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Abstract 
 

Variant discovery in personal, whole genome sequence data is critical for uncovering the 

genetic contributions to health and disease. We introduce a new approach, Aquila, that uses 

linked-read data for generating a high quality diploid genome assembly, from which it then 

comprehensively detects and phases personal genetic variation. Assemblies cover >95% of the 

human reference genome, with over 98% in a diploid state. Thus, the assemblies support 

detection and accurate genotyping of the most prevalent types of human genetic variation, 

including single nucleotide polymorphisms (SNPs), small insertions and deletions (small indels), 

and structural variants (SVs), in all but the most difficult regions. All heterozygous variants are 

phased in blocks that can approach arm-level length. The final output of Aquila is a diploid and 

phased personal genome sequence, and a phased VCF file that also contains homozygous and 

a few unphased heterozygous variants. Aquila represents a cost-effective evolution of whole-

genome reconstruction that can be applied to cohorts for variation discovery or association 

studies, or to single individuals with rare phenotypes that could be caused by SVs or compound 

heterozygosity. 
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Introduction 
 

Despite recent advances, quantifying the contribution of genetic variation to specific disease risk 

is a stubborn biomedical problem that remains far from solved. In general, understanding the 

relationship between genotype and phenotype requires complete ascertainment of genotype, 

which for humans has yet to be achieved in a scalable fashion. At this stage in technology 

development, DNA sequencing still faces a vexing tradeoff between cost and completeness so 

that discovery of variation in larger cohorts is limited to SNPs and small indels. In fact, the 

relatively low cost of Illumina-based short-fragment whole genome sequencing and the even 

lower cost of exomes and genotyping arrays has caused considerable ascertainment bias such 

that the vast majority of genotype-phenotype associations focus on SNPs with small effect, even 

though the undetected larger variation is known to involve roughly as many bases in our 

genomes as SNPs and is therefore predicted to have significant phenotypic impact as well 

(Redon et al. 2006; Weischenfeldt et al. 2013). Also generally missing is the phasing of genetic 

variation, which is similarly important for estimation of phenotypic impact, as the distinction 

between cis and trans compound heterozygotes in an essential locus can mean the difference 

between health and disease (Lupski et al. 2010) and is likely to modulate risk of multigenic 

disease as well (Jiang et al. 2018). 

 

Single-molecule sequencing approaches, particularly Pacific Biosciences (PacBio) and Oxford 

Nanopore Technologies (ONT), provide potential solutions, as long-range information allows 

accurate detection of SVs and phasing (Coster et al. 2018; Huddleston et al. 2017; Cretu 

Stancu et al. 2017). However, the drawback of both approaches is that they exhibit poor base-

pair level accuracy, leading to high error rates for SNPs and imprecise breakpoint estimation for 

small indels and SVs. A widely applied solution has been to supplement long reads with higher 

quality short read data, but these ensemble approaches are difficult to scale to larger cohorts 

due to the complexity of data generation, integration, and analysis, and have therefore been 

limited to small sample sizes in proof-of-principle studies (Rhoads and Au, 2015; Fan et al., 

2017). A solution to making long reads more accurate is to sequence the same single molecule 

multiple times to reduce error, for example as implemented in the PacBio circular consensus 

sequencing (CCS) approach (Travers et al. 2010; Larsen et al. 2014; Wenger et al. 2019). 

However, CCS requires several-fold oversampling of the same molecule, a currently expensive 

proposition for anything but small sample sizes. 
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A relatively recent addition to the DNA sequencing ecosystem has been pioneered by 10X 

Genomics, wherein the original large molecules of a gentle DNA preparation are partitioned into 

microfluidic compartments (Zheng et al. 2016; Wang et al. 2019). Via a series of within-

compartment molecular biology and subsequent standard steps of library construction and 

sequencing, barcoded short reads are produced that retain the long-range information of the 

long fragments of the initial DNA extract. Due to the combination of high base pair-level 

sequence accuracy and long-range information, 10x/Illumina data therefore support excellent 

SNP and small indel detection and phasing (Zheng et al. 2016), as well as breakpoint detection 

of large events in cancer (Zheng et al. 2016; Spies et al. 2017; Elyanow et al. 2017). For diploid 

genome reconstruction, 10x developed the de novo assembler, Supernova, which has been 

shown to produce whole human genome assemblies from 56-fold coverage 10x/Illumina data 

(Weisenfeld et al. 2017; Zhang et al. 2019a). 

 

The application of assembly approaches to human genomes has been limited even though they 

allow powerful identification of SVs (Nattestad and Schatz, 2016, n.d.; Fan et al., 2017; Wala et 

al., 2018). Long-read based assemblies, such as those from PacBio data performed by 

FALCON-Unzip (Chin et al. 2016), exhibit respectable contiguity and variant detection but still 

suffer from high cost (Rhoads and Au 2015). Supernova assemblies based on 10x/Illumina data 

are less expensive and allow detection of all types of variation but power is limited because a 

substantial fraction of the genome is not assembled in a diploid state and genotyping error is still 

high (Zhang et al. 2019b). Overall, cost-effective assembly-based approaches still suffer from 

incomplete resolution of the diploid genome and limited power of variant detection in a personal 

genome. On the other hand, assembly-based approaches have two advantages: detection of 

variants is greatly simplified to pairwise alignments rather than complicated read-map based 

inference, which is particularly challenging for indels; and the detection of sequences not 

present in the reference. 

 

Compared to reference-based approaches (Pop 2004), the competitive disadvantage of de novo 

assembly methods is that they disregard the high information content of the reference. 

Depending on genetic background, greater than 99.5% of anybody's two haplomes is identical 

to the reference, which therefore constitutes a highly accurate scaffold for personal genomes. It 

stands to reason that, in principle, an assembly-based method that incorporates information 

from the reference sequence should combine the advantages of both approaches. We were 

therefore motivated to develop a new approach to accomplish these three goals via a reference-
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assisted, assembly-based approach: high quality diploid personal genome reconstruction; 

accurate detection of SNPs, indels and SVs; phasing of all types of variants. 

 

Our method, Aquila, makes use of the reference genome by performing local assembly in small 

chunks separately for each haplotype, yielding a diploid whole genome consisting of local, 

phased, contigs whose scaffolding is provided by the reference sequence. It then discovers the 

most important types of variation on the basis of pairwise alignment to the reference, and infers 

phasing for all types of assembled variants through previous long-range phasing information. 

We tested its performance with six libraries of 10x linked-reads data for NA12878 and NA24385 

individuals. It offers excellent small indel and SV detection at virtually no compromise for SNP 

detection, as well as highly accurate phasing of the vast majority of heterozygous variants, at 

reasonable reagent and computational costs. 

Results 
 
Aquila architecture and workflow 
 

Aquila consists of four stages (Figure 1A): Haplotyping and sorting inferred long fragments and 

their reads into the two parental bins, locally partitioning reads of each bin, assembling each 

local partition into sequence contigs, and finally variant calling and phasing.  

 

Each stage has been implemented as a specific module (Figure 1B). In the Haplotyping module, 

the original long DNA fragments are reconstructed based on barcode-aware alignment of the 

reads to the reference sequence. In parallel, SNPs are detected based on these same 

alignments. Fragments are then clustered into either parental bin labeled by each pair of 

heterozygous SNPs, and a probabilistic model (see methods) is applied to exclude clusters 

caused by sequencing errors. The clusters are then merged into fewer but larger ones by a 

greedy recursive algorithm, preserving the separation of parental bins. The resulting clusters 

contain all reads from a haplotype block of one parent only and are therefore free of allelic 

variation, greatly simplifying the later assembly steps. 

 

Before assembly is carried out, haplotype blocks whose lengths exceed a user-defined 

threshold (default = 200kb) are partitioned into smaller chunks (default = 100kb) by the 
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Contiguity module. This step is necessary because a considerable fraction of the data is in large 

phase blocks (up to the length of an entire chromosome arm) and handing all these reads to the 

assembler would partially defeat Aquila's motivation to sidestep the extreme complexity of 

whole-genome de novo assembly. Thus, the assembly must be broken down into smaller 

chunks, preferably in places that are highly likely to produce locally correct assemblies, so that 

contigs from neighboring sub-assemblies can be spliced back together at the partitioning points 

with high confidence (see Methods; Supplemental Figure S1). The locations of the partitioning 

points are therefore selected such that (1) they are not within repeats in the reference genome 

and (2) exhibit the expected read coverage and perfect mapping uniqueness in the 

abovementioned short-read alignments. 

 

The Assembly module (using SPAdes but any appropriate assembler can be used) produces 

the complete set of "minicontigs" from the partitions, which are then spliced together to produce 

final contigs (Supplemental Figure S1). While the emphasis in personal genomes is on 

producing variant calls (see below), we note that traditional short-read-based methods that go 

directly from read alignment to variant call do not produce contigs as output. The set of final 

contigs represents a valuable personal resource in the form of a genome sequence. 

 

The Variation module then aligns the assembled contigs to the reference. All of the small indels 

and SVs that Aquila reports are detected on the basis of these pairwise alignments. SNPs are 

also detected but this assembly-based set is merged with the initial set of SNPs identified on the 

basis of the barcode-aware read alignment performed by the Haplotyping module. The last step 

in the Variation module is the phasing of all discovered heterozygous variants. The final output 

is a VCF with all phased variation that also includes all detected variants for which the individual 

is homozygous compared to the reference sequence, and the small fraction of heterozygous 

variants that could not be phased. 

 

Characteristics of Aquila assemblies of six libraries 
 

To explore the performance of Aquila we generated six libraries of 10x linked-read sequencing 

data from gentle DNA preparations of NA12878 and NA24385 cell lines. The average inferred 

DNA fragment lengths and their distributions varied among libraries (Supplemental Table S1). 

We numbered them for each individual according to physical coverage, in ascending order. All 

of the libraries had approximately 100x Illumina sequencing coverage, except L2 which had 
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192x. We assembled these libraries with Aquila and compared standard assembly statistics with 

Supernova 2 assemblies (Zhang et al. 2019b) of the same libraries (Table 1, Supplemental 

Figure S2). Contiguity, as measured by Contig N50, was generally greater than 100kb; NA50, 

which is the N50 of contigs after breaking at potential misassemblies by comparison to the 

reference genome, was in most cases less than 5% lower, indicating few misassemblies. We 

note that using the reference to identify potential misassemblies is a conservative approach 

given that it is not the same individual as the sequenced one. Contiguity generally increased as 

a function of physical coverage (CF; L5 producing the best result at CF=803x and CR=0.08), and 

was greatest with a weighted fragment length of around 150 kb (Supplemental Figure S2). 

 

The fraction of the reference genome covered by the assemblies ranged around 95%, indicating 

that the vast majority of the non-N and not highly repetitive regions of the genome were covered 

by all libraries assembled by either Aquila or Supernova2. Aquila consistently produced 98% of 

this fraction in a diploid state, compared to Supernova's 73-78% (Table 1). This key metric 

indicates that Aquila produces assemblies that have the potential to support diploid variant 

detection genome-wide. 

 

Aquila also seamlessly supports combining different libraries, if greater contiguity is desired than 

is achievable with a single library (Supplemental Figure S3). To illustrate this, we computed the 

same metrics as for the single libraries for the combination of L5 and L6 from NA24385. Contig 

N50 increased by 30-40% to 178kb, the fraction of reference genome assembled rose to 97%, 

and the diploid fraction reached 99% of the assembled genome. While assembly statistics 

represent an important facet for evaluation of Aquila, the ultimate metric for the usefulness of 

the approach is how well it detects genetic variation. We therefore evaluated the assemblies for 

their ability to support detection of SNPs, small indels, and larger structural variants. 

 

Assembly-based detection of SNPs and small indels 
 

We first evaluated assembly-based SNP and small-indel (<50bp) detection by comparing 

Aquila's calls against the Genome in a Bottle (GiaB) benchmark callsets (Zook et al. 2019). The 

libraries with the best assembly statistics, L3 (from NA12878) and L5 (from NA24385), achieved 

97.4% and 97.8% accuracy (F1 metric) for SNPs (Table 2; Supplemental Table S2) and >93% 

accuracy for the high-confidence set of GiaB small indels (Table 3; Supplemental Table S3). 

Genotyping errors for the calls that matched GiaB were 0.14%-0.16% for SNPs and 1.61% to 
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1.90% for high-confidence small indels. The total numbers of assembly-based SNP calls 

(Supplemental Table S4) were 3,971,444 (L3) and 3,882,869 (L5), compared to the total 

numbers of FreeBayes-based calls performed on the barcode-aware read alignments of 

3,949,721 (L3) and 3,961,684 (L5). Numbers of heterozygotes or homozygotes are also 

comparable between the two approaches (Supplemental Table S4). We note that Aquila 

produces numbers of assembly-based SNP calls for these two individuals that are consistent 

with those previously produced from standard short-fragment Illumina libraries (Wu et al. 2017; 

Supernat et al. 2018; Li et al. 2018). 

 

Compared to the GiaB small indel callset, Aquila produces considerably more calls (e.g., 

1,007,313 in L3 vs GiaB's 531,382; Supplemental Table S5). This difference is due to the 

current incompleteness of the GiaB callset especially among longer small indels, as well as a 

false-positive rate of the Aquila calls that we cannot rigorously estimate outside of the GiaB 

regions. The size distribution of Aquila's small indels matches the size distribution of the GiaB 

calls very closely, exhibiting the same 2bp periodicity such that insertions or deletions of an 

even length are more common than those that are one base longer or shorter (Supplemental 

Figure S4). At lengths above 30bp, where GiaB has very few calls, the Aquila calls continue to 

exhibit this pattern. The correlations between the Aquila and GiaB distributions of the 1-49 bp 

indel calls are R2=0.997 and 0.998 of the raw counts, and 0.930 and 0.951 for the natural log of 

counts, for insertions and deletions, respectively. 

 

Assembly-based detection of structural variants 50bp and greater 
 

Aquila calls ca. 17,000 deletions and ca. 6,000 insertions 50bp and greater in each high quality 

library (L2, 3, 5, and 6; Supplemental Table S6). The size distributions follow the expected 

exponential distribution with a peak at ca. 330 bp, which is caused by full-length or nearly full-

length Alu elements (Figure 2A). The number of calls is comparable but consistently lower than 

recent estimates from a comprehensive study that focused exclusively on SVs in a cohort of 

long-read sequenced individuals, including two haploid samples, in which purpose-driven 

approaches were applied to achieve high sensitivity of detection of shared SVs (Chaisson et al. 

2019; Audano et al. 2019). We do not expect to reach the same level of detection in a single 

personal genome without the benefit of leveraging several individuals to inform discovery, but 

we are able to apply several metrics to characterize Aquila's SV calls (Figure 2B-G). 
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We initially used a combination of three strategies to validate the SV calls in both individuals: 

First, for both individuals, PacBio data exist that we applied with svviz2 (Spies et al. 2015) to 

test Aquila's calls with another data type; second, the two individuals are expected to share a 

large fraction of SVs, so we performed simple comparisons of the call sets; third, we aligned the 

SVs and flanking sequence to two high quality ape genomes (Chimp and Orang). Given the 

complexity of SV calling we expect to have both false negative and false positive calls, which is 

underscored by the fact that different libraries from the same individual produce strongly 

overlapping but not fully identical call sets. The calls that are shared between libraries validate 

(by at least one of the abovementioned three metrics) at 92% for NA12878 and 82% for 

NA24385 (Figure 2B), whereas calls unique to each library validate at lower rates (40% to 52%). 

This shows that we do not have perfect sensitivity (because there are many validated calls 

unique to a single library) and, conversely, that the nonvalidated set of calls unique to a library 

likely contains false positives. 

 

The number of SVs validated by svviz2/PacBio is higher than those validated by the other two 

approaches (Figure 2C), since the PacBio data is from the same individual as the respective 

assembly. However, there are many SVs that are not validated by PacBio but that are also 

called in the other individual or are validated by comparison to ape sequences. This effect is 

greater for deletion calls than for insertion calls (Figure 2C), which suggests that insertions may 

be called at higher specificity and lower sensitivity than deletions. This interpretation is 

consistent with a predicted shortcoming of the current implementation of Aquila, which because 

of its reliance on the reference sequence to identify reads for assembly has decreasing power to 

assemble insertions as their size increases. 

 

We also assessed the consistency of the breakpoints of the calls that are shared between the 

two individuals (Figure 2D,E). We binned the SVs based on the size differences between the 

calls in NA12878 and NA24385, as a function of validation by the other two approaches (Figure 

2D) or as a function of sequence type (Figure 2E). Overall, the vast majority of calls have 

precisely the same breakpoints in both individuals. Deletions or validated calls have better 

precision than insertions or nonvalidated calls, and SVs in repeats have worse precision than 

nonrepetitive sequences. 

 

Genome in a Bottle Benchmark Comparison 
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During the course of this work, the first GiaB SV benchmark, v0.6, was released. It is based on 

the HG19 reference sequence and is specific to NA24385, with 9397 SVs greater than 50 bp in 

the call set. Accuracy (F1 metric) of Aquila calls, assuming all GiaB calls are correct, ranges 

from 52% to as high as 87% depending on the type of variant and the location in which it occurs 

(Table 4). This compares favorably with results obtained from Supernova assemblies of the 

same libraries (Zhang et al., 2019b). In general, Aquila’s recall performance is better than 

precision, which is likely due to a combination of a rate of actual false positives called by Aquila 

and an unknown number of false negatives in the GiaB callset. 

 

Inference of derived alleles 
 

SV calls are labeled with respect to the reference sequence as 'insertion' or 'deletion', but the 

molecular mechanism that generated the SV may be the opposite of the call because the 

reference sequence is a random sample of ancestral and derived alleles from the population. 

Where the reference carries a derived allele, the actual molecular mechanism that generated 

the SV is the opposite of the call because the assembly carries the ancestral allele. For those 

SVs with alignments to ape genomes, the SV allele matching the ape sequence is highly likely 

to represent the ancestral state, and the other allele is derived, allowing inference of the actual 

molecular mechanism that generated it (Figure 2F). Classifying the SVs accordingly ("actual" 

insertion or deletion) causes a striking shift in the size distributions of insertions and deletions in 

both individuals (Figure 2A,G), in which the vast majority of SVs that overlap Alu repeat 

sequences are now revealed to be actual insertions (Figure 2G). This provides empirical 

evidence that the classification into ancestral and derived alleles is largely correct, as Alus are 

known to insert as full length sequences, whereas partial Alus are degenerate copies that arise 

later in evolution from deletions whose breakpoints can be anywhere in the element. 

 

Genome-wide distribution and phasing of all variation 
 

To interrelate the different types of variation detected by Aquila and to ask whether there were 

any obvious biases we divided the genome into bins of 250kb and quantified tandem repeat 

content, contig density, and variation content by genotype from the assembly of L3 (Figure 3). 

Contig density, which over the vast majority of the genome is exactly 2 because of the diploid 

nature of the assemblies, does not correlate with any variation and only weakly with repeat 

content. Repeat content correlates weakly with the number of SVs. As expected, numbers of 
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SNPs and very small indels correlate strongly when the genotype is the same (heterozygous or 

homozygous), and weakly with larger small indels, which in turn correlate weakly with SVs. 

Overall, the correlation patterns do not reveal any large-scale biases in variation discovery. We 

also note that the fraction of variants that are heterozygous varies over a narrow range across 

all types and sizes of detected variation (Supplemental Figure S5), again revealing no obvious 

biases. 

 

The last step in Aquila's pipeline is a final integrative phasing of all of the discovered 

heterozygous variation on the basis of the phase blocks obtained with heterozygous SNPs in 

the Haplotyping module (Table 5). Depending on the library, between ca 1.7 and 2 million SNPs 

were initially phased (Supplemental Table S7). Because the parental genotypes are known for 

the two individuals we could quantify the phasing error, which is dominated by switch errors that 

involve a single, presumably incorrectly genotyped, SNP (Table 5). Long switch errors are quite 

rare, comparing favorably with previous work using 10x data and a variety of phasing algorithms 

(Shajii et al. 2018; Marks et al. 2019). Because SNPs are the densest type of polymorphism in 

human genomes, phasing other variants on the basis of these is feasible. Instead of 

probabilistic imputation, however, Aquila performs straightforward inference by matching the 

assembly-based SNP calls with those of the Haplotyping module and then simply inferring the 

correct phase (Supplemental Figure S6). In total, Aquila added ca. 1 million heterozygous 

variants, including 0.5 – 0.8 million previously unphased SNPs, ca. 0.5 million small indels, and 

ca. 10,000 heterozygous SVs in the best four libraries (Supplemental Table S7). 

 

Discussion 
 

We introduce a new method, Aquila, which uses a high-quality reference sequence to perform 

assembly in small chunks for both haplotypes, producing a diploid personal genome sequence 

from a single data type, Illumina/10X linked reads. We test Aquila's performance on several 

libraries from two standard individuals and show that it produces high quality diploid assemblies. 

The assemblies enable comprehensive discovery of SNPs, small indels, and SVs, on the basis 

of pairwise alignments to the reference genome. We show that Aquila produces overall better 

results than de-novo assembly from Supernova (Zhang et al. 2019b), for all types of variants. 

Accuracy of variant discovery, as evaluated against GiaB benchmark sets, retains some 

characteristics of standard Illumina short-fragment sequencing, with higher accuracy for smaller 

variants than for longer ones. Long-range phasing is highly accurate with low switching error.  
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Aquila is the first approach that effectively leverages the strengths of 10X/Illumina sequencing to 

enable comprehensive variation discovery and phasing in personal genomes at a reasonable 

cost. Compared to standard Illumina sequencing, the increased cost of the 10X sample prep 

and the generation of deeper sequence data is justified by (1) the much greater power to detect 

insertions and deletions, and (2) the genome-wide phasing of all heterozygous variants. 

Compared to ONT and standard PacBio, the superior base-pair level accuracy of Illumina 

sequencing ensures more accurate SNP and small indel detection as well as SV breakpoint 

determination; and while PacBio CCS appears to have the potential to enable highly accurate 

genome sequencing (Wenger et al. 2019), it remains to be seen whether it performs 

substantially better than 10X/Illumina/Aquila to justify the additional cost, particularly for cohort 

studies. Compared to ensemble approaches that computationally integrate multiple data types 

with complementary strengths (for example, combining Illumina, long-read, and BioNano data), 

10X/Illumina/Aquila is far less complex to manage in the laboratory and offers a simpler 

computational approach. 

 

In the ecosystem of solutions for human whole genome sequencing, 10X/Illumina/Aquila 

therefore fills what we believe is the most important niche: a diploid and phased personal 

genome for accurate and comprehensive discovery of SNPs, small indels, and SVs in all but the 

most complicated regions of the human genome. It represents the first generation of 

approaches that drive toward laboratory and computational efficiency and simplicity by using a 

single data type and leveraging the considerable amount of information present in the human 

reference sequence. Until de novo assembly on the basis of highly accurate very-long-read data 

is shown to be cost-effective, reference-assisted approaches that partition the genome into 

smaller assembly problems are likely to prevail.  

 

Further improvements of the approach we take here fall into two categories: those for which the 

nature of current linked reads data is inherently limited and will require technological advances 

and those in which future implementations of Aquila will produce better results. For example, it 

is unlikely that linked reads data will support assembly and resolution of recent segmental 

duplications or long repetitive sequences. However, the current dropoff in sensitivity to detect 

insertions beyond 500 bases will be addressed by improving the inclusion of ambiguously 

mapping reads into the assembly process. Similarly, improvements to assembly contiguity will 

increase accuracy of variants in repetitive sequences, which are currently enriched in assembly 
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breaks. Future improvements will also center on better detection of long insertions and contig 

breakpoint assembly. Although developed for 10X/Illumina data, Aquila's architecture may be 

used in the future for computational approaches that use data from other sources. In its current 

form, it is already applicable to any study that requires better indel detection than what is 

achievable with standard Illumina sequencing. 

 

Methods 
Aquila is organized in four conceptual modules that correspond to the following python steps 

(Figure 1): Aquila_step1.py: Haplotyping module + contiguity module (first part: partitioning). 

Aquila_step2.py: Local assembly module + contiguity module (second part: concatenation). 

Variation Module: Aquila_assembly_based_variants_call.py and 

Aquila_phasing_all_variants.py. 

 

Pruning unreliable variants (Haplotyping module) 
Accurate haplotyping requires filtering out incorrectly genotyped variants and false positives due 

to sequencing error. We performed an empirical analysis for 10x data to investigate the 

alternate allele frequency (Ralt/ref) and coverage per variant (dvar) that could be used as metrics 

to find erroneous calls. Allele frequency (Ralt/ref >= 0.25) was used for a cutoff, and a 2-tailed 

percentile cutoff was used for coverage per variant (10%*avg_cov <=dvar <= 90%*avg_cov, 

avg_cov: average read coverage per variant). The haplotyping algorithm was further improved 

by sacrificing a small amount of low-confidence heterozygous variants. SNP quality (13 by 

default) is the final free parameter used to prune variants. 

 

Inference and phasing of original long-fragments (Haplotyping module) 
All DNA fragments are first reconstructed by aligning short reads to the human genome 

reference (Hg38) by a barcode-aware alignment strategy (‘Longranger align’, 

https://support.10xgenomics.com/genome-exome/software/pipelines/latest/installation). Aquila 

then sorts all reads by barcodes and positions, and collects the reads with the same barcode to 

reconstruct each fragment. There is a threshold to differentiate two molecules with the same 

barcode when the distance between two successive reads with the same barcode is larger than 

50kb (50kb by default, free parameter). After reconstructing all fragments, Aquila assigns the 

alleles of heterozygous SNPs to each fragment by scanning the reads belonging to each 
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fragment and comparing to a VCF file generated by FreeBayes. At a heterozygous locus “0” is 

the reference allele and “1” is the alternate allele. 

 

For each pair of heterozygous variants, if the even parity was correct where one haplotype 

supported “00”, and the other haplotype supported “11”, the odd parity must then have been 

caused by a sequence error with some fragments supporting “01”, and other fragments 

supporting “10”, and vice versa. In rare scenarios, the fragment could have two sequencing 

errors when the even/odd parity was correct, but the fragment supported the complementary 

haplotype (e.g., the haplotype is ““00””, and the fragment supports “11”). For each fragment with 

at least two heterozygous SNPs, Aquila records all neighboring pairs of heterozygous variants. 

It then applies a Bayesian model (see below) to evaluate if even or odd parity is correct, and the 

clusters with the parity caused by sequencing error are excluded from further steps. Importantly, 

the excluded clusters are due to the variants caused by sequencing errors, not the molecules 

themselves, which means if these molecules still contain other pairs of heterozygous variants 

with consistent haplotype with the correct parity, they are still used for haplotyping. 

 

Aquila then performs a recursive clustering algorithm in two haplotypes to aggregate bigger 

clusters/phase blocks. Two clusters are merged if the number of molecules in both of them 

supporting the same haplotype exceeds a threshold. This threshold is set to 3 by default, which 

corresponds to a merging error percentage ≤ ((1-p1)(1-p2))3, for each pair of variants, if each 

variant matched the true variant with probability p1 and p2, respectively. Aquila sorts all pairs of 

clusters by the positions of reads of all molecules in each cluster. When two locally successive 

clusters are merged into one single cluster, the corresponding clusters of the other haplotype 

are merged too. The resulting pairs of clusters are sorted again for the next iteration. The 

sorting algorithm complexity is ~ O(NvarlogNvar), where Nvar is the total number of heterozygous 

variants. Aquila performs clustering recursively until no more clusters can be merged based on 

the supporting threshold. 

 

The result of this step are pairs of clusters where each pair corresponds to one diploid phase 

block. For each phase block, Aquila then performs haplotype construction and extension when 

each heterozygous variant is supported by all the molecules that cover it. When there are 

multiple molecules supporting inconsistent genotypes for a variant, that variant is excluded from 

further steps. To further extend the phase blocks, Aquila similarly performs recursive clustering 

when two phase blocks have a number of overlapping variants greater than a certain threshold. 
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The threshold is set to 5 by default so that the merging error due to sequencing error p is ≤ p5. 

When no more phase blocks can be merged the process has converged. 

 

In the final step, all the molecules/fragments with at least two heterozygous variants are 

assigned to a phase block based on the variants in the final phase block, and a maximum 

likelihood estimation is applied. Given a haplotype H and a molecule M, we apply the theta 

function 𝜃(𝐻$,𝑀$) 	= 	1 if Hi = Mi and 0 otherwise. Given pi, the probability the allele call at variant 

i in molecule M is correct, the likelihood of observing molecule M is: 

𝑝(𝑀|𝑝, 𝐻) 	= 	𝛱	𝜃(𝐻$,𝑀$)𝑝$ 	+	(1 − 𝜃(𝐻$,𝑀$))(1 − 𝑝$) 

Similarly, given the complementary haplotype Hc and molecule M, a theta function gets the 

value 𝜃(𝐻0$,𝑀$) 	= 	1 if Hci = Mi  and 0 otherwise. The likelihood of observing molecule M is: 

𝑝(𝑀|𝑝, 𝐻0) 	= 	𝛱	𝜃(𝐻0$,𝑀$)(1 − 𝑝$) 	+	(1 − 𝜃(𝐻0$,𝑀$))𝑝$. To assign the final phase block to each 

molecule M, Aquila needs to find the haplotype j in the final phase blocks that meets 

𝑎𝑟𝑔𝑚𝑎𝑥6 7𝑝8𝑀9𝑝, 𝐻6: − 𝑝8𝑀9𝑝, 𝐻0
6:;. 

 

Probability model to determine correct joint key (Haplotyping module) 
At each position, the genome has two complementary ”keys” matching the true two haplotypes: 

00, 11 (even parity) or 01, 10 (odd parity). Each variant matches the true variant with probability 

p1 and p2, respectively. The probability that a sequence key will have the correct parity is pc = 

p1p2+(1−p1)(1−p2), since both variants could match the true variants or both variants are called 

wrong. Let N be the number of sequences observed that have both variants, and k be number 

of sequences with key of even parity, and (N − k) be the number of sequences with key of odd 

parity. Using Bayes’ theorem to test P(B | A): 

Where A: k out of N molecules have keys with even parity, B: true key is even parity.   

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
 

Aquila will accept even parity is correct if P(B | A) exceeds a significance level (e.g. > 0.99), 

where: 

P(B | A) is the probability of the true key being even parity given k out of N molecules have keys 

with even parity. 

P(A | B) is the probability of k out of N molecules having keys with even parity given the true key 

is even parity, which is 𝑃(𝐴|𝐵) = 8?@: ∙ 𝑝0
@(1 − 𝑝0)?B@. 
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P(A) is the probability of k out of N molecules have keys with even parity, which is 𝑃(𝐴) =

8?@:/ 78
?
D: + 8

?
E: +⋯+ 8?@: +⋯+ 8??:; = 8?@:/2

?. 

P(B) is the probability of even parity being correct, P (B) = 1. 

 

High-confidence partitioning point profile generation (Assembly module) 
Large phase blocks (free parameter: block_threshold = 200kb by default) are cut into multiple 

small chunks of a specific length (free parameter: block_len_use = 100kb by default) based on a 

high-confidence partitioning point profile. This is done to make assembly faster and more 

tractable, by avoiding too many reads being given to the assembler. This profile is generated 

based on three criteria: 1. Expected reads coverage (C), 2. Expected physical coverage (CF), 3. 

100-mer uniqueness. Read depth and fragment/physical coverage for each position is 

calculated after reconstructing all the fragments. The 100-mer uniqueness file (Karimzadeh et 

al. 2018) for hg38 processed and included in Aquila, was downloaded from 

http://hgdownload.soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k100.Unique.Mappability.bb 

Each locus/position is defined to be a high-confidence partitioning point if C (partitioning point) > C 

(average) *0.8, CF (partitioning point) > CF (average) *0.8, and locus ∈ 100-mer uniqueness. Aquila uses these 

high-confidence partitioning points in the profile as reference points to partition reads before 

assembly (see next section) and later to reconnect the resulting mini-contigs into contigs 

(Supplemental Figure S1).  

 
Local assembly within small diploid chunks and stitching contigs (Assembly and 
Contiguity modules) 
For each phase block (Supplemental Figure S1), Aquila records its original long molecules and 

their corresponding short reads. Large phase blocks are cut into small chunks (see previous 

step) to perform local assembly with SPAdes (Bankevich et al. 2012) within each phase block 

for both haplotypes separately. (SPAdes is included in the Aquila package.) Those resulting 

minicontigs from neighboring small chunks that are bounded by the same partitioning point are 

concatenated. 99% of partitioning points met this criterion. For each concatenating iteration, the 

previous concatenated contig is used for the next iteration of concatenation. At the end of this 

step, Aquila has generated contigs for both haplotypes in each original phase block. The 

algorithm complexity is ~ NchunksO(Tonechunk), where Nchunks = number of small chunks and Tonechunk 

= time for finishing assembly of one small chunk. 
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Variation detection for assembled contigs (Variation Module) 
To generate single nucleotide polymorphisms (SNPs), small Indel, and structural variant (SV) 

calls from the de novo assemblies, Aquila uses the contig file of the haplotype 1 and haplotype 

2 of each phase block. Minimap2 (Li 2018) and paftools 

(https://github.com/lh3/minimap2/tree/master/misc) are integrated and applied to call variants 

from each (haploid) contig (“-cx asm5 –cs ” is applied for minimap2, and “-l 1 -L 1 -q 20” is 

applied to paftools). For contig alignments and variant selection, mapping quality (>=20) is 

chosen to produce variant candidates. Finally, to generate SNPs, if both haplotypes cover the 

alternate allele, it is defined as homozygous; if one haplotype covers the reference allele and 

the other haplotype covers the alternate allele, it is defined as heterozygous.  

 

To generate small Indels and SVs, variant candidates from each haplotype are compared 

against each other to infer zygosity. To achieve that, heterozygous variants are defined if one 

haploid assembly contains alternate allele(s) and the other haploid assembly contains reference 

allele(s). Homozygous variants are defined if both haploid assemblies contain alternate allele(s). 

For compound indel/SV, we split them into two heterozygous variants. Check  

“--all_regions_flag = 1” for “Aquila_assembly_based_variants_call.py” in GitHub to perform 

these analyses. 

 

Phasing inference (Variation Module) 
The initial phased SNPs from the Haplotyping module provide the scaffold on which all other 

heterozygous variants that are discovered by the Variation module are phased (Supplemental 

Figure S6). For example, consider the case of one assembled SNP in a phase block, “G|A” or 

“1|0” (where “A” is the reference allele, and “G” is the alternate allele), and the other neighboring 

assembled SNP in the same phase block, “C|T” or “0|1” (where “C” is the reference allele, and 

“T” is the alternate allele): these two phased SNPs have the same genotype and phase in a 

phase block from the haplotyping module. Therefore, Aquila places the SV into the haplotype 

that is in the same phase. This is done for all heterozygous variants discovered by the Variation 

module. 

 

Software availability: Aquila can be found at https://github.com/maiziex/Aquila. For easy 

installation, install through Bioconda by “conda install aquila”. Version 1.0.0 was used to 

generate the results in this paper. 
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Data availability: The raw sequencing data can be downloaded in the Sequence Read 

Archive and its BioProject accession number is PRJNA527321(Zhang et al. 2019a). Assemblies 

and VCFs can be found at http://mendel.stanford.edu/supplementarydata/zhou_aquila_2019/. 

We will be submitting raw sequence data and assemblies to NCBI's SRA and Assembly 

databases. 
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NA12878 Raw 

Coverage 
C (X) 

CF 
(X) 

CR 
(X) 

Contig 
N50 (bp) 

Contig 
NA50 (bp) 

Diploid 
Fraction 
(%) 

Genome  
Fraction 
(%) 

L1_Aquila 103  123 0.41  34,759  31,645 98.1 95.45 
  L1_Supernova     58,408  57,254 73.3 93.69 
L2_Aquila 192  334 0.27  94,699  91,662 96.7 94.43 
  L2_Supernova    144,298 136,253 58.9 94.81 
L3_Aquila 106  958 0.07 120,963 116,438 98.7 96.17 
  L3_Supernova    114,900 111,388 77.2 94.62 
L7_Aquila  78  243 0.32  78,309  75,378 97.1 95.32 
NA24385        
L4_Aquila 100  208 0.25  96,558  93,132 98.2 96.98 
  L4_Supernova     99,516  96,510 79.2 95.01 
L5_Aquila 100  803 0.08 135,115 130,176 98.8 96.77 
  L5_Supernova    129,195 125,339 78.1 94.86 
L6_Aquila 100 1504 0.05 125,064 120,490 98.7 96.62 
  L6_Supernova    101,236  98,364 73.4 94.69 
L5+L6_Aquila 200 2307 0.07 177,974 172,358 99.1 97.06 

 

 
Table 1: Assembly metrics for the six libraries we built from NA12878 and NA24385 (L1-L6) and 

a previously published 10x Genomics library (L7). CF, physical ('fragment') coverage; CR, read 

coverage; C, Raw Coverage >= CF x CR. Genome Fraction, percentage of reference genome 

that is covered by the assembly. Diploid Fraction, percentage of Genome Fraction that is 

covered by exactly two parental contigs. L5+L6 describes performance for a simple combination 

of the data from libraries 5 and 6. 
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SNPs True 
Positives 

False 
Negatives 

False 
Positives 

Genotype
Mismatch Precision Recall F1 

L3 (NA 
12878) 

Aquila 3,004,501 38,282 124,074 4,730 0.960 0.987 0.974 

FreeBayes 3,037,504 5,279 54,088 3,501 0.983 0.998 0.990 

Longranger 3,040,701 2,082 105,854 1,621 0.966 0.999 0.983 

L5 (NA 
24385) 

Aquila 2,989,567 39,785 93,195 4,157 0.970 0.987 0.978 

FreeBayes 3,021,814 7,544 48,477 3,899 0.984 0.998 0.991 

Longranger 3,026,384 2,974 104,879 1,799 0.967 0.999 0.983 

L5+L6 (NA 
24385) Aquila 2,971,237 58,120 81,926 18,856 0.973 0.981 0.977 

 

 

Table 2. Accuracy of SNP calling, comparing assembly-based calling with two mapping-based 

approaches on the same libraries' linked read data, one each from NA12878 (L3) and NA24385 

(L5). The benchmark is GiaB v3.3.2. Variant counts and performance scores were generated by 

RTGtools/hap.py, an Illumina haplotype comparison/benchmarking tool. Longranger calls were 

executed with “-vcmode=gatk”. 
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Small indels True 
Positives 

False 
Negatives 

   False 
Positives 

Genotype  
Mismatch Precision Recall F1 

L3 
(NA 
12878) 

Aquila 499,301 32,081 40,292 9,493 0.925 0.940 0.932 

FreeBayes 419,344 80,354 45,977 39,636 0.903 0.839 0.870 

Longranger 463,732 35,966 88,431 22,513 0.843 0.928 0.883 

L5 
(NA 
24385) 

Aquila 476,139 26,914 35,315 7,986 0.931 0.946 0.939 

FreeBayes 400,440 75,170 41,475 36,293 0.908 0.842 0.874 

Longranger 443,107 32,504 81,044 19,720 0.848 0.932 0.888 

L5+L6 
(NA 
24385) 

Aquila 473,895 29,158 15,724 5,335 0.968 0.942 0.955 

 

 

Table 3. Accuracy of small indel calling, comparing assembly-based calling with two mapping-

based approaches on the same libraries' linked read data, one each from NA12878 (L3) and 

NA24385 (L5). 
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SVs 

True 
Positives 
(not-in/in 

break)  

 
False 

Negatives 
(not-in/in 

break) 
  

False 
Positives 
(not-in/in 

break)  

Precision 
(not in 
break) 

Recall 
(not in break)  

F1 
(not in break) 

L5 

Total 6,197 
(5,631/566) 

3,200 
(1,424/1,776) 

7,776 
(6,181/1,595) 

0.443 
(0.477) 

0.659 
(0.798) 

0.530 
(0.597) 

no TR > 
100bp 

3,900 
(3,578/322) 

1,636 
(445/1,191) 

3,806 
(3,046/760) 

0.506 
(0.540) 

0.704 
(0.889) 

0.589 
(0.672) 

no TR any 
size 

1,546 
(1,429/117) 

916 
(297/619) 

466 
(398/68) 

0.768 
(0.782) 

0.628 
(0.828) 

0.691 
(0.804) 

L6 

Total 6,086 
(5,551/535) 

3,311 
(1,460/1,851) 

8,021 
(6,264/1,757) 

0.431 
(0.470) 

0.648 
(0.792) 

0.518 
(0.590) 

no TR > 
100bp 

3,830 
(3,515/315) 

1,706 
(471/1,235) 

3,889 
(3,036/853) 

0.496 
(0.537) 

0.691 
(0.882) 

0.577 
(0.667) 

no TR any 
size 

1,527 
(1,428/99) 

935 
(301/634) 

430 
(365/65) 

0.780 
(0.796) 

0.620 
(0.826) 

0.691 
(0.811) 

L5+L6 

Total 6,434 
(5,983/451) 

2,963 
(1,416/1,547) 

5,577 
(4,404/1,173) 

0.536 
(0.576) 

0.685 
(0.809) 

0.601 
(0.673) 

no TR > 
100bp 

4,065 
(3,803/262) 

1,471 
(456/1,015) 

2,848 
(2,256/592) 

0.588 
(0.628) 

0.717 
(0.893) 

0.646 
(0.737) 

no TR any 
size 

1,671 
(1,574/97) 

791 
(294/497) 

223 
(185/38) 

0.882 
(0.895) 

0.662 
(0.842) 

0.756 
(0.867) 

 

 

Table 4. Overall benchmarks of SVs from L5, L6 and L5+L6 by Aquila. SVs were called from 

the NA24385 assemblies and compared to GIAB NIST_SVs_Tier1_v0.6 (bed file 

HG002_SVs_Tier1_v0.6_chr.bed). SV counts and performance scores were generated by 

Truvari (parameters -p 0.1 -P 0.1 -r 200 --passonly). no TR > 100, without SVs if at least 20% of 

the reference bases are tandem repeats at least 100bp long; no TR any size, without SVs if at 

least 20% of the reference bases are in tandem repeats of any size. Numbers in parentheses 

(not-in/in break) are counts of SVs outside or within assembly breaks. 
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  W𝛍𝐅𝐋 

(kb) 
PB 

N50  
(Mb) 

Max. 
PB 

(Mb) 

Long 
errors 

Mismatch 
errors 

Phased 
in GiaB 

Long 
Error 
(%) 

Mismatch 
Error 
(%) 

L1 Aquila  

304.3 25.1 104.5 453 1,492 1,613,542 0.02% 0.16% 
 Longranger 

 
12.7  49.3 1,092 2,860 1,862,855 0.04% 0.19% 

L2 Aquila  

41.1  0.6 4.9 486 1,532 1,697,703 0.02% 0.15% 
 Longranger 

 
N/A N/A N/A N/A N/A N/A N/A 

L3 Aquila  

214.5 12.7 57.5 499 1481 1,323,959 0.03% 0.18% 
 Longranger 

 
12.5 57.7 1,124 2,679 1,868,719 0.04% 0.20% 

L4 Aquila  

267.4 22.1 104.5 608 2,182 1,313,659 0.03% 0.23% 
 Longranger 

 
17.2 61.3 1,638 5,345 1,583,816 0.06% 0.37% 

L5 Aquila  

151.7 15.8 62.4 719 2,388 1,342,247 0.04% 0.24% 
 Longranger 

 
13.4 46.8 1,682 5,171 1,586,187 0.06% 0.37% 

L6 Aquila  

216.9 10.6 63.6 641 2218 1,147,993 0.04% 0.26% 
 Longranger N/A N/A N/A N/A N/A N/A N/A 

 

 

Table 5. Phasing information and accuracy for each library from Aquila versus Longranger. 

W𝜇MN, weighted fragment length of the library; PB N50, phase blocks length N50; Max. PB, 

maximum phase block length; Phased in GiaB, number of phased SNPs overlapping with callset 

v3.3.2. N/A, not applicable because Longranger could not complete runs in wgs mode. 
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Figure 1. Aquila architecture. Lowercase letters in circles denote existing programs we 

integrated (a = LongRanger Align, b = FreeBayes, c = SPAdes). (A) Overall architecture. (B) 

Detailed workflow. Green boxes are data, arrows indicate input and output of a pipeline 

component. Input data are a high quality reference genome and 10X-based short reads, each 

with a barcode (not shown). The Haplotyping module produces phased virtual long fragments 

(by alignment of reads to the reference, SNP detection, and haplotyping) that become part of 

each read's record. The Contiguity module produces specific single-base coordinates 

('partitioning points') in the genome and in the data, where haplotype blocks and reads are cut 

at a specific single location, and where subsequently assembled minicontigs are rejoined in the 

end. The Local Assembly module executes assembly of the reads of a specific region, 

separately for each parental copy. The variation module then discovers, integrates, and infers 

the phase of all variation. 
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Figure 2. Characteristics and validation statistics of SV calls by Aquila. (A) Size frequency 

distributions of insertion calls and deletion calls in both individuals (L3 for NA12878 and L5 for 

NA24385). Black areas represent indels of which at least 80% are a close match to Alu-element 

consensus sequences. (B) Call validation rates by three validation strategies of two libraries (L2 

and L3; L5 and L6) per individual; SVs called in both libraries are in the overlap, flanked by SVs 

unique to each library. (C) Overlap analysis and comparison of three validation strategies, by 
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call and individual; numbers inside the Venn diagrams are counts of SVs. SVs are validated by: 

PacBio data from the same individual, (PacBio); the other individual (Both Individuals); in the 

chimp or orang genome (Apes). Overlaps represent two or more of these criteria fulfilled. (D,E) 

Comparative precision of SVs present in both individuals, as a function of validation by three 

validation strategies (D) or sequence class (E). Bar graphs depict counts of SVs that have 

precisely the same breakpoint coordinates in both individuals (0 bp), that differ by less than 10 

(1-9 bp), or that differ by 10 or more (>=10 bp). "Repeats" class includes simple sequence and 

tandem repeats but not mobile elements; "Other" class includes all SVs that do not overlap 

more than 80% with Alus and are not part of the Repeats class. (F) Inference of actual 

molecular mechanism that produced the SV by expanding the alignment between the reference 

sequence (Ref) and the Individual (Ind) to include chimp or orang sequences; the sequence that 

matches the ape is the ancestral allele. "Actual insertion" and "Actual deletion" refer to the 

molecular mechanism that produced the derived allele. Approximately 45% of deletion and 24% 

of insertion calls are thus 'inverted' (blue arrows). (G) Size frequency distributions of actual 

insertions and actual deletions in both individuals. Black areas represent indels of which at least 

80% are a close match to the Alu-element consensus sequence. The peak at around 330 base 

pairs captures nearly all Alu SVs.  
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Figure 3. Local distribution of all types of variation detected, aggregated across 250kb intervals. 

(A) Top, ideogram of Chromosome 1 showing metaphase banding pattern. Tracks below are 

assembly and variation features where white represents no data. Repeats, Z-score of TRF-

detected repeat density. Contigs, average number of contigs per base pair. SNPs, Z-score of 

SNP number. Small indels, Z-score of the number of indels 1-50bp. SVs, number of SVs 

>=50bp in each 250kb bin. Phase blocks, each phase block is a grey rectangle, with alternating 

light and dark indicating neighboring phase blocks. (B) Genome-wide correlation (R2) among all 

pairs of variation types by genotype, contig density, and repeat density.  
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