUIL trace metals47. Cultures were harvested in stationary growth phase and media and
intracellular metabolites were solid phase extracted using Bond Elute PPL resin (Agilent) to retain
a wide range of non-polar to polar molecules48,49.

Mass Spectrometry Analysis. The methanol extracts were analyzed by UHPLC-MS/MS on a Q
Exactive Orbitrap mass spectrometer in positive data dependent acquisition mode49. In short, dried
samples were re-dissolved in 100 µL methanol/formic acid (99:1, Fisher Scienti�c, San Diego, USA)
of which 10 µL were injected into a Vanquish UHPLC system coupled to a Q-Exactive Orbitrap
mass spectrometer (Thermo Fisher Scienti�c, Bremen, Germany). For UHPLC separation, a reversed
phase C18 porous core column (Kinetex C18, 150 × 2 mm, 1.8 µm particle size, 100 A pore size,
Phenomenex, Torrance, USA) was used. As mobile phase A H2O + 0.1 formic acid (FA) and solvent
B acetonitrile (ACN) + 0.1% FA was used. The �ow rate was set to 0.5 mL/min and after injection,
compounds were eluted with a gradient from 0�0.5 min, 5% B, 0.5�8 min 5�50% B, 8�10 min 50�99
B, followed by a 2 min washout phase at 99% B and a 3 min re-equilibration phase at 5% B. ESI
parameters were set to 52 L/min sheath gas �ow, 14 L/min auxiliary gas �ow, 0 L/min sweep gas
�ow and 400 � auxiliary gas temperature. The spray voltage was 3.5 kV and the inlet capillary
320�. S-lens voltage was 50 V. MS scan range was 150�1,500 m/z with a resolution at m/z 200
(Rm/z200) of 70,000 with one micro-scan. The maximum ion injection time was set to 100 ms with
an AGC target of 1.0E6. Up to 5 MS/MS spectra per MS1 survey scan were recorded DDA mode
with Rm/z200 of 17,500 and one micro-scan. The maximum ion injection time for MS/MS scans was
100 ms with an AGC target of 3.0E5 ions and minimum 5% C-trap �lling. The precursor isolation
width was set to m/z 1. Normalized collision energy was set to a stepwise increase from 20 to 30 to
40% with default charge state z = 1. MS/MS scans were triggered at the apex of chromatographic
peaks within 2 to 15 s from their �rst occurrence. Dynamic exclusion of precursors was set to a
duration 5 s and precursors with unassigned charge states as well as isotope peaks were excluded
from MS/MS acquisition.

Data Availability. The mass spectrometry data were deposited on MassIVE (MSV000081731).

Mice stool dataset. Sample Preparation. The mice stool samples were obtained and extracted in
70% ethanol as described by Quinn et al.46.

Mass Spectrometry Analysis. The samples were analyzed with an ultra high performance liquid
Chromatography device (UltraMate 3000 Dionex, Fisher Scienti�c, Waltham, MA USA) coupled
with a Bruker Daltonics MaXis qTOF mass spectrometer (Bruker, Billerica, MA USA) as described
in ref. 46. In brief, the metabolites were separated using a Kinetex 2.6 µm C18 (30 × 2.10 mm)
UHPLC column �tted with a guard column. The isolation width was dependent on m/z value, with
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a 4 m/z isolation for 50 m/z to 8 m/z at 1,000 or higher. Lower isolation width results in a drop in
sensitivity.

Data Availability. The mass spectrometry data were deposited on MassIVE (MSV000079949).

5.3 Preprocessing

To ensure reproducibility, we provide a virtual machine comprising all steps of the preprocessing.
The virtual machine incorporates the OpenMS sources, executables and parameter �les and all data
processing scripts written in Java and Python. The work�ow described below is visualized in Fig. 7.

OpenMS. We used OpenMS 2.4.034 to process the mzML/mzXML �les. We performed minor
modi�cations on the OpenMS source code by removing 12 lines and adding 78 lines. This allowed to
detect more isotope peaks, to match MS/MS to MS1 features based on the actual isolation window
and to add functionality to the SIRIUSAdapter to directly output SIRIUS �le format including
retention time information. These numbers are based on the patch �le, see Code availability, and
include lines with comments and blank lines; the modi�cation of a line corresponds to the removal
and insertion of a new line.

Feature �nding and clustering of isotopic mass traces was performed using the FeatureFinder-
Metabo module. Next, adducts were detected with the MetaboliteAdductDecharger module. Finally,
spectra were exported to the SIRIUS speci�c format using the SIRIUSAdapter module. OpenMS
parameter �les are provided as part of the virtual machine. Parameters were chosen by manual
inspection; in particular, we used a small noise intensity threshold to increase chances that isotope
peaks of a compound are picked.

Discarding features and MS/MS spectra. We excluded m/z features which eluted over a very long
time during chromatography and did not produce desired mass traces in a limited time window, as
such traces are considered chemical noise. To do so, we binned MS1 peaks with a bin size of 0.006
m/z. Each MS1 was normalized by the most intense peak. Each peak was counted if its relative
intensity was 0.01 or higher. If a m/z bin contained peaks of more than 20% of MS1 the m/z was
considered chemical noise. Because these spurious chemical noise features have rather high mass
deviation we removed all MS1 features within 30ppm.

Next, we performed blank removal using blank samples from the corresponding datasets.
Features within 15 ppm and 20 s of a blank feature were removed if intensities were lower than
2-fold of the blank feature intensity. We did not perform blank removal on the mice stool dataset,
because this resulted in a low number of remaining compounds.

Third, we removed features from the beginning and end of the chromatography run and features
with low relative or absolute intensity; and we removed MS/MS spectra which could not be assigned
to an MS1 feature, MS/MS of a precursor peak with low absolute or relative intensity, and chimeric
MS/MS. See Table 2 for dataset-speci�c parameter values. Chimeric spectra contain fragments of
multiple precursor ions; we detected chimeric spectra as follows: All peaks within the isolation
window, excluding isotope peaks, were considered to contribute their intensity to the measured
MS/MS. We estimated the relative intensity that the target precursor ion contributes to the MS/MS;
if the target precursor ion contributed to less than 50% of the MS/MS intensity or if a second
precursor ion contributed more than 33% of the target precursor ion intensity, the MS/MS was
marked as chimeric and excluded. The Isolation window width for the Orbitrap mass spectrometer
used for the dendroides, NIST1950, tomato and diatoms is 1 Da; for the mice stool dataset analyzed
on a QTOF mass spectrometer an isolation window of 3 Da width and shifted by 1 Da to the right,
centered at the +1 isotope peak, was assumed.
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Filtering MS/MS spectra. In each MS/MS spectrum, we �ltered peaks using an intensity threshold
of two times the median noise intensity, see Table 2. The median noise intensity of a dataset was
estimated from peaks which had no molecular formula decomposition within a 40 ppm window
considering elements C, H, N, O, and P plus those elements predicted from the isotope pattern, see
below. Isotope peaks were removed from MS/MS spectra of the mice stool dataset.

The SIRIUSAdapter OpenMS module combines MS/MS which are associated with the same
MS1 feature. In addition, complete linkage hierarchical clustering was conducted to merge features
over di�erent LC-MS/MS runs. Features were merged using 15 ppm mass accuracy and a 15 sec
retention time window. Features with di�erent adduct annotations or features from the same run
were not merged. Feature similarity was computed by the cosine product of the MS/MS (see below),
and the similarity threshold for clustering was set to 0.8. When multiple features were merged into
a single one, where each feature has an assigned isotope pattern, then the isotope pattern with the
highest number of isotope peaks was kept. In case multiple isotope patterns had the same number
of isotope peaks, the one with the most intense monoisotopic peak was kept. After merging, features
were discarded if the summed MS/MS intensity was below a threshold, see Table 2. Features with
precursor mass above 850 Da are discarded: Whereas ZODIAC is clearly capable of processing
such features, we found that there are no spectral library hits above this mass that can be used
for evaluation, see below. Only 2.72% of features across all datasets have m/z above 850 Da, so
excluding these cannot have substantial impact on result statistics.

Extending isotope patterns. OpenMS often misses low-intensity isotope peaks. To recover those
peaks, we post-processed OpenMS results as follows: For each isotope pattern detected by OpenMS,
we try to extend it using isotope peaks from the corresponding MS1 spectra chosen by OpenMS.
Isotope pattern peaks were picked using the SIRIUS 4 isotope pattern picking subroutine. If an
additional isotope peak is present in at least 66% of the corresponding MS1, the peak was added
to the isotope pattern. Subsequently, features with less than two isotope peaks are discarded.

Discarding low-quality merged MS/MS spectra. Even when considering all MS/MS spectra for some
features, we sometimes have insu�cient information for both spectral library search and molecular
formula annotation; to this end, such �low-quality features� were discarded. A feature is discarded
if it produces less than 5 fragment peaks, estimated after merging peaks within 10 ppm or 0.0025
m/z from all corresponding MS/MS spectra; and if no fragmentation tree in the top 50 candidate
list can explain at least 5 peaks accounting for at least 80% of total spectrum intensity, see SIRIUS
analysis below. Filtering �low quality� features decreased the number of features for dendroides from
1,078 to 784, for NIST1950 from 568 to 400, for tomato from 3,583 to 2,584, for diatoms from 3,227
to 2,075 and for mice stool from 577 to 377.

For brevity, we will refer to the features detected by OpenMS as compounds, see above.

5.4 SIRIUS analysis and establishing a ground truth

SIRIUS 4 was run with the default alphabet of elements CHNO, and at most 5 phosphorus atoms;
automatic element detection from the isotope pattern50 was enabled for sulfur, chlorine, bromine,
boron, and selenium. For the diatoms dataset, we added silicon to the set of auto-detectable elements.
For the dendroides, NIST1950, and tomato datasets we used 15 ppm maximum mass deviation for
SIRIUS; for diatoms and mice stool datasets we used 10 ppm. Isotope patterns were not used to
�lter molecular formula candidates before computing fragmentation trees.

� If OpenMS provided an ionization adduct type (such as protonation, sodium adduct, potassium
adduct) for a compound, only this ionization was used. We export the 50 best-scoring molecular
formula candidates from SIRIUS.
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� In cases where no ionization adduct type was provided by OpenMS, we selected one or more
adducts from [M+H]+, [M+Na]+, and [M+K]+ by searching for characteristic mass di�erences,
using the MS1 that contained the most intense peak of the precursor ion. Peaks below 5% relative
intensity were discarded for this decision. For each compound, we export the 50 best-scoring
molecular formula candidates; we simultaneously ensure that for each considered ionization
adduct type, at least 10 candidates are considered.

We will refer to this candidate list as the top 50.

To evaluate the performance of SIRIUS and ZODIAC, we had to annotate a subset of compounds
with �correct� molecular formulas, to serve as our ground truth. For this, we combined manual
annotation and spectral library search, as follows: For the dendroides dataset, spectral library hits
were obtained for the isolated molecules that had their reference MS/MS spectra added to the GNPS
library. We used molecular networking and spectral library search in analog mode1, along with a
set of known typical biotransformation, to annotate related diterpene esters. They di�er mainly by
their acylation degree, and the nature of acyl residues on the diterpene backbone. This resulted
in 201 compounds being annotated with molecular formulas by manual analysis of the data, see
Supplementary Table 5.

For the remaining datasets, we performed spectral library searches against multiple libraries,
but did not add manual annotations. We searched compounds in a spectral library combining
GNPS1, MassBank4, NIST17 database (National Institute of Standards and Technology, v17) and
�MassHunter Forensics/Toxicology PCDL library� (Agilent Technologies, Inc.)10. We compute a
similarity score assuming peaks as Gaussians, with the centroided peaks' m/z as the mean and
the standard deviation being the maximum of a relative mass error of 20 ppm and an absolute
mass error of 0.005 m/z. Precursor ion masses are permitted to di�er by 10 ppm or 0.0025 m/z at
maximum. Only library hits with a similarity score of 0.7 or higher and with at least 6 shared peaks
are considered as being valid. We compute the score as the mean of the cosine score of the sample
spectrum and the cosine score of the mirrored spectrum; to mirror a spectrum with precursor mass
M , we replace peak m/z value m byM−m. This resulted in 94 annotated compound for NIST1950,
271 for tomato, 93 for diatoms and 44 for mice stool, see Supplementary Table 6.

We evaluate SIRIUS and ZODIAC against these �ground truth� molecular formulas, but we stress
that beside the molecules that were isolated in Euphorbia dendroides samples and correspond to
level 1 of the Metabolomics Standard Initiative ranking system, not all of these are necessarily
correct. In particular, we refrain from ranking these according to the Metabolomics Standard
Initiative ranking system, where level 4 corresponds to an �unequivocal molecular formula�. An
evaluation is nevertheless meaningful because we expect only few errors on the molecular formula
assignment level.

In few cases, the correct molecular formula was not ranked in the top 50 SIRIUS candidates;
we also dropped these from our evaluation, as it is not possible that ZODIAC can �nd the
correct molecular formula in our evaluation. We discarded four compounds for dendroides, zero
for NIST1950, two for tomato, zero for diatoms and one compound for mice stool because of this
criterion.

See Supplementary Table 1 for details, and see Fig. 6 for the mass distribution of the �ground
truth� compounds. Compounds in the dendroides dataset with reference annotations have high
mass, and 75% of all reference annotations have an m/z of 605 or higher. The NIST1950 dataset
resulted in library hits over a broad range of m/z values. The diatoms library hits have a median
m/z of 301 but the sample itself is highly complex, as described above. Only few compounds remain
in the mice stool dataset after �ltering chimeric and low quality compounds, see above.
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5.5 Posterior probability of an assignment

We use a probabilistic view on the molecular formula assignment problem27: For each hypothetical
compound in the LC-MS run, we are given data such as an isotope pattern and a fragmentation
pattern. This allows us to determine, for each compound c ∈ C, a set of candidate molecular formulas
that may explain the observed data. Let V be the set of all molecular formula candidates, such
that V (c) ⊆ V is the subset of molecular formulas for compound c ∈ C. It is possible that di�erent
compounds share an identical molecular formula explanation, but we ignore this in our presentation,
solely for the sake of readability. An assignment is a mapping a : C → V where a(c) ∈ V (c) is the
molecular formula assigned to compound c. The posterior probability of an assignment a is

P(a | D) =
P(D | a) · P(a)

P(D)
∝ P(D | a) · P(a) (1)

where D is the observed data. We use the terms �prior probability�, �likelihood� and �posterior
probability� according to this Bayesian point of view. Let D(c) be the observed data for compound
c ∈ C, that is, the isotope pattern and fragmentation pattern of c. We assume that the likelihoods
of molecular formulas for di�erent compounds are independent, and that the likelihood of any
compound c only depends on its data D(c); so,

P(D | a) =
∏
c∈C

P
(
D(c) | a(c)

)
.

Next, we de�ne the prior probability of an assignment as the product of priors for pairs of
compounds:

P(a) ∝
∏

c,c′∈C,c 6=c′

∏
u∈V (c)

∏
v∈V (c′)

P(u, v | a(c) = u, a(c′) = v).

Here, P(u, v | �true�) is the prior probability that two compounds with molecular formulas u, v co-
occur in the dataset; analogously, P(u, v | �false�) if u, v do not co-occur. To simplify our calculations,
we introduce a mapping c : V → C that maps any molecular formula to the compound it belongs
to: c(v) = c for all v ∈ V (c), for c ∈ C. Note that c(a(c)) = c for all c ∈ C. Now,

P(a | D) ∝
∏
c∈C

P
(
D(c) | a(c)

)
·

∏
u,v∈V,c(u) 6=c(v)

P
(
u, v | a(c(u)) = u, a(c(v)) = v

)
. (2)

Di�erent from Rogers et al.27, we are able to formulate the posterior probability of an assignment
in closed form. A natural question is if we can �nd a maximum a posteriori estimate for (2);
unfortunately, we will see that this is not easy, as the underlying computational problem is NP-
complete. Another natural question is to sample from the posterior distribution; this will be
addressed below.

5.6 Graph-theoretical formulation

We now give a graph-theoretical formulation of the problem; this will allow us to establish its
computational complexity, but also to come up with a more e�cient algorithm. Let V , the molecular
formula candidates, be the nodes of an undirected graph G = (V,E) with edge set E ⊆

(
V
2

)
. We

will write uv as shorthand for a tuple {u, v} ∈
(
V
2

)
. We use c : V → C as a node coloring with color

set C. Now, an assignment is a subset A ⊆ V such that each color from C appears exactly once; in
this case, A is also called multicolored. Using the notation of the previous section, we have A = a(C);
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recall that c(a(c)) = c for all c ∈ C. Let w : V ∪ E → R be weights for all nodes and edges of the
graph. The weight of the assignment A is

w(A) :=
∑

v∈A
w(v) +

∑
uv∈E,u,v∈A

w(uv) . (3)

This corresponds to the node plus edge weights of a node-induced subgraph of G, for node set
A ⊆ V .

We consider the following optimization problem:

Maximum Multicolored Subgraph problem.We are given a graph G = (V,E), a node coloring
c : V → C and weights w : V ∪ E → R. We search for an assignment A ⊆ V of maximum weight,
that is, a node-induced multicolored subgraph of maximum weight.

How does this problem correspond to our probabilistic problem from the previous section?
Setting E = E∗ :=

{
uv | u, v ∈ V, c(u) 6= c(v)

}
(the set of all node pairs with di�erent colors) and

w(v) := logP
(
D(c(v)) | v

)
and w(uv) := logP(u, v | �true�)− logP(u, v | �false�) (4)

we can show that these problems are in fact equivalent: We have logP(a | D) = w(a(C)) + α for
some constant α ∈ R. Here, we assumed that E = E∗ contains all possible edges; we call (V,E∗) a
complete assignment graph. But we can encode any edge set E ( E∗ using zero edge weight for all
e /∈ E, so both problems are equivalent. Hence, it is natural to ask for an optimal solution of the
problem, which would correspond to a maximum a posteriori estimator.

5.7 Complexity of the problem

For the decision version, we ask if there is an assignment with weight above some threshold τ ∈ R.
In its simplest form, all edges have weight one and all nodes have weight zero, w|E ≡ 1 and w|V ≡ 0.

Lemma 1. The Multicolored Subgraph problem is NP-complete, even for unit edge weights
and zero node weights.

Proof. It is clear that theMulticolored Subgraph problem is in NP. We show that the problem
is NP-hard by reduction from Clique51: Let G = (V,E) be an undirected, simple graph, is there a
clique of size k in G? Clearly, k ≤ n := |V |.

We construct a graph H := G� K̄k as the Cartesian graph product of G and the empty graph
K̄k with k nodes and no edges: That is, for every node v ∈ V we generate k copies (v, 1), . . . , (v, k)
in H, and there is an edge {(u, i), (v, j)} with i 6= j in H if and only if there is an edge uv in G.
Now, k ≤ n implies that H contains at most n2 nodes. We de�ne node colors 1, . . . , k such that
c
(
(v, i)

)
= i for v ∈ V and 1 ≤ i ≤ k. We assign zero node weights and unit edge weights for all

nodes and edges in H. Now, any assignment in H corresponds to a k-node induced subgraph in G,
and the weight of the assignment equals the number of edges in the node-induced subgraph; to this
end, an assignment of weight

(
k
2

)
would correspond to a k-clique in G. ut

The Multicolored Subgraph problem is a generalization of the Multicolored Clique problem; to
this end, Lemma 1 can also be inferred from the complexity of Multicolored Clique, which is W[1]-
hard52. Assuming zero node and unit edge weights, the above construction implies that for any
ε > 0, there is no polynomial time algorithm that approximates the maximum assignment weight
to within a factor better than O(n1−ε), unless P = NP53. Furthermore, �nding an assignment of
weight k cannot be done in time no(k), unless the exponential time hypothesis fails54,55. Finally, we
noted above that we can encode an arbitrary edge set E ( E∗ using zero edge weight for all e /∈ E,
so:
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Corollary 1. The Multicolored Subgraph problem is NP-complete, even for a complete
assignment graph, binary edge weights and zero node weights.

Finally, we consider two problem variants: First, we may allow that some colors from C are
absent from A; in this case, A is called colorful. We can encode this variant in the original problem,
by adding a dummy node for each color which is connected to no other node. Second, we may
assume that only edges carry weight. We can encode the Multicolored Subgraph problem in
this variant, by adding a dummy color for each color and a dummy node for each node, such that if
a node has a certain color, then the dummy node has the corresponding dummy color. We connect
each node to its dummy node, and transfer the weight of the node to the corresponding edge. Hence,
our complexity results also hold for these variants.

On the algorithmic side, it is easy to see that the Multicolored Subgraph problem can be
solved by a simple Integer Linear Program (one variable per edge and one variable per color). We
omit the straightforward technical details. We will not proceed in this direction, as this approach
results in a single optimal solution, whereas we want to consider suboptimal solutions and marginal
probabilities, which allow us to judge our individual con�dence when assigning molecular formulas
to compounds.

5.8 Likelihoods, prior probabilities and graph topology

The likelihood P
(
D(c(v)) | v

)
of a molecular formula candidate v can be computed from the

posterior probability of the fragmentation tree and the isotope pattern analysis as estimated by
SIRIUS 4.010,24. For the Gibbs sampler, we treat these probabilities as likelihoods, although the
analysis SIRIUS 4.0 also integrates certain priors24. To avoid proliferating running times, we usually
limit further computations to the, say, 50 best-scoring molecular formulas for each compound. For
each compound, we also introduce a node representing �molecular formula not identi�ed� which
receives likelihood from the remaining molecular formulas, and is not connected to any other nodes.

Furthermore, we assume that some compounds were identi�ed by searching in a library of tandem
MS spectra, plus potentially by comparison of retention times. We refer to these compounds and the
corresponding molecular formulas as �anchors�. Such library search results can also be wrong, so we
do not exclude other molecular formula explanations, but rather give a bonus to the likelihood of
the identi�ed molecular formula. The �quality� of a spectral library hit can, to a certain extend, be
evaluated using its score, usually the dot product (cosine score) between query and reference. Hence,
the bonus may be dependent on the corresponding library search score. Given the library search
score sl ∈ [0, 1] and a minimum score to consider a library hit minl, we multiply the candidate's
likelihood by

ψ(sl,minl) = exp
(
λ

max(sl,minl)

1−max(sl,minl)

)
. (5)

Candidates which disagree with the library hit or without any library hit are scored using sl = minl.
Note, that any �perfect match� with score of 1.0 will be chosen in any case. We remove any other
candidate for this compound. We refrain from normalizing the ψ to one.

For estimating priors, we will consider similarity of fragmentation patterns32,33: More precisely,
we use similarity between fragmentation trees that were computed by SIRIUS in the previous step.
For each pair of compounds, we have to compare up to 50 times 50 fragmentation trees: For swift
computations, we refrain from using fragmentation tree alignments56 but instead, simply count the
number of common fragments and precursor (root) losses in the two trees56. Evaluations indicate
that this method, while performing worse than fragmentation tree alignments, is still able to detect
structural similarity between compounds56. When counting common root losses, the empty root
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loss is ignored. We introduce two modi�cations to the score from56: Let n1, n2 be size of the two
fragmentation trees, de�ned by the number of fragments and root losses. Instead of normalizing the
number of common fragments plus root losses s by the size of the smaller tree min{n1, n2}, we use

s/n1 + s/n2 (6)

as the normalized score; by this, we slightly penalize large trees, as having common fragments or root
losses is more likely against a large than a small tree. But this score favors small trees and, hence,
inferior molecular formula candidates. To this end, we use the size of the largest fragmentation
tree, among all candidate molecular formulas, for the normalization of each compound; this is the
maximum number of explainable peaks in the tandem MS data of the compound. Fragments and
root losses can be weighted by importance ι. The weight of two common fragments or root losses
m1 and m2 is ι(m1)ι(m2). The weighted size of a tree is

nw =
∑
g∈F

(ι(g)) +
∑
h∈R

(ι(h)) (7)

with fragments F and root losses R. For two molecular formulas u, v ∈ V we denote the resulting
score as s(u, v).

How can we transform this count into a prior probability? Natural choices include signi�cance
estimates such as p-values and posterior error probabilities. We do not have a reasonable model
for the score distribution of �true� edges; in fact, it is not know how to clearly distinguish between
�true� and �false� edges in such a model. To this end, we resort to a simple prior based on p-value
estimation:

P(u, v | �true�) = f(τ) and P(u, v | �false�) =

{
f(s(u, v)) if s(u, v) ≥ τ ,
f(τ) otherwise,

(8)

where τ ∈ R is a thresholding parameter, and f : R→ [0, 1] is a monotonically decreasing function.
We introduce threshold τ because scores below a certain threshold are practically uninformative and
should not be considered in our estimations. For f(x) we estimate the p-value of score x, under the
null model that scores follow a certain distribution. Note that prior probabilities do in fact depend
upon the (mass spectrometry) data.

We now assign node and edge weights according to (4). Clearly, many of these edges have zero
weight and can be removed from the graph. To avoid that nodes are isolated, we want to keep some
edges incident to any node. This can be formulated by individual thresholds τc ∈ R for each color
c ∈ C and, for an edge uv, edge weight

w(uv) := max
{

0,− log f(s(u, v)) + log f(τuv)
}

for threshold τuv := min{τc(u), τc(v)}. This will change the weight of any assignment by an additive
constant and, hence, posterior probability by a multiplicative constant.

5.9 (Faster) Gibbs sampling

We say that a node v is active in an assignment A if v ∈ A, and that an edge uv is active if both
u ∈ A and v ∈ A; then, the weight of an assignment is the sum of weights of all active nodes and
edges.

Gibbs sampling is a Markov chain Monte Carlo algorithm for obtaining a sequence of observations
approximated from a multivariate probability distribution57. Sampling assignments according to (2)
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can be seen as an archetype application of a Gibbs sampler: We start with some assignment, such as
the highest likelihood node (molecular formula) for each compound (color). Each epoch of the Gibbs
sampler consists of |C| steps, where we iterate over all colors c ∈ C in random order: We update
the active node with color c by drawing a node with color c according to its posterior probability,
conditional the current assignment of all nodes with color di�erent from c. At the end of the epoch
we output the current assignment, and repeat until we have reached a su�cient number of samples.
This generates a Markov chain of samples converging to the posterior probability distribution of
assignments. In practice, we discard samples from the beginning of the chain (burn-in period), and
to avoid correlation between nearby samples, we output only every, say, 10th sample.

Assume that u ∈ A with color c := c(u) is to be (potentially) replaced by a new node v with
the same color. The probability of v ∈ V (c), conditional all other nodes z ∈ A with c(z) 6= c, can
naïvely be computed as

P
(
v | A− {u}

)
∝ exp

(
w(v) +

∑
z∈A, vz∈E

w(vz)
)
. (9)

Computing all conditional probabilities for drawing a node v, requires time proportional to the
sum of node degrees for all nodes from V (c). That means running time for one step is of order
O(|V (c)| · |V |) and, hence, Θ(|V |2) for certain graph families.

To apply Gibbs sampling in practice, the critical point is to quickly reach a large number of
samples, so that probability estimates become reliable. To further decrease running time, we assume
that we have, at any step, knowledge about all (log) conditional probabilities, for all nodes v ∈ V (c)
and all colors c ∈ C. We assume that conditional probabilities are not normalized; to sample a
new active node, we uniformly draw a random number between zero and the sum of conditional
probabilities, over all nodes with this color. To improve the sampling speed, we want to estimate
conditional probabilities without performing a full calculation using (9).

Lemma 2. One step of the Gibbs sampler, exchanging some node u by another node v with the
same color c := c(u) = c(v), can be carried out in O

(
|V (c)|+ deg(u) + deg(v)

)
time.

Proof. Let A ⊆ V be the current assignment with u ∈ A. We want to choose a new node v ∈ U from
the set of candidate nodes U := V (c) for color c := c(u). We know the conditional probabilities
P(v | A − {u}) for all v ∈ U ; we sum up the conditional probabilities, then uniformly choose a
random number between zero and this sum and, �nally, use this random number to select one
v ∈ U . This can be carried out in time O(|U |). If u = v then we can stop at this point.

Second, we have to estimate conditional probabilities for all nodes z ∈ V . From (9), we infer
that the conditional probability only changes for those nodes z where there is a change in the
neighborhood N(z) of z, and remains constant for all others. To this end, we iterate over all z ∈
N(u), and decrease the log conditional probability of z by w(uz); then, we iterate over all z ∈ N(v),
and increase the log conditional probability of z by w(vz). Finally, for any node z ∈ N(u) ∪N(v),
we recompute its conditional probability using the exponential function. This can be carried out in
time O(deg(u) + deg(v)); afterward, all conditional probabilities are correct for the new assignment
A− {u} ∪ {v}. ut

Comparing a naïve graph-based implementation of a Gibbs sampler with one that uses Lemma 2,
we can estimate that the speedup is of order Θ(|V (c)|).

For the �rst iteration, we use an arbitrary assignment, then compute all conditional probabilities
using (9). The method requires O(|V | + |E|) memory for storing the graph, and O(|V |) memory
for storing (log) conditional probabilities. The probability of a particular molecular formula v to be
correct, can now be estimated as its marginal probability: that is, the ratio of assignments in the
output that contain v.
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5.10 ZODIAC parameters

We use identical parameters for all �ve datasets, see (5) above: We weight fragments and root losses
when comparing fragmentation trees of molecular formula candidates. Here, we use the SIRIUS 4
noise intensity scoring as importance ι in (7). The probability that a peak p that corresponds to
a fragment and root loss is not noise is ι = 1 − par(int(p)), where par is the Pareto cumulative
distribution function with xmin = 0.002, xmedian = 0.015 and int(p) ∈ [0, 1] the relative peak
intensity, see ref. 24. To establish a threshold on the minimal similarity of fragmentation trees, we
decrease score s and tree sizes n1 and n2 each by 1.0, see (6).

The empirical score distributions resemble a log-normal distribution, see Supplementary Fig. 9,
so we use its Cumulative Distribution Function to estimate p-values for (8). For the robust estimation
of parameters µ and σ2, we sampled 100,000 non-zero scores for each dataset, and used the median
score as parameter µ and the median absolute deviation as parameter σ2. We naturally expect most
edges to be false edges and chose score threshold τ so that 95% of the non-zero scores are smaller
than this threshold. Finally, we use individual thresholds for each compound (color) so that at least
10 molecular formulas of this color are incident to 10 or more edges.

Each molecular formula candidate of some compound receives a score s1, ..., sn, where smax is
the largest score. We transformed SIRIUS scores to probabilities using the softmax function, where
pj = exp(sj − smax) are normalized to sum to one. To adjust for the fact that the correct molecular
formula may not be in the top 50, we added a dummy node receiving the combined probability
of all unconsidered candidates. Dummy nodes are not connected to any other node. SIRIUS does
not report the score of all candidates, as one compound may have tens of thousands of candidates.
Hence, we estimated the probability of all unconsidered candidates by multiplying the number of
unconsidered candidates with the lowest probability of the top 50 candidates.

Finding and scoring ZODIAC anchors. ZODIAC can use (potentially incorrect) spectral library hits
as anchors to improve annotations. To �nd a reasonable number of anchors, we perform spectral
library search in analogue mode. Resulting molecular formula annotations are not considered ground
truth identi�cations but are su�cient as anchors. Only those hits were considered that have mass
di�erences between query and reference corresponding to a frequent biotransformation. We use
the following molecular formula mass di�erences as valid biotransformations27,58,59: C2H2, C2H2O,
C2H3NO, C2H3O2, C2H4, C2O2, C3H2O3, C3H5NO, C3H5NO2, C3H5O, C4H2N2O, C4H3N3,
C4H4O2, C5H7, C5H7NO, C5H9NO, CH2, CH2ON, CH3N2O, CHO2, CO, CO2, H2, H2O, N, NH,
NH2, NH3, O, H4O2 and H6O3.

We use identical parameters for all �ve datasets: When scoring anchors according to (5), we
use the maximum of the cosine score between the spectrum and the cosine score of the mirrored
spectrum as the similarity measure, and minl = 0.5 as the score threshold parameter and λ = 1, 000
as the weighting parameter. For anchors found by spectral library match in analogue mode (that
is, non-identical m/z ), spectral similarity is reduced by 0.1 to account for increased uncertainty.

Searching for anchors as described above resulted in 96 anchors for dendroides, 254 anchors for
NIST1950, 749 for tomato, 372 for diatoms and 176 for mice stool. All spectral hits described in
the previous section are anchors, too; recall that for dendroides, the ground truth was established
manually and those annotations do not serve as anchors.

Burn-in and number of Gibbs sampling epochs. We determined a reasonable number of Gibbs
sampling iterations using the dendroides dataset. One iteration, also called epoch, is de�ned as
one round in which each compound is updated once by choosing a new �active� molecular formula
candidate. We run 10 independent Markov chains, see Fig. 5: The total score summed over all active
candidate at a speci�c epoch increases swiftly over the �rst 500 epochs. Similarly, the number of
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correct annotations at a speci�c epoch increases quickly for most Markov chains until the chain seems
to stay in a local optimum. We note that this number of correct molecular formula is determined
at each epoch whereas ZODIAC scores are computed from the average over many epochs. From
this data, we estimated a burn-in of 1,000 epochs and sampling of 2,000 iterations. Larger values
increase running times but should never worsen results.

In application, we use 10 Markov chains in parallel, a burn-in of 1,000 epochs, and sample 2,000
epochs; we keep only every 10th sample, resulting in a total of 10× 200 = 2, 000 samples.
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6 Supplementary Tables and Figures

Supplementary Table 1: Statistics on compounds with annotated ground truth molecular formulas. Given
is the number of total compounds, the number of compounds with a ground truth molecular formula and the number
which are in the top 50 of SIRIUS ranked candidates. The median m/z and 25 and 75 percentile considers only
candidates in the top 50.

dataset total compounds ground truth # in top 50 1st quartile m/z median m/z 3rd quartile m/z

dendroides 791 201 197 605.310 705.274 759.353
NIST1950 568 94 94 286.390 373.800 477.335
tomato 2,829 271 270 207.814 271.713 334.526
diatoms 2,457 93 93 253.195 301.216 349.237
mice stool 390 44 43 373.274 454.292 516.298
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Supplementary Figure 6: Distribution of compound masses. Distribution of precursor ion m/z of the compounds
used as ground truth for the evaluation of the molecular formula annotation on the �ve datasets. Bins of width 100
are centered at 100, 200, . . . , 800 m/z.
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Supplementary Figure 7: ZODIAC processing and evaluation work�ow. 1) Each LC-MS/MS run is processed
individually; input mzML/mzXML �les are processed using OpenMS, performing feature and adduct detection
and producing �les in SIRIUS input format. Resulting features combine MS1, MS/MS and adduct information.
2,3) Filtering is performed on feature, MS/MS and peak level. 4) Similar features are merged between di�erent runs
using hierarchical clustering; MS/MS are combined and a best isotope pattern is selected per feature. 5) Missing
isotope peaks are searched in MS1 spectra to extend isotope patterns. 6) A �nal feature �ltering step is performed;
the remaining features are considered as compounds. 7) SIRIUS is executed. 8) Compounds with few explained peaks
are discarded, since a badly explained MS/MS spectrum indicates low quality. 9) ZODIAC is run on the remaining
compounds. 10) SIRIUS and ZODIAC are evaluated on the same set of compounds.

Supplementary Table 2: Parameters used to process and �lter LC-MS/MS runs. Features were �ltered by
retention time (min RT, max RT) and minimum relative and absolute intensity of the precursor peak. MS/MS peaks
below an intensity threshold were removed. MS/MS spectra were merged over di�erent LC-MS/MS runs and discarded
if total intensity was below an intensity threshold.

dataset
min RT
(in sec)

max RT
(in sec)

precursor
min rel int

precursor
min abs int

MS/MS peak
intensity threshold

min total intensity
merged MS/MS

dendroides 150 2,400 0.01 10,000 524.1 50,000
NIST1950 200 750 0.01 10,000 2,231.7 50,000
tomato 100 900 0.01 10,000 2,380.6 50,000
diatoms 100 700 0.01 50,000 2,167.8 400,000
mice stool 100 750 0.01 5,000 400.0 10,000

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/842740doi: bioRxiv preprint 

https://doi.org/10.1101/842740
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 Ludwig, Nothias, Dührkop, et al.

0.5 0.6 0.7 0.8 0.9 1.0
cosine score

0

5

10

15

20

25

30
NIST1950 correct

NIST1950 incorrect

0.5 0.6 0.7 0.8 0.9 1.0
cosine score

0

10

20

30

40

50

60

70
tomato correct

tomato incorrect

0.5 0.6 0.7 0.8 0.9 1.0
cosine score

0

5

10

15

20
diatoms correct

diatoms incorrect

0.5 0.6 0.7 0.8 0.9 1.0
cosine score

0

2

4

6

8

10

12

14
mice stool correct

mice stool incorrect

no
. c

om
po

un
d

s

no
. c

om
po

un
d

s

no
. c

om
po

un
d

s

no
. c

om
po

un
d

s

a b

c d

Supplementary Figure 8: ZODIAC assignments vs. cosine scores of the ground truth. For four datasets,
we can only evaluate ZODIAC against a �ground truth� established by spectral library searching. Potentially, some
ground truth molecular formula are wrong, and ZODIAC might have found the correct molecular formula which we
wrongly assign as incorrect. We expect that database hits with relatively low cosine score are incorrect more often.
We have plotted the cosine score for correct and incorrect ZODIAC molecular formula assignments for NIST 1950
(a), diatoms (b), tomato (c), and mice stool (d). We do not observe a noteworthy di�erence in the two distributions;
instead, correct and incorrect annotations appear to be distributed across all cosine scores. This does not mean that
all library hits are correct, but that incorrect library hits are most likely to be found both for ZODIAC correct and
incorrect assignments.
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Supplementary Figure 9:Distribution of fragmentation tree similarity scores. For each dataset, kernel densities
were estimated using 100,000 sampled scores. Scores s(u, v) were computed as described in equation 6 in Section
Materials & Methods.
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Supplementary Figure 10: Spectra of a novel bromine-containing compound in the diatoms dataset. (left)
Mirror plot of measured against simulated isotope pattern for the novel molecular formula C24H47BrNO8P in the
diatoms dataset. The top part displays m/z 587 to 595 of the MS1 spectrum at retention time 505.18 sec. It was
measured prior to the MS/MS spectrum targeting precursor m/z 592.325 and di�erent from the MS1 in Fig. 3c, which
the predecessor MS1 to the MS/MS spectrum targeting precursor m/z 588.230. The bottom part is the simulated
isotope pattern for [C24H47BrNO8P + H]+. We see that close to the M+4 isotope peak, there is a more intense
peak, presumably from a coeluting compound. Clearly, this coeluting compound can substantially a�ect the MS/MS
spectrum. (right) Mirror plot of measured (top) against simulated (bottom) MS/MS spectrum for precursor M+4.
Its intensity is one order of magnitude lower compared to the MS/MS spectrum of the M+2 peak and simulated
intensities should be treated with caution.
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Supplementary Figure 11: Structures of 21 NIST compounds matching to a novel compound in diatoms
dataset. Structures are sorted left to right and top to bottom by cosine score to the query spectrum. All structures
are phosphatidylcholines. Corresponding spectra are displayed in Supplementary Fig. 12.
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Supplementary Figure 12: Spectra of 21 NIST compounds matching to a novel compound in diatoms
dataset. Spectra are sorted left to right and top to bottom by cosine score to the query spectrum, with the lowest
cosine score being 0.893. All spectra share a characteristic set of peaks; peaks matching to the query spectrum are
displayed in black. The corresponding structures are displayed in Supplementary Fig. 11.
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Supplementary Table 3: Novel molecular formulas. All molecular formulas are absent from the largest molecular
structure databases PubChem17 and ChemSpider35. Only molecular formula annotations with a minimum ZODIAC
score of 0.999 are reported such that at least 95% of the MS/MS spectrum intensity is being explained by the SIRIUS
fragmentation tree, and at least one molecular formula of the compound is connected to 20 or more compounds.
There may be more than one hypothetical compound in an LC-MS run being annotated with one molecular formula,
potentially corresponding to di�erent isomers. For such cases, `# comp.' is the number of hypothetical compounds
being annotated with the given molecular formula, and `max score' is the maximum ZODIAC score among these
annotations. The corresponding compounds are given in Supplementary Table

dataset molecular formula # comp. max score

diatoms C24H47BrNO8P 6 1.0
diatoms C22H47NO12 4 1.0
diatoms C19H41NO11 3 1.0
diatoms C21H45NO12 3 1.0
diatoms C23H49NO13 3 1.0
diatoms C13H33N4O5 2 1.0
diatoms C13H33N4O7 2 1.0
diatoms C17H41N4O7 2 1.0
diatoms C17H41N4O8 2 1.0
diatoms C18H43N4O8 2 1.0
diatoms C23H49NO12 2 1.0
diatoms C24H49BrNO8P 2 1.0
diatoms C29H57N5O11 2 1.0
diatoms C8H23N4O5 1 1.0
diatoms C9H25N4O5 1 1.0
diatoms C10H27N4O4 1 1.0
diatoms C10H27N4O5 1 1.0
diatoms C10H27N4O6 1 1.0
diatoms C11H29N4O6 1 1.0
diatoms C12H31N4O4 1 1.0
diatoms C12H31N4O6 1 1.0
diatoms C12H31N4O7 1 1.0
diatoms C13H33N4O6 1 1.0
diatoms C14H33N4O6 1 1.0
diatoms C14H35N4O6 1 1.0
diatoms C14H35N4O7 1 1.0
diatoms C14H35N4O8 1 1.0
diatoms C15H35N4O5 1 1.0
diatoms C15H37N4O6 1 1.0
diatoms C15H37N4O7 1 1.0
diatoms C15H37N4O8 1 1.0

dataset molecular formula # comp. max score

diatoms C16H37N4O7 1 1.0
diatoms C16H39N4O6 1 1.0
diatoms C16H39N4O7 1 1.0
diatoms C16H39N4O8 1 1.0
diatoms C17H35NO11 1 1.0
diatoms C17H41N4O9 1 1.0
diatoms C18H39NO11 1 1.0
diatoms C18H43N4O5 1 1.0
diatoms C18H43N4O7 1 1.0
diatoms C18H43N4O9 1 1.0
diatoms C19H39NO12 1 1.0
diatoms C19H45N4O10 1 1.0
diatoms C19H45N4O7 1 1.0
diatoms C19H45N4O8 1 1.0
diatoms C19H45N4O9 1 1.0
diatoms C21H49N4O10 1 1.0
diatoms C21H49N4O9 1 1.0
diatoms C22H51N4O11 1 1.0
diatoms C23H53N4O11 1 1.0
diatoms C24H49NO14 1 1.0
diatoms C25H44NO9P 1 1.0
diatoms C27H57NO11 1 1.0
diatoms C32H61N5O12 1 1.0
diatoms C32H63N5O11 1 1.0
diatoms C36H71N5O10 1 1.0
diatoms C16H39N4O9 1 0.9995
diatoms C18H43N4O10 1 0.9995
diatoms C23H27O4P3 1 0.9995
tomato C6H16N2O11P4 1 1.0
tomato C27H60N10O4 1 1.0
tomato C6H14N2O16P4 1 0.9995
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Supplementary Table 4: Compounds with a novel molecular formula. Provided are the detailed information
for compounds corresponding to the novel molecular formulas in Supplementary Table 3. All molecular formulas are
absent from the largest molecular structure databases PubChem17 and ChemSpider35.

THIS TABLE IS PROVIDED SEPARATELY IN FILE �compounds_with_novel_molecular_formulas.csv�.

Supplementary Table 5:Manually annotated molecular formulas for compounds in the dendroides dataset.
These molecular formulas serve as ground truth for evalution of SIRIUS and ZODIAC.

THIS TABLE IS PROVIDED SEPARATELY IN FILE �groundtruth_dendroides.csv�.

Supplementary Table 6: Spectral library hits for datatsets NIST1950, tomato, diatoms and mice stool.
The molecular formulas of these library hits serve as ground truth for evalution of SIRIUS and ZODIAC.

THIS TABLE IS PROVIDED SEPARATELY IN FILE �groundtruth_NIST1950_tomato_diatoms_micestool.csv�.

Supplementary Table 7: List of input �les used for evaluation of �ve datasets. The included �les in
mzML/mzXML format correspond to LC-MS/MS runs which were used for evaluation. These runs are subsets of the
data provided at MassIVE repository.

THIS TABLE IS PROVIDED SEPARATELY IN FILE �input_�les.csv�.
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