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Abstract 1 

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus 2 

on improving standardization and reproducibility of its acquisition and quantification. In a 3 

community-wide effort towards robust and reproducible clinical ASL image processing, we 4 

developed the software package ExploreASL, allowing standardized analyses across centers and 5 

scanners.  6 

The procedures used in ExploreASL capitalize on published image processing advancements and 7 

address the challenges of multi-center datasets with scanner-specific processing and artifact 8 

reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based 9 

on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. The toolbox 10 

adheres to previously defined international standards for data structure, provenance, and best 11 

analysis practice.  12 

ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different 13 

pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, 14 

Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and 15 

ASL image processing and quality control, and finally preparing the results for statistical analyses 16 

on both single-subject and group level. We illustrate ExploreASL processing results from three 17 

cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for 18 

neurodegenerative disease. We show the reproducibility for each cohort when processed at 19 

different centers with different operating systems and MATLAB versions, and its effects on the 20 

quantification of gray matter cerebral blood flow. 21 

ExploreASL facilitates the standardization of image processing and quality control, allowing the 22 

pooling of cohorts to increase statistical power and discover between-group perfusion 23 

differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, 24 

trials, and practice.  25 
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Introduction 1 

Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique with 2 

the potential of providing absolute quantification of cerebral perfusion in vivo. Since its inception 3 

almost three decades ago, ASL-based perfusion imaging has been increasingly used in basic 4 

neuroscience and clinical studies. The first decade of research following the invention of ASL in 5 

1990 (Detre et al. 1992) consisted mainly of technical developments, such as the prolongation of 6 

the post-labeling delay in 1996 (Alsop and Detre 1996), background suppression in 1999 (Alsop 7 

and Detre 1999; Ye et al. 2000), and pseudo-continuous labeling in 2005 (Dai et al. 2008) － all 8 

features geared toward improving the signal-to-noise (SNR) ratio of ASL images. These advances 9 

enabled proof-of-principle studies using small clinical datasets, such as patients with 10 

cerebrovascular and neurodegenerative diseases (Detre et al. 1998; Alsop et al. 2000), epilepsy 11 

(Liu et al. 2001), brain tumors (Warmuth et al. 2003), as well as pharmacological applications 12 

(Wang et al. 2011; MacIntosh et al. 2008). 13 

 14 

The second decade was primarily focused on the validation of the technique by way of clinical 15 

implementation (Deibler et al. 2008), evaluation of multi-center reproducibility (Petersen et al. 16 

2010; Mutsaerts et al. 2015), and comparison with [15O]-H2O positron emission tomography (PET) 17 

(Heijtel et al. 2014). Several reproducibility studies showed that conventional ASL techniques had 18 

developed to the point where the intrinsic variance of the acquisition itself (Chen et al. 2011; 19 

Gevers et al. 2011; Heijtel et al. 2014; Mutsaerts et al. 2014) was close to or below physiological 20 

variance of perfusion (Joris et al. 2018; Clement et al. 2017). Another pivotal aspect for the use of 21 

ASL were pharmaceutical studies (Handley et al. 2013; MacIntosh et al. 2008).  22 
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 1 

Currently in its third decade, following the consensus recommendations for the acquisition and 2 

quantification of ASL images (Alsop et al. 2015), ASL is ready for large multi-center observational 3 

studies and clinical trials (Jack et al. 2010; Almeida et al. 2018; Blokhuis et al. 2017). However, 4 

despite the consensus in clinical implementation and image acquisition (Alsop et al. 2015), ASL 5 

image processing (Wang et al. 2008; Shin et al. 2016; Melbourne et al. 2016; Chappell et al. 2010; 6 

Mato Abad et al. 2016; Li et al. 2019; Bron et al. 2014) remains disparate among research 7 

laboratories. In literature, detailed description of all processing steps is often lacking. Clinical 8 

studies are often performed without proper quality control (QC) or with arbitrary QC metrics. This 9 

hampers both the interpretation and reproducibility of individual studies as well as meta-analyses 10 

of multiple studies. A consensus on the best practices to robustly process ASL data would facilitate 11 

comparison of results across centers and studies, avoid duplicate development, and speed up the 12 

translation into clinical practice, as is advocated by the Open Source Initiative for Perfusion 13 

Imaging (OSIPI) (www.osipi.org). 14 

 15 

For these reasons, the software package ExploreASL was initiated through the EU-funded ASL 16 

workgroup COST-action BM1103 "ASL In Dementia” (www.aslindementia.org) with the aim of 17 

developing a comprehensive pipeline for reproducible multi-center ASL image processing. To 18 

date, ExploreASL has been used in more than 30 studies consisting of more than 10,000 ASL scans 19 

from three MRI vendors - GE, Philips, Siemens, with pulsed ASL and pseudo-continuous ASL 20 

(PCASL) sequences (Mutsaerts et al. 2019). The primary aims of ExploreASL are to increase the 21 

comparability and enable pooling of multi-center ASL datasets, as well as to encourage and 22 
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facilitate cross-pollination between clinical investigators and image processing method 1 

developers.  2 

 3 

Theory: Software Overview 4 

ExploreASL is developed in MATLAB (MathWorks, MA, USA, tested with versions 2011-2019) and 5 

uses Statistical Parametric Mapping 12 routines (SPM12, version 7219) (Ashburner et al. 2012; 6 

Flandin et al. 2008). Here, we describe the implementation of ExploreASL version 1.0.0, which is 7 

available as a compiled version with a manual on www.ExploreASL.org. ExploreASL provides a 8 

fully automated pipeline that comprises all the necessary steps from data import and structural 9 

image processing to cerebral blood flow (CBF) quantification and statistical analyses. Unique 10 

features of ExploreASL include:  11 

 12 

● self-contained software suite: all third-party toolboxes are included in the installation, 13 

compatible with Linux, macOS, and Windows and supporting multi-threading;  14 

● flexible data import from different formats including (enhanced) DICOM, Siemens’ 15 

MOSAIC variant, Philips PAR/REC, NIfTI and Brain Imaging Data Structure (BIDS) 16 

(Gorgolewski et al. 2016), with automatic detection of control-label or label-control order; 17 

● data management: anonymization, compression of image files; 18 

● modular design: automatically iterates over all available subjects and scans, allows to 19 

suspend and resume processing at any point, allows investigators to change/replace each 20 

sub-module; 21 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845842doi: bioRxiv preprint 

https://doi.org/10.1101/845842
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                 7 

● image processing optimized for: multiple centers, different ASL implementations from 1 

GE/Philips/Siemens (Mutsaerts et al. 2018), both native/standard-space analysis, 2 

advanced ASL markers ― e.g. spatial coefficient-of-variation (CoV) (Mutsaerts et al. 2017), 3 

asymmetry index (Kurth et al. 2015), and partial volume correction (PVC) (Asllani et al. 4 

2008); 5 

● extensive QC and data provenance: visual QC for all intermediate and final images, 6 

comparison with perfusion templates from different ASL implementations, progress 7 

report with processing history (provenance).  8 

 9 

In the following sections, we review each processing step of the four ExploreASL modules as 10 

outlined in Figure 1 and summarized in Table 1. Each section starts with a brief methodological 11 

review including the rationale within the context of ASL processing, followed by a detailed 12 

description of the ExploreASL implementation, and ending with a discussion of emerging 13 

developments and potential future improvements.  14 
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 1 
Processing step ExploreASL 

implementation 
Specifics, optional features  

1. Import module  

1.1 Data import dcm2niiX Converts DICOM to NIfTI, supports MOSAIC, PAR/REC, BIDS 

2. Structural module  

2.1 WMH correction LST2 (r2.0.15) - LPA (LGA 
optional) 

Segments WMH and fills lesions on T1w; improves T1w segmentation 

2.2 Segmentation CAT12 (r1363) Outputs partial volume maps; supports lesion cost function masking 

2.3 Spatial normalization Geodesic Shooting Uses CAT12 template, supports creation of study-specific templates 

3. ASL module  

3.1 Motion correction SPM12 realign Realigns ASL control/label images to mean position, uses a zig-zag control-
label regressor 

3.2 Outlier exclusion ENABLE Removes motion peaks, uses tSNR optimization 

3.3 Registration SPM12 rigid-body Registers ΔM-pGM or M0-T1w 

3.4 M0 processing M0 image Masks, smooths, extrapolates M0 to avoid division artifacts 

3.5 CBF quantification Consensus paper model Computes CBF based on the single compartment model, single PLD; 
supports dual compartment 

3.6 PVC Linear regression Performs PVC on kernel or ROI basis, optionally estimates the effective 
spatial resolution/PSF of ASL  

3.7 Analysis mask creation Combine individual 
masks 

Combines FoV, susceptibility artifacts and vascular artifacts, use p>0.95 of 
population masks 

4. Population module  

4.1 Template creation Final images  Calculates population mean, SD, CoV, SNR, also for intermediate images 

4.2 Multi-sequence 
equalization 

Remove residual 
sequence-specific 
effects 

Equalizes bias fields, spatial CoV, and smoothness, uses sequence-specific 
templates 

4.3 ROI statistics CBF and spatial CoV, 
with or without PVC 

Uses MNI structural, Harvard-Oxford, Hammers, and custom atlases 

4.4 Quality control Single-subject PDF 
report 

Performs QC of images, DICOM values, volumetrics, motion etc. Outputs 
population report in TSV files 

 2 
Table 1. Overview of image processing steps and implementation in ExploreASL. ASL = arterial spin labelling, BIDS = 3 
Brain Imaging Data Structure, CAT = Computational Anatomic Toolbox, CBF = cerebral blood flow, CoV = coefficient 4 
of variation, ΔM = perfusion-weighted difference image, dcm2niiX (Li et al. 2016), DICOM = Digital Imaging and 5 
COmmunications in Medicine, ENABLE = ENhancement of Automated BLood flow Estimates, FoV = field-of-view, LGA 6 
= Lesion Growth Algorithm, LPA = Lesion Prediction Algorithm, LST = Lesion Segmentation Toolbox, MNI = Montreal 7 
Neurological Institute, NIfTI = NeuroImaging Informatics Technology Initiative, QC = quality control, pGM = gray 8 
matter partial volume, PLD = post-labeling delay, PSF = point spread function, PVC = partial volume correction, r = 9 
release, ROI = region of interest, SD = standard deviation, SNR = signal-to-noise ratio, SPM = Statistical Parametric 10 
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Mapping, tSNR = temporal SNR, tsv = tab-separated value, WMH = white matter hyperintensity, Zig-zag = “zig-zag” 1 
regressor. 2 
 3 
 4 

 5 

Figure 1. Schematic diagram of ExploreASL processing steps. Steps marked with a * are optional, e.g. when FLAIR, 6 
ASL time-series, or M0 scans are available. PVC = partial volume correction, ROI = regions of interest, WMH = white 7 
matter hyperintensity. The population module can be run on a single subject level, as well as on one or multiple 8 
populations/centers/cohorts or other groups.  9 
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Theory: Implementation 1 

1. Import module 2 

To avoid manual restructuring of arbitrary data structures from the scanner or other sources 3 

(Fallis et al. 2013), ExploreASL uses a flexible input data/directory description scheme based on 4 

regular expressions and converts the data to a BIDS-compatible data structure (Gorgolewski et al. 5 

2016); the full BIDS ASL extension is currently in development (bids.neuroimaging.io). The input 6 

images can be NIfTI format, conventional or enhanced DICOM, Philips PAR/REC, or Siemens 7 

mosaic format, which are then converted to NIfTI using dcm2niiX (Li et al. 2016). ASL images can 8 

be provided as control-label time-series, a single perfusion-weighted image, or an already 9 

quantified CBF image, from any 2D or 3D readout schemes, and from any MRI vendor. Before an 10 

image is processed, ExploreASL first computes and aligns the center-of-mass of each image to the 11 

origin of the world coordinates to deal with potentially incorrectly stored orientations. 12 

Additionally, ExploreASL provides an overview of missing and unprocessed files, automatically 13 

detects the order of control and label images from the image intensities, and checks the DICOM 14 

tags of repetition and echo time and scale factors/slopes across individuals. 15 

 16 

2. Structural module 17 

This module process the structural images by the following steps: 2.1) segments the white matter 18 

(WM) hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) images and uses 19 

them to fill the corresponding WM hypointensities on the T1-weighted (T1w) images., 2.2) the 20 

structural images are subsequently segmented into gray matter (GM), white matter, and 21 
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cerebrospinal fluid (CSF) maps, and 2.3) normalized to the MNI standard space (Evans et al. 2012). 1 

The segmentations are used to obtain tissue partial volume (PV) fractions for computation of CBF 2 

(Asllani et al. 2008). The registration transformations are used to bring ASL images acquired from 3 

different sessions and/or different subjects in the same space and thus facilitate visual 4 

comparison in the same space, automatic QC, as well as group analysis.  5 

 6 

2.1. WMH correction 7 

The presence of WMH can affect the GM/WM classification of T1w images in two ways: 1) WMH 8 

themselves can be incorrectly segmented as GM; 2) image intensities of WMH bias global 9 

modeling of GM and WM intensity distributions (Pareto et al. 2016; Battaglini et al. 2012). 10 

ExploreASL alleviates these complications by lesion-filling the T1w image before initiating the 11 

segmentation (Battaglini et al. 2012): voxel intensities in the hypointense WMH regions on the 12 

T1w images are replaced by bias field-corrected values from the surrounding, normal-appearing 13 

WM (Chard et al. 2010) (Figure 1). The Lesion Segmentation Toolbox (LST, version 2.0.15) is used 14 

because of its empirically proven robustness, scanner independence, and non-reliance on the 15 

requirement of a training set (de Sitter et al. 2017). LST detects outliers in the FLAIR WM intensity 16 

distribution and assesses their likelihood of being WMH (Schmidt et al. 2012). While ExploreASL 17 

offers the option of both LST lesion growing and lesion prediction algorithms, the default is set to 18 

the latter, which has been shown to be more robust (de Sitter et al. 2017). This WHM correction 19 

described here is only performed when FLAIR images are available. Optionally, the WMH 20 

segmentation can be skipped by providing an external WMH segmentation; then only the LST 21 
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clean-up procedure is performed to remove classification errors from this external input (Schmidt 1 

et al. 2012). 2 

 3 

2.2. Segmentation 4 

To segment the 3 main tissue classes GM, WM, and CSF, ExploreASL uses the Computational 5 

Anatomy Toolbox 12, release 1363 (CAT12, the successor of VBM8) (Gaser et al. 2009) for SPM12. 6 

CAT12 allows local variations in the tissue intensity distributions, making it more robust to the 7 

presence of pathology such as tumors, edema, and WM lesions (Battaglini et al. 2012; Petr et al. 8 

2018) (Supplementary Figure 1). CAT12 works on all operating systems (OS), and has been shown 9 

to outperform other available methods such as FreeSurfer v5.3.0, FSL v5.0, and SPM12 (Mendrik 10 

et al. 2015). The CAT12 segmentation algorithm is based on improvements of Unified 11 

Segmentation (Ashburner et al. 2005), two essential improvements being that it allows spatially 12 

varying GM-WM intensity distributions, and provides PV maps rather than posterior probability 13 

maps (Tohka et al. 2004).  14 

 15 

2.3. Spatial normalization 16 

For non-linear registration to MNI space ExploreASL uses Geodesic Shooting (Ashburner et al., 17 

2011) - the successor of Diffeomorphic Anatomical RegisTration using Exponentiated Lie algebra 18 

(DARTEL) (Ashburner et al. 2007) - within the CAT12 toolbox (Gaser et al. 2009). The reason for 19 

this choice is that CAT12 has a single subject implementation using the IXI adult template, brain-20 

development.org/ixi-dataset. Optionally, new templates can be created by these SPM toolboxes 21 

on a population level, e.g. for populations where an adult template is not sufficient. Although 22 
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alternative methods (Klein et al. 2010) may outperform DARTEL/GS in specific populations, the 1 

default settings of DARTEL and Geodesic Shooting are sufficiently tested in clinical studies to 2 

provide adequate performance across different populations and scanners (Ripollés et al. 2012).  3 

We adapted the CAT12 segmentation algorithm to offer the possibility to input customized 4 

segmentations of structural lesions such as space-occupying lesions or cerebral infarcts such that 5 

the lesion region is ignored by the non-linear registration (Crinion et al. 2007) (Supplementary 6 

Figure 2). To avoid unrealistic deformations within the lesion, the non-linear transformation is 7 

only used outside the lesion; whereas the initial SPM transformation (low degree-of-freedom 8 

non-linear) is used within the lesion. These two transformation fields are combined with a gradual 9 

transition margin around the lesion amounting to 10% of the lesion volume. 10 

ExploreASL offers the option to register longitudinal ASL studies with the SPM12 module for 11 

longitudinal registration (Ashburner and Ridgway 2012), which takes the similarity between 12 

structural images from the same subjects into account. The first time point is used as a reference 13 

for both within- and between-subject registration. However, this requires further validation in 14 

the presence of large brain deformations between sessions, such as tumors, resections, or infarcts 15 

(Petr et al. 2018). 16 

 17 

3. ASL module 18 

This module processes the ASL images by 3.1) correcting for motion, 3.2) removing outliers, 3.3) 19 

registering with the structural data, and by 3.4) processing the M0 images. Then, 3.5) the CBF is 20 

quantified with correction for hematocrit and vascular artifacts, after which 3.6) the PV effects 21 

are corrected for. All image processing described below is performed in native space, unless 22 
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stated otherwise. All intermediate and final images are also transformed into standard space for 1 

QC and group analyses.  2 

 3 

3.1. Motion correction 4 

The adverse effects of head motion can be partly alleviated by correcting for motion using image 5 

processing (Alsop et al. 2015). Traditionally, head motion is estimated assuming a 3D rigid-body 6 

transformation with a sum-of-squares cost function (Wang et al. 2008; Mato Abad et al. 2016). 7 

However, because the average control-label intensity difference can be partly interpreted by the 8 

algorithm as motion, some investigators perform motion estimation separately for the control 9 

and labeled images (Wang et al. 2008). Instead, in ExploreASL, an adaptation of the SPM12 motion 10 

correction is used, which minimizes apparent motion attributable to the control-label intensity 11 

difference from the estimated motion parameters using a “zig-zag” regressor (Wang et al. 2012) 12 

(Supplementary Figure 3).  13 

 14 

3.2. Outlier exclusion 15 

Despite motion correction, large motion spikes can still have a significant negative effect on the 16 

ASL image quality, especially when they occur between control and label images (Wang et al. 17 

2008). In fMRI literature, peak motion relative to mean individual motion is often excluded based 18 

on a set threshold, e.g. RMS of 0.5 of the voxel size (Power et al. 2012). ExploreASL uses a 19 

threshold-free method named ENhancement of Automated BLood flow Estimates (ENABLE) 20 

(Shirzadi et al. 2015), which sorts control-label pairs by motion and cumulatively averages them 21 

until the addition of further pairs significantly decreases the temporal voxel-wise signal stability 22 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845842doi: bioRxiv preprint 

https://doi.org/10.1101/845842
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                 15 

(Supplementary Figure 4). The ExploreASL implementation of ENABLE employs the median GM 1 

voxel-wise temporal SNR (tSNR) as the criterion for signal stability (Shirzadi et al. 2018), 2 

regularized by an empirically-defined minimum tSNR improvement of 5%. ENABLE can also 3 

remove non-motion-related outliers, since other acquisition artifacts can be picked up by the 4 

motion estimation algorithm (Supplementary Figure 4).  5 

 6 

In addition to motion, ASL images can contain a variety of acquisition and physiological artifacts 7 

including fat-shift artifacts, RF instability, gradient amplifier failure, labeling instability, and blood 8 

pulsatility artifacts. Several correction algorithms using ASL time series have been  proposed 9 

which typically exclude voxels, slices or volumes as outliers, based on temporal and/or spatial 10 

signal distribution of the individual pairwise subtracted images (Bibic et al. 2010; Spann et al. 11 

2017; Maumet et al. 2014; Tan et al. 2009; Dolui et al. 2017). Their applicability needs validation, 12 

however, as they base their correction criteria on the same parameter that is investigated (i.e. 13 

CBF), and/or they do not account for GM-WM perfusion differences. ExploreASL currently relies 14 

on the fact that ENABLE (Shirzadi et al. 2018) also partly removes outliers, as it operates relatively 15 

independent of (patho-)physiological changes of the signal intensity in the pairwise subtracted 16 

images (Robertson et al. 2017; Li et al. 2018). 17 

 18 

3.3. Registration 19 

Accurate registration between the ASL and structural space is a critical step as registration errors 20 

are propagated to subsequent stages and analyses of CBF data. Specifically, the relatively large 21 
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CBF differences between GM, WM, and CSF, mean that small misalignments can have a large 1 

impact on the accuracy of tissue-specific CBF quantification (Mutsaerts et al. 2018).  2 

 3 

The image registration steps implemented in ExploreASL are based on a previous study in which 4 

the performance of several registration options were compared (Mutsaerts et al. 2018). Briefly, 5 

the registration of ΔM to gray matter partial volume (pGM) outperformed the registration of M0 6 

to T1w, except for cases where the ΔM contrast was dissimilar to the pGM contrast (e.g. vascular 7 

artifacts, labeling artifacts, perfusion pathology). Rigid-body transformation proved to be a robust 8 

default choice (Mutsaerts et al. 2018), especially in the presence of pathology (Wang et al. 2008; 9 

Macintosh et al. 2010). Therefore, ExploreASL performs a ΔM-pGM rigid-body registration by 10 

default. The M0-T1w is used instead when macrovascular signal predominates tissue signal  11 

(spatial CoV above 0.6) (Mutsaerts et al. 2018). Note that such images are typically excluded from 12 

CBF statistics and only included when analyzing vascular parameters, such as the spatial CoV. For 13 

future validation, ExploreASL offers the option to register to the atlas of spatially normalized 14 

mean M0 images, CBF images, or CBF images with a high number of vascular artifacts created for 15 

different vendors and ASL sequences from previously processed large ASL datasets. 16 

 17 

The rigid-body transformation does not account for the geometric distortion typical for 2D echo-18 

planar imaging (EPI) or 3D GRadient And Spin Echo (3D GRASE) ASL images (Gai et al. 2017). Such 19 

deformations can be partially corrected with B0 field maps or M0 images with reversed phase-20 

encoding direction (Madai et al. 2016) - which is implemented as option in ExploreASL by calling 21 

FSL TopUp (Andersson et al. 2003). Affine and uniform non-linear transformations, such as FNIRT 22 
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or SPM’s ‘unified segmentation’ (Klein et al. 2009) can outperform the rigid-body transformation 1 

in the ΔM-pGM registration (Petr et al. 2018), although this remains to be validated in the 2 

presence of pathology. 3 

 4 

3.4. M0 processing 5 

The measured control-label magnetization difference is proportional to the equilibrium 6 

magnetization (M0) of blood. Ideally, blood M0 would be measured in voxels containing only 7 

arterial blood, but that is not usually possible due to the relatively low spatial resolution of ASL 8 

images. Instead, M0 is calculated from either the brain tissue or CSF signal intensity (Çavuşoğlu 9 

et al. 2009). The use of the tissue-based M0 is recommended (Alsop et al. 2015) because of its 10 

ability to account for acquisition-specific effects such as variations in receive coil inhomogeneity 11 

or T2(*) weighting. For these reasons, ExploreASL by default processes an M0 image, and 12 

optionally supports the use of a single CSF M0 value (Çavuşoğlu et al. 2009; Pinto et al. 2019). 13 

 14 

Currently, no consensus exists on whether the M0 should be quantified separately for GM and 15 

WM tissue types, especially for longer repetition time with a distinct GM-WM contrast. The M0 16 

quantification can potentially be improved by using tissue specific quantification parameters - 17 

such as blood-brain partition coefficients λ and tissue relaxation times  (Çavuşoğlu et al. 2009), 18 

and/or partial volume correction (Ahlgren et al. 2018). However, this can induce quantification 19 

errors in cases of suboptimal ASL-M0 registration.  20 

ExploreASL aims to deliver consistent M0 quantification for multi-center populations with M0-21 

scans acquired at different repetition time and different effective resolutions. ExploreASL 22 
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smooths the M0 image with a large kernel (Beaumont 2015) after it has been masked for WM 1 

(Supplementary Figures 5-6) and rescaled to the mean GM M0 to account for B1 differences 2 

between GM and WM. This approach reduces the M0 image into a smooth bias field with the 3 

same smoothness/effective resolution for all ASL sequences and participants, and optimal SNR, 4 

while still canceling out acquisition-specific B1-field related intensity inhomogeneity. This makes 5 

the M0 image more robust and less sensitive to misalignment, and thus more consistent between 6 

ASL sequences (Mutsaerts et al. 2018) and individuals (Deibler et al. 2008). ExploreASL has the 7 

option to additionally mask the M0 bias-field for lesions that affect the M0 - e.g. brain tumors - 8 

and interpolate the M0 signal from the relatively unaffected brain regions (Croal et al. 2019). 9 

 10 

3.5. CBF quantification 11 

An in-depth overview of ASL CBF quantification has been provided previously (Alsop et al. 2015; 12 

Chappell et al. 2018). ExploreASL uses the previously recommended single compartment 13 

quantification approach for clinical studies (Alsop et al. 2015), with options to use the dual 14 

compartment model, and/or to provide the hematocrit or blood T1 values. The previously 15 

recommended single compartment model assumes that the label decays with arterial blood T1 16 

only (Alsop et al. 2015). Although a two-compartment model can provide CBF values that are in 17 

closer agreement with [15O]-H2O PET (Heijtel et al. 2014), this is often not feasible when blood T1, 18 

tissue T1, and micro-vascular arterial transit time are unknown, or would result in a constant 19 

scaling factor when assuming literature values. For these reasons, ExploreASL uses the single 20 

compartment model by default, and offers the two-compartment model as an optional feature. 21 
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 1 

The ASL label relaxes with the T1 of blood, a parameter that depends on hematocrit (Hales et al. 2 

2016). Not taking hematocrit or blood T1 into account can lead up to 10-20% CBF overestimation 3 

for hematocrit as low as 17% (Vaclavu et al. 2016). Accounting for hematocrit is particularly 4 

relevant for between-group or longitudinal hematocrit changes e.g. due to treatment, which can 5 

be expected in certain populations or diseases (De Vis et al. 2014). ExploreASL allows to adjust for 6 

individual arterial blood T1 by either providing its value directly (Li et al. 2017) or by providing the 7 

hematocrit value and computing the blood T1 (Hales et al. 2016). As hematocrit and blood T1 8 

measurements can be noisy - especially when obtained at different laboratories - a pragmatic 9 

approach is to apply the average blood T1 correction on a population rather than on an individual 10 

level (Elvsåshagen et al. 2018). Additionally, hematocrit and blood T1 can be modeled based on 11 

age and sex (Hales et al. 2014), but this requires validation. Note that after correcting the above-12 

mentioned methodological effect, hematocrit might be still associated with CBF physiologically: 13 

hematocrit decreases or increases leading to compensatory hyper- or hypoperfusion.  14 

 15 

3.6. Partial volume correction 16 

Since the spatial resolution of ASL is relatively low, a typical ASL voxel contains a mixture of GM, 17 

WM, and CSF signal, which is referred to as the partial volume effects. As the GM-WM CBF ratio 18 

is reported to lie between 2 and 7 (Asllani et al. 2008; Pohmann 2010; Zhang et al. 2014; Law et 19 

al. 2000), the tissue partial volume in each voxel has a large influence on the ASL measurement 20 

(Supplementary Figure 7). For these reasons, PVC (Asllani et al. 2009) is essential in studies that 21 

aim to differentiate structural changes (e.g. atrophy) from perfusion changes (e.g. related to 22 
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neurovascular coupling) (Steketee et al. 2016). Several PVC algorithms have been proposed 1 

(Chappell et al. 2010; Zhao et al. 2017; Asllani et al. 2008; Liang et al. 2013), which assume locally 2 

homogeneous GM and WM CBF. Instead in some studies, GM volume is used as a covariate in the 3 

statistical analysis (Chen et al. 2011). Note that while PVC, in theory, corrects only for the PV 4 

effects and takes into account the intra- and inter-subject variability of the GM-WM CBF ratio, 5 

GM covariation can additionally affect the estimated physiological correlation between GM CBF 6 

and GM volume (Petr et al. 2018).  7 

 8 

ExploreASL employs two versions of PVC, both based upon the most frequently used PVC, i.e. 9 

linear regression (Asllani et al. 2008): 1) a 3D Gaussian instead of a 2D flat kernel (default, referred 10 

to as “voxel-wise”) (Oliver 2015), or 2) computing PV-corrected CBF within each anatomical or 11 

functional region of interest (ROI) separately instead of using a kernel. Whereas the voxel-wise 12 

option allows further voxel-based analysis (VBA), the ROI-based PVC is in theory beneficial for a 13 

ROI-based analysis as effectively the kernel-size is selected based upon the anatomical ROI, which 14 

should be less sensitive to local segmentation errors. Moreover, it avoids cross-talk between ROIs. 15 

It still needs to be investigated how to define regions of optimal shape with respect to PVC 16 

performance, which depends on the spatial uniformity and SNR of the GM and WM CBF, and 17 

partial volume distributions within the ROI. To evaluate the effects of PVC, ExploreASL exports 18 

CBF maps and ROI values both with and without PVC. 19 

 20 

For proper PVC or ROI definition, the true acquisition resolution - which often differs from the 21 

reconstructed voxel size - needs to be taken into account (Petr et al. 2018). This is especially 22 
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important for 3D readouts, where the through-plane PSF can be up to 1.9 times the nominal 1 

voxel-size (Vidorreta et al. 2013; Vidorreta et al. 2014). Effects such as motion (Petr et al. 2016) 2 

and scanner reconstruction filters can contribute to further widening of the PSF of the final image. 3 

ExploreASL by default uses previously estimated true acquisition resolutions (Vidorreta et al. 4 

2013; Vidorreta et al. 2014; Petr et al. 2018) and can optionally perform a data-driven spatial 5 

resolution estimation (Petr et al. 2018) that is generalizable to all ASL acquisitions. Contrary to 6 

alternative PSF estimations based on temporal noise autocorrelation (Cox 2012) or simulations of 7 

the acquisition PSF (Vidorreta et al. 2013; Vidorreta et al. 2014), this method does not require 8 

time series and inherently accounts for other sources of blurring (e.g. smoothing by motion 9 

and/or image processing) and is applicable without having detailed information about the 10 

sequence parameters needed to calculate the resolution from the k-space trajectory. However, 11 

this method requires further validation, especially in the presence of ASL image artifacts.  12 

 13 

Lastly, the GM/WM maps obtained from the high-resolution structural images need to be 14 

downsampled to the ASL resolution before they are used for PVC or for ROI delineation in native 15 

space. A trivial interpolation to lower resolution may introduce aliasing, which can be addressed 16 

by applying a Gaussian filter - or a convolution with the PSF, if the PSF is known - prior to 17 

downsampling (Cardoso et al. 2015). It is important to note that the ASL image often has an 18 

anisotropic resolution and may be acquired at a different orientation compared to the structural 19 

image. To correct for this effect, ExploreASL pre-smooths the structural images with a Gaussian 20 

kernel of which the covariance matrix takes the orientation and PSF differences between the ASL 21 

and structural images into account (Cardoso et al. 2015). 22 
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 1 

3.7. Analysis mask creation 2 

For the statistics performed in section 4.3 - as well as for any voxel-based group statistics - an 3 

analysis mask aims to exclude voxels outside the brain or voxels with artifactual signal (e.g. macro-4 

vascular, signal dropout) and restrict the analysis to regions with sufficient SNR and/or statistical 5 

power. This also avoids over-penalizing statistical power by family-wise error corrections. The 6 

susceptibility and field-of-view (FoV) masks are combined in section 4.3 into a group mask. The 7 

vascular masks are applied subject-wise to reflect the individual differences in vascular anatomy. 8 

 9 

First, regions outside of the ASL FoV are identified, as whole brain coverage is not always achieved 10 

(Supplementary Figure 8). Second, a mask is created to remove voxels with intravascular signal. 11 

While intra-vascular signal - resulting from an incomplete tissue arrival of labeled spins - can be 12 

clinically useful (Mutsaerts et al. 2017; Mulhollan et al. 2018), it biases regional CBF estimates. 13 

The relatively large local temporal variability of such vascular artifacts can be detected in time 14 

series, in multi-post-labeling delay (PLD) acquisitions (Chappell et al. 2010) or by an independent 15 

component analysis (ICA) (Hao et al. 2018). ExploreASL uses a vascular artifact detection approach 16 

that is suitable for both single and multi-PLD ASL images. It identifies clusters of negative apparent 17 

CBF (Maumet et al. 2012) and voxels with extreme positive apparent CBF (Supplementary Figure 18 

9).  One potential caveat of masking out vascular voxels is the violation of the stationarity criterion 19 

of parametric voxel-wise statistics. While excluding voxels with high signal can violate the 20 

stationarity criterion of the ASL signal, there is currently no validated method that would be able 21 
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to reliable estimate the perfusion and vascular signal contribution in such voxels from single-PLD 1 

data. 2 

 3 

Second, regions with susceptibility signal-dropout artifacts are removed. Regions frequently 4 

having low SNR for 2D EPI and 3D GRASE ASL include the orbitofrontal cortex near the nasal sinus 5 

and the inferior-medial temporal gyrus near the mastoid air cavities. There are several methods 6 

that we decided not to include in ExploreASL: thresholding the M0 or the mean control image to 7 

identify signal dropout (Wang 2014) or masking them with FSL BET (Smith 2002), as this may fail 8 

with background suppression, blurred 3D acquisitions, poor ASL-M0 registration, or a strong bias 9 

field (Mutsaerts et al. 2018). If multiple individual unsubtracted control-label images are 10 

available, a mask could be created based on the tSNR of the control or label images. However, 11 

time series are not always available, and the tSNR may be biased by the presence of (patho-12 

)physiological signal changes and head motion. Therefore, the option implemented in ExploreASL 13 

is to use sequence-specific template masks obtained from previous population analyses, after 14 

which individual masks are restricted to (pGM+pWM)>0.5 to remove voxels outside the brain. 15 

Further development is needed to create masks that take individual anatomical differences in 16 

skull and air cavities into account. Noteworthy, ExploreASL applies this analysis mask only for 17 

analyses, not for visual QC.  18 

 19 

4. Population module 20 

This module performs group-level QC and creates group-level results for statistical analyses. 21 

Whereas the above-described Structural and ASL modules perform image processing on the 22 
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individual level, this module performs its analysis on multiple-subjects and/or multi time-point 1 

level. For this purpose, ASL images are transformed into standard space using the T1w 2 

transformation fields smoothed to the effective spatial resolution of ASL. For transformation of 3 

all intermediate and final images, all previous spatial transformations are merged into a single 4 

combined transformation to minimize accumulation of interpolation artifacts through the 5 

pipeline. Partial volumes of GM and WM obtained from anatomical images are multiplied by the 6 

Jacobian determinants of the deformation fields - a.k.a. modulation - to account for voxel-volume 7 

changes when transforming to standard space (Ashburner and Friston 1999). 8 

 9 

4.1. Template creation 10 

Population templates can reveal population- or sequence-specific perfusion patterns that are not 11 

visible on the individual level. ExploreASL generates between-subject mean, standard deviation 12 

(SD), CoV, and SNR images for the total study population and, optionally, for different sets (e.g. 13 

different centers/sequences/cohorts) within the study (Figure 2). In addition to CBF itself, 14 

auxiliary images (e.g. M0), intermediate images (e.g. mean control images), or QC images (e.g. 15 

temporal SD) can provide a valuable overview of the data, for example when comparing data 16 

originating from different centers. 17 
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1 
Figure 2. Templates (population-averages from previous studies) are shown for source images (a) and CBF maps (b), 2 
for several arterial spin labeling (ASL) acquisitions with/without background suppression (Bsup) from different 3 
vendors. The average CBF images are intensity normalized to a mean total GM CBF of 60 mL/min/100g (see Suppl Fig 4 
10 for the unscaled CBF images). Source images are mean control images for Philips and Siemens and M0 images for 5 
GE, which does not output control images. Note that the images differ mostly in their effective spatial resolution, 6 
orbitofrontal signal dropout, and the amount of macro-vascular artifacts. The differences in geometric distortion are 7 
mostly too subtle to be noted on these population-averages images. Note the inferior-superior gradient in the source 8 
images in the 2D EPI sequence with background suppression. a.u. = arbitrary units, Bsup = background suppression, 9 
WIP = work-in-progress pre-release version. See sequence details in Supplementary Table 1.  10 
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4.2. Multi-sequence equalization 1 

Quantitative CBF images can differ between centers because of a number of hardware, labeling, 2 

and readout choices implemented by different MRI vendors and/or laboratories (Deibler et al. 3 

2008; Heijtel et al. 2014; Alsop et al. 2015; Jack et al. 2010). Some of these differences can be 4 

accounted for, as detailed in the previous sections. However, until a more robust procedure is 5 

devised - e.g. the use of a flow phantom (Oliver-Taylor et al. 2017) - a pragmatic approach is 6 

required to remove the remaining CBF quantification differences between sequences, scanner 7 

types, and centers (Mutsaerts et al. 2019). ExploreASL optionally performs a spatially varying 8 

intensity normalization by computing a smooth average CBF bias field for each ASL sequence 9 

(Supplementary Figure 10). This step assumes that the studied physiological effects are equally 10 

distributed across the subjects scanned with each sequence, scanner and/or site. The final CBF 11 

images in the standard space are smoothed with an 8x8x8 mm full-width at half-maximum 12 

Gaussian, and averaged to create a sequence/scanner type/site-specific mean CBF image. These 13 

sequence-mean CBF images are intensity normalized to GM CBF of 60 mL/100g/min and averaged 14 

to create a general mean CBF image. The sequence bias field is calculated by dividing the general 15 

mean with the sequence-mean CBF image. The individual CBF images are multiplied by their 16 

sequence bias to normalize the intensities across sequences (Mutsaerts et al. 2018).  17 

 18 

4.3. ROI statistics 19 

In ExploreASL, ROI masks are created by combining existing atlases with individual GM and WM 20 

masks. The GM atlases currently implemented are: (i) MNI structural (Mazziotta et al. 2001), (ii) 21 

Harvard-Oxford (Desikan et al. 2006), and (iii) Hammers (Hammers et al. 2002). A deep WM atlas 22 
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is created by eroding the SPM12 WM tissue class by a 4 voxel sphere (i.e. 6 mm), to avoid signal 1 

contamination from the GM (Mutsaerts et al. 2014). Other existing, or custom, atlases can be 2 

easily applied. The Online Brain Atlas Reconciliation Tool (OBART) at obart.brainarchitecture.org 3 

(Bohland et al. 2009) provides an overview of the overlap and differences between atlases. For 4 

each ROI, statistics are calculated separately within the left and right hemisphere, as well as for 5 

the full ROI; both with and without PVC. The same CBF statistics are also calculated for user-6 

provided ROIs and lesion masks, as well as for the 25 mm margin around the ROI/lesion 7 

(Moghaddasi et al. 2015), for the ipsilateral hemisphere excluding the lesion, and for the same 8 

three masks at the contralateral side. Subject-specific ROI and lesion masks are treated the same, 9 

except for the fact that lesion masks are also used for the cost function masking (see section 1.3). 10 

Individual vascular masks are used to exclude regions with intra-vascular signal (see section 3.7) 11 

from CBF statistics, but not from spatial CoV statistics. 12 

 13 

Finally, all masks are intersected with a group-level analysis mask, created from the individual 14 

analysis masks created in section 3.7. Individual differences of these analysis masks can be caused 15 

by differences in head position, FoV, and nasal sinus size. To limit the effects of this mask 16 

heterogeneity on statistical analyses, ExploreASL creates a group-level analysis mask from 17 

standard-space voxels present in at least 95% of the individuals masks (Supplementary Figure 8).  18 

 19 

4.4. Quality Control 20 

On a participant level, ExploreASL outputs QC parameters in a JSON file and provides unmasked 21 

images in standard space for visual QC, for both intermediate and final images (Supplementary 22 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845842doi: bioRxiv preprint 

https://doi.org/10.1101/845842
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                 28 

Figure 11) to detect technical failure, outliers and artifacts. QC parameters are also obtained by 1 

comparing individual ASL images with an atlas, a group average, or an average from a previous 2 

study. Whole-brain and regional differences larger than 2-3 SD are indicated and should be 3 

visually inspected. Deviations can hint to software updates or different scanners and, if not 4 

accounted for, can lead to low power of the statistical analyses (Chenevert et al. 2014). All QC 5 

parameters and images are also collected in a PDF file (Figure 3, Supplementary Table 2). While 6 

these QC parameters can be helpful in detecting artifacts and/or protocol deviations, their use 7 

has not yet been validated, and the normal and abnormal range for each of the parameters still 8 

need to be determined. 9 
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Figure 3. Example PDF report for a single subject. This provenance and QC report includes information collected 1 
from each image processing step across the pipeline and assembled in the population module. It is stored in a key-2 
<value> format, facilitating inclusion of plugin or new parameters. Keys and values are grouped into the structural 3 
and ASL modules, and the software versions (see Supplementary Table 2).  Figures represent transversal and 4 
coronal slices in MNI standard space: 1-4) T1w before and after lesion filling, pWM projected over T1w, WMref 5 
projected over T1w, 5-8) FLAIR, WMH mask projected over FLAIR, pWM  projected over FLAIR, WMref projected 6 
over FLAIR, 9-12) CBF, temporal SD, pWM projected over CBF, temporal SNR, 13-16) mean control, M0 before 7 
processing, pGM projected over M0, M0 after processing. The pWM/pGM projections in the third column allow a 8 
visual assessment of registration performance. CBF = cerebral blood flow, FLAIR = FLuid Attenuated Inversion 9 
Recovery, GM = gray matter, pGM = GM partial volume, pWM = WM partial volume, SNR = signal-to-noise ratio, 10 
WMref = WM noise reference region, WM = white matter. Example data are from the EPAD study (Ritchie et al. 11 
2016). 12 
 13 

Methods 14 

We illustrate the ExploreASL image processing results and reproducibility for three populations 15 

with similar 2D-EPI PCASL protocols: perinatally-infected HIV children, healthy adults, and elderly 16 

with mild cognitive complaints, from the NOVICE (Blokhuis et al. 2017), the Sleep (Elvsåshagen et 17 

al. 2018), and the European Prevention of Alzheimer’s Dementia (EPAD) studies (Ritchie et al. 18 

2016), respectively (Supplementary Table 3). All three studies adhered to the Declaration of 19 

Helsinki and were approved by the local ethics committees (Academic Medical Center (AMC) in 20 

Amsterdam, Norwegian South East Regional Ethics Committee, and VU Medical Center 21 

Amsterdam and University of Edinburgh, respectively). Written informed consent was obtained 22 

from all participants (or parents of children younger than 12 years for NOVICE). Each participant 23 

of the Sleep study received NOK 500 for participation. 24 

 25 

The performance of image processing should be comparable between different centers, 26 

independent of used hardware and OSes, to allow data pooling and comparison between studies. 27 

Here, we investigated the between-center reproducibility of the intermediate and final pipeline 28 

results without and with the ExploreASL-specific modifications of the SPM12, CAT12, and LST 29 
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source code (modifications described below). To this end, a single participant from each study 1 

was analyzed: with the lowest GM volume from NOVICE and EPAD (GM/ICV ratio 0.41 and 0.33, 2 

respectively), and the highest GM volume (GM/ICV ratio 0.55) from the Sleep study. These three 3 

datasets were processed at two centers with the following combinations of OS and MATLAB 4 

version: Linux-2018b (HZDR, Dresden, Germany; Linux server, 2.1 GHz Intel Xeon 6130, Ubuntu 5 

5), Windows-2015a and 2018b (Amsterdam UMC, The Netherlands; Dell Alienware laptop, 2.9-6 

4.3 GHz Intel i7-7820HK, Windows 10 Version 1903). After each pipeline step, the between-center 7 

- or between-system - reproducibility was obtained as difference of the image intensities and 8 

orientation between the NIfTIs of the two compared systems. The image intensity reproducibility 9 

was calculated as the median voxel-wise relative intensity difference (Kurth et al. 2015), whereas 10 

the image orientation reproducibility was calculated as the mean voxel-wise net displacement 11 

vector in real-world coordinates (Power et al. 2012). These were calculated for T1w with GM 12 

segmentation, FLAIR with WMH segmentation, M0, quantified CBF, GM partial volume in ASL 13 

native space (pGMASL), and PV-corrected GM CBF. 14 

 15 

More complex calculations involving floating-point arithmetic operations, e.g. matrix inversions, 16 

can produce different results between OSes and MATLAB versions in the last digits. These minimal 17 

differences can accumulate in iterative algorithms such as segmentation and registration, and 18 

propagate across the pipeline. To mitigate these effects, during the process of implementing and 19 

using the pipeline for previous clinical studies, we modified parts of the SPM12, CAT12, and LST 20 

toolboxes: e.g. using the MATLAB ‘\’ operator for solving a system of linear equations instead of 21 
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calculating a matrix inversion, providing a separate C++ implementation for convolutions, and/or 1 

rounding some calculations to 15 significant digits.  2 

 3 

Results 4 

Running time for a single EPAD participant took 22:11, 4:34, and 0:40 min for the Structural, ASL, 5 

and Population modules, respectively (27:25 min in total). On low quality, the same processing 6 

took 7:30 min, 2:24, and 0:34 respectively (10:28 min in total) (Windows-2018b). Figure 4 shows 7 

differences between populations or sequences on the ExploreASL population-specific parametric 8 

maps. While the GM CBF was highest in the pediatric and lowest in the geriatric population (Figure 9 

4c), both the between-subject CoV and within-scan temporal SD were comparable in these 10 

populations and lowest in the healthy adults (Figure 4d-e). The temporal SD (Figure 4e) was high 11 

in vascular regions and highest around the ventricles in the pediatric dataset, due to a 2D EPI fat-12 

saturation related artefact. Despite these differences, the temporal SNR appeared relatively 13 

comparable (Figure 4f), albeit slightly higher for the pediatric population. The average mean 14 

control images (Figure 4g) showed subtle differences in background suppression efficacy, as 15 

different tissue contrast and inferior-superior background suppression efficiency gradient. Only 16 

slight differences in ventricle and sulci size were visible between the pediatric and geriatric 17 

population (Figure 4a) confirming satisfactory performance of spatial normalization. 18 

 19 

All three datasets showed zero difference when the pipeline was repeated twice on the same 20 

system. When comparing OSes only - Linux-2018b vs Windows-2018b - the structural module 21 

showed final voxel-wise differences of 0.77% pGM in NOVICE and 1.74% WMH in EPAD that 22 
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became negligible after our code modifications (Figure 5). The ASL module differences were 1 

smaller than 0.5%, except for the pGMASL (0.57-2.5%) and PV-corrected GM CBF (0.61-5.76%). 2 

Both improved after modifications to 0-1.2% and 0.32-1.5% for pGMASL and PV-corrected GM CBF, 3 

respectively, showing the impact of our modifications. The reproducibility between OS and 4 

MATLAB versions - Linux-2018b vs Windows-2015a - showed satisfactory post-modification 5 

reproducibility, e.g. pGMASL (0.47-1.79%) and GM CBF (0.57-1.77%) (Supplementary Table 4). 6 

Compared with the above-mentioned Linux-2018b vs Windows 2018b results this shows an 7 

additional decrease in reproducibility when a different MATLAB version is used on top of different 8 

OSes and/or systems. 9 
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 1 

Figure 4. Transversal, coronal, and sagittal population average images for the three example populations: 1) NOVICE, 2 
2) Sleep study, 3) EPAD (see Supplementary Table 3): a) T1w anatomical image with pGM and pWM overlay , b) FLAIR 3 
anatomical image overlaid with probability of WMH presence across the whole population, c) Mean CBF, d) between-4 
subject CBF variation (SD CBF/mean CBF per voxel across all subjects), e) temporal SD of CBF, mean over all subjects 5 
is shown, f) temporal SNR of CBF (mean CBF/tSD CBF), g) mean control image (note the background suppression 6 
gradient), h) M0 calibration image. Note that the FLAIR and M0 were not acquired in the Sleep and NOVICE studies, 7 
respectively. CBF = cerebral blood flow, tSNR = temporal signal-to-noise ratio, tSD = temporal standard deviation, au 8 
= arbitrary units, bs = between-subject, CoV = coefficient of variance, p = probability, GM = gray matter, WM = white 9 
matter, WMH = white matter hyperintensity. 10 
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1 
Figure 5. Reproducibility between Linux-2018b and Windows-2018b and for the three datasets NOVICE, Sleep, and 2 
EPAD. Results are shown before (pre) and after (post) the ExploreASL-specific modifications of MATLAB and SPM12 3 
code. The median relative intensity difference is shown in the two columns on the left (referred to as difference) and 4 
the mean voxel-wise net displacement vector (NDV) is shown in the two columns on the right. Labels on the x-axis 5 
describe the processing steps in the Structural (2.1 = WMH correction, 2.2 = Segmentation, 2.3 = Spatial 6 
normalization) and ASL module (3.1 = Motion correction, 3.3 = T1w-ASL registration, 3.4 = M0 processing, 3.5 = CBF 7 
quantification) as described in Table 1. pGMASL = gray matter partial volume map in ASL space. 8 
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Discussion and future directions 1 

In this manuscript, we reviewed many of the most salient ASL image processing choices, and their 2 

implementation in ExploreASL version 1.0.0. We demonstrated the software's functionality to 3 

review individual cases as well as population-average images for quality control. Our findings 4 

show that between-center computing differences can lead to voxel-wise CBF quantification 5 

differences of up to 5.7% on average for the total GM, which were reduced to 1.7% by addressing 6 

implementation differences of complex floating-point operations between MATLAB versions and 7 

OSes. This may especially be beneficial for multi-center studies or for pooling multiple ASL studies 8 

to attain sample sizes required for the discovery of subtle (patho-)physiological perfusion 9 

patterns. 10 

 11 

Several other ASL image processing pipelines are publicly available and free for academic use, 12 

each providing specific features. The first publicly available pipeline ASLtbx quantifies CBF of 13 

various ASL sequences (Wang et al. 2008) and features customized motion correction and 14 

advanced outlier detection (Dolui et al. 2017); ASAP contains a graphical user interface (GUI) with 15 

an interface for population analyses, and generates statistical reports (Mato Abad et al. 2016); 16 

the ASLM toolbox is a MATLAB- and SPM-based command-line tool (Homan et al. 2012), ASL-17 

MRICloud features a web interface with an automated cloud solution (Li et al. 2018); ASL-QC 18 

handles multiple vendors and provides QC metrics (not published); BASIL uses a Bayesian 19 

approach for the quantification and PVC of multi-TI, QUASAR, and time-encoded ASL data, thus 20 

offering the most comprehensive quantification (Chappell et al. 2010); CBFBIRN offers an online 21 

data repository with online image processing (Shin et al. 2016); Functional ASL (FASL) (FASL 22 
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webpage) and fMRI Grocer (Zhu Grocer) are SPM toolboxes that process both functional ASL and 1 

BOLD MRI; GIN fMRI performs separate control and label realignment and automatically excludes 2 

outliers and volumes with strong motion (unpublished); MilxASL features spatial and temporal 3 

denoising (Fazlollahi et al. 2015); MJD-ASL is implemented into 'cranial cloud', addresses noise 4 

concerns and processes cerebral blood volume (CBV) (MJD-ASL Webpage); NiftyFit supports 5 

quantification of other MRI sequences as IVIM, NODDI, and relaxometry (Melbourne et al. 2016); 6 

VANDPIRE is Python-based, has a scanner console plugin and allows flow territory mapping from 7 

vessel-encoded ASL (Arteaga et al. 2017). 8 

 9 

The main advantage of ExploreASL is the use of image processing that is optimized for clinical 10 

studies, to address the diversity of the clinical populations, hardware, and sequences used. Other 11 

strengths include its between-center reproducibility of image processing, and its flexible open 12 

source development through GitHub with a growing team of international scientists. This 13 

improves the likelihood of rapid debugging, encourages inter-institutional cross-pollination in 14 

validation of new techniques, and allows quick adaptation of the software to new regulations 15 

regarding e.g. best practice (Nichols et al. 2017) and data transfer (Regulation 2016). Moreover, 16 

the use of a common validated pipeline rather than in-house software increases reliability and 17 

reproducibility in neuroscience research (Poldrack et al. 2017). The ExploreASL team actively 18 

focuses on keeping the pipeline user-friendly by allowing download on demand during the 19 

development phase and by being in close-contact with all the users. ExploreASL was built upon 20 

freely available software that performs well in a wide array of cases, rather than opting for 21 

solutions with optimal performance in specific cases but not applicable in general. Still, the 22 
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modular structure of ExploreASL allows the replacement of some steps by solutions tailored for 1 

specific datasets.  2 

 3 

Although ExploreASL allows custom labeling efficiency values and global CBF calibration, it does 4 

not estimate labeling efficiency. While literature values for labeling efficiency (Dai et al. 2008) 5 

may suffice in many clinical cases (Heijtel et al. 2014), individual correction can be beneficial for 6 

specific populations (Václavů et al. 2018). For these, phase-contrast MRI can improve the CBF 7 

quantification by a) calibrating CBF based on total flow through the brain-feeding arteries (Aslan 8 

and Lu 2010; Ambarki et al. 2015), or b) modeling the labeling efficiency based on the velocity in 9 

the labeling plane (Václavů et al. 2019). Compared to ASL, drawbacks of the phase-contrast MRI 10 

include its lower reproducibility for whole brain CBF estimates (Dolui et al. 2016), and its lower 11 

agreement with PET (Puig et al. 2018). Moreover, an automatic implementation requires good 12 

data quality, perpendicular placement of the labeling plane to the vessels, and the absence of 13 

vessel tortuosity, conditions that are rarely met in clinical datasets. Future solutions may be 14 

provided by new sequences under development, which allow direct labeling efficiency 15 

measurements during the ASL acquisition (Chen et al. 2018; Lorenz et al. 2018). 16 

 17 

Several additional features are scheduled for future releases, after being tested first through the 18 

GitHub beta versions of ExploreASL. These include full BIDS support (Gorgolewski et al. 2016); 19 

support for Hitachi and Canon datasets; unit testing to ensure stability of the pipeline through the 20 

continuous development; inclusion of WM atlases for extended WM analysis; a GUI for easier 21 

configuration and execution; quantification of advanced ASL schemes such as velocity- and 22 
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acceleration-selective ASL (Schmid et al. 2015) and integration of the BASIL toolbox to allow multi-1 

PLD and time-encoded sequence quantification (Chappell et al. 2009); and support for individual-2 

center calibration, e.g. using the recently introduced Quantitative ASL Perfusion Reference 3 

(QASPER) (Oliver-Taylor et al. 2017) phantom (Gold Standard Phantoms, London, UK). Although 4 

ExploreASL’s computation times are moderate for research purposes, a clinical scanner 5 

implementation would benefit from parallelization on graphical processing units (GPUs) to 6 

provide robust automatic QC within clinical scanning time (e.g. <5 min). Another improvement 7 

would be the investigation of the effect of image processing choices, as well as the availability of 8 

physiological and quantification parameters for different populations (Fazlollahi et al. 2015). This 9 

would allow for the incorporation of quantification confidence intervals in the output of 10 

ExploreASL. For anonymization purposes, the face can be removed from the structural scans 11 

(Nichols et al. 2017; Leung et al. 2015) using a defacing algorithm such as the one implemented 12 

in SPM12, but further testing is required to verify that the analysis is not affected (de Sitter et al. 13 

2017). Statistical analyses can be biased for populations with large inter-subject differences in 14 

their deformations, e.g., developing brains or a wide range of atrophy. The CerebroMatic toolbox 15 

(Wilke et al. 2017) is a tool that accounts for this bias and will be incorporated in future releases 16 

of ExploreASL. Finally, we intend to implement ExploreASL as a cloud solution and scanner 17 

console plugin. 18 

 19 

Image processing techniques that require validation include: using the UNWARP toolbox for 20 

simultaneous motion and susceptibility deformation correction (Andersson et al. 2001), using 21 

temporal information for artifact removal through the application of an independent-component 22 
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analysis (ICA) (Wells et al. 2010; Hao et al. 2018; Zhu et al. 2018) or using respiratory and cardiac 1 

signal (Restom et al. 2006), spatial denoising - once validated under realistic conditions (Spann et 2 

al. 2017; Wells et al. 2010; Bibic et al. 2010; Liang et al. 2015), obtaining GM-WM segmentations 3 

from fractional signal modeling of the magnetization recovery profile acquired with a Look-Locker 4 

readout (Petr et al. 2013; Ahlgren et al. 2014), and using the BBR method for motion correction 5 

or registration (Greve and Fischl 2009). Finally, we aim to improve the inter-center reproducibility 6 

even further. 7 

 8 

Conclusion 9 

ExploreASL is a versatile pipeline that performs well on a wide-range of diseases, including 10 

datasets with lesions, allows flexible parameter definition, and a quick exploration of datasets 11 

and QC images of each pipeline step in the same space. We made the pipeline available at 12 

www.ExploreASL.com. We anticipate that ExploreASL will allow for more flexible collaboration 13 

amongst clinicians and scientists, help to achieve the consensus standards for ASL processing 14 

sought by the OSIPI, facilitate validation of ASL image processing approaches, and accelerate 15 

translation to clinical research and practice.  16 
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