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Abstract

With the exception of mRNA splicing, little is known about co-transcriptional or post-transcriptional regulatory

mechanisms that link noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’

Seq to characterize alternative polyadenylation (APA) in the nuclear and total RNA fractions of 52 HapMap Yoruba

lymphoblastoid cell lines, which we have studied extensively in the past. We identified thousands of polyadenylation

sites that are differentially detected in nuclear mRNA and whole cell mRNA, and found that APA is an important

mediator of genetic effects on gene regulation and complex traits. Specifically, we mapped 602 apaQTLs at 10%

FDR, of which 152 were found only in the nuclear fraction. Nuclear-specific apaQTLs are highly enriched in introns

and are also often associated with changes in steady-state expression levels, suggesting a widespread mechanism

whereby genetic variants decrease mRNA expression levels by increasing usage of intronic PAS. We identified 24

apaQTLs associated with protein expression levels, but not mRNA expression, and found that eQTLs that are not

associated with chromatin QTLs are enriched in apaQTLs. These findings support multiple independent pathways

through which genetic effects on APA can impact gene regulation. Finally, we found that 19% of apaQTLs were also

previously associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene

expression levels, protein expression levels, and disease risk, and reveals uncharted modes of genetic regulation.
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Introduction

Nearly all genetic variants associated with complex traits are noncoding, suggesting that inter-individual

variation in gene regulation plays a dominant role in determining phenotypic outcome. To investigate

the function of trait-associated variants identified using genome-wide association studies (GWAS), studies

have used regulatory quantitative trait loci (QTL) mapping to associate GWAS loci with variation in mRNA

expression levels, DNA methylation levels, and other molecular phenotypes. Although many GWAS loci

affect mRNA expression levels (i.e. are eQTLs), several recent discoveries highlight the pressing need for a

better understanding of the genetic control of gene regulation, beyond that of just mRNA expression levels.

For example, one recent study (Chun et al., 2017) found that the majority of autoimmune GWAS loci do not

appear to affect mRNA expression levels. Two other studies observed that many genetic variants affecting

variation in protein levels (pQTLs) do not affect mRNA expression levels (Battle et al., 2015; Chick et al.,

2016). Altogether these findings indicate that there may be unknown or understudied regulatory mecha-

nisms that link genetic variation to complex traits, and that these mechanisms are independent of changes

in the amplitude of mRNA expression levels. Moreover, even when a disease-associated variant is known

to impact mRNA expression levels, the mechanisms by which expression is affected is often unclear. In-

deed, a third of all eQTLs identified in human lymphoblastoid cell lines (LCLs) are not associated with any

chromatin-level regulatory phenotypes including transcription factor binding and histone modifications

(Y. I. Li et al., 2016), again raising the possibility that understudied regulatory mechanisms mediate these

eQTL effects.

One such understudied mechanism is alternative polyadenylation (APA). Well over half of all human

protein coding genes encode multiple polyadenylation sites (PAS), resulting in the production of diverse

mRNAs with alternative termination sites (Tian & Manley, 2017; Mayr, 2016; Shi, 2012). Unlike alterna-

tive mRNA splicing, which leads to changes in splice site selection, APA leads to changes in the transcript

termination site, often resulting in 3’ untranslated regions (UTRs) with different lengths. As 3’UTRs are

densely packed with regulatory elements that impact mRNA stability, miRNA binding, and mRNA local-

ization (reviewed in (Mayr, 2017; Tian & Manley, 2017)), genetic control of APA may be a key mechanism

by which genetic variants impact gene regulation, including mRNA expression levels, without affecting

chromatin-level phenotypes such as promoter or enhancer activity. Moreover, proteins translated from dif-

ferent APA isoforms may differ in length and protein-protein interactions, and these differences can have

phenotypic effects. For example, global increased usage of intronic PAS has been shown to increase risk
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for multiple myeloma and chronic lymphocytic leukemia (Lee et al., 2018; Singh et al., 2018) by producing

mRNAs that translate into truncated proteins, which causes defects in tumour-suppressive functions (Lee

et al., 2018; Singh et al., 2018).

To evaluate the role of APA in mediating genetic effects on gene expression and disease, we sought to

identify genetic variants associated with APA on a genome-wide scale. To date, the few studies that have

used genome-wide methods to identify variants associated with APA (apaQTLs) have used existing RNA-

seq data to infer PAS locations and usage (L. Li, Gao, Peng, Wagner, & Li, 2019; Yoon, Hsu, Im, & Brem,

2012; Yang et al., 2019; Bonder et al., 2019). While using existing RNA-seq to study APA is economical,

identifying PAS and estimating usage using RNA-seq are error-prone and often imprecise (Ha, Blencowe,

& Morris, 2018). Furthermore, using existing whole-cell, total RNA-seq data is not informative with regards

to whether inter-individual differences in PAS usages are the result of variation in transcriptional termina-

tion site choice, or isoform-specific decay or export. Here, we used 3’ RNA-seq (3’ Seq) to measure PAS

usage in steady-state mRNA collected from whole cells as well as mRNA collected from the nucleus, which

is comprised of a high proportion of nascent mRNA. This design allowed us to study the effect of genetic

variation on isoform PAS at multiple stages of the mRNA lifecycle. Importantly, we collected these data

from a panel of human lymphoblastoid cell lines (LCLs) that were previously profiled in great molecular

detail, including measurements at the chromatin, RNA, and protein levels (Degner et al., 2012; McVicker

et al., 2013; Y. I. Li et al., 2016; Pickrell et al., 2010). Integrating the apaQTLs we identified with previously

collected data types allowed us to characterize the functional impact of variation in APA on each of the

major steps of the gene regulatory cascade. We use these data to show that genetic effects on polyadeny-

lation can independently affect virtually all steps of gene regulation (mRNA expression level, translation

rate, and protein expression level), and that such effects can be associated with protein expression, but not

RNA expression.

Results

To measure the impact of inter-individual variation in APA on multiple stages of gene regulation, we quan-

tified PAS usage in a panel of 52 Yoruba HapMap LCLs. These same samples have been the subjects of

multiple studies of gene regulation over the last decade (Degner et al., 2012; McVicker et al., 2013; Y. I. Li

et al., 2016; Pickrell et al., 2010). We applied 3’ Seq to mRNA collected from whole cells (total fraction) of

52 LCLs to comprehensively identify PAS and estimate usage without relying on existing annotations. In

addition, to capture polyadenylated mRNA that may be under-represented or absent in the total fraction
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due to rapid turnover, we separately applied 3’ Seq to mRNA from isolated nuclei (nuclear fraction) of the

same 52 LCLs (Fig. 1A).

Nuclear 3’ Seq measures PAS usage independent of post-transcriptional decay

We first verified that the nuclear 3’ Seq data capture transcripts at a more primitive stage compared to the

total 3’ Seq data, and thus better reflect mRNA diversity independent of decay. To this end, we reasoned

that genes with higher nuclear 3’ Seq read counts relative to total 3’ Seq read counts should show faster

decay on average. Indeed, we found that the relative number of nuclear 3’ Seq reads to total 3’ Seq reads is

positively correlated with both the ratio of 4sU-seq to RNA-seq read counts (Y. I. Li et al., 2016) (p < 2.2−16

, Fig. 1B) and direct gene level mRNA decay estimates (Pai et al., 2012) (p < 2.2−16, Supplementary Fig.

1), two different measures of decay. After filtering the 3’ Seq data for possible internal priming (Methods),

we identified 41,810 PAS in 15,043 genes. We found that 67% of the protein coding genes expressed in

LCLs harbor multiple PAS, suggesting that APA can impact the regulation of most genes (Tian & Manley,

2017; Mayr, 2016; Shi, 2012). We found that the polyA binding protein motif (AATAAA), also known as

the polyadenylation signal site, is the most strongly enriched protein binding motif in regions surrounding

our PAS (p < 10−391). We observed that PAS in the 3’ UTR are more likely to have a polyadenylation

signal compared with intronic PAS (p < 10−16, difference of proportion t-test, 75.0% vs 24.8%,) (Fig. 1C,

Supplementary Fig. 3) and that nearly half (48.3%) of all 41,810 PAS we identified are located in 3’ UTRs

(19.4x enrichment) (Singh et al., 2018). Nevertheless, despite an overall depletion of PAS in introns (0.35x

genome-wide levels), we found that the number of PAS in introns is notable (12,793/41,810; 30.6%) (Fig.

1D, Supplementary Fig. 2). While signal sites were more highly enriched near 3’ UTR PAS than intronic

PAS, PAS in introns show clear enrichment of polyadenylation motif 10-50 bp upstream of the cleavage

site compared to background intronic sequences (24.8% vs 0.24% p < 10−16, difference of proportion t-test,

Fig. 1D). Thus, the recognition of intronic polyadenylation signals is a general mechanism that can result in

premature termination of transcription. In addition, although slightly enriched in the first introns of genes

(2.69x enrichment over uniform distribution), intronic PAS could be identified in all introns and thus are

not likely to result from defective telescripting activity alone (e.g. from a depletion in U1 small nuclear

ribonucleoprotein (snRNP)) (Kaida et al., 2010; Berg et al., 2012; Oh et al., 2017).

We also observed that intronic PAS have on average lower usage across individuals than PAS located in

3’ UTRs (16.9% vs 46.2%). These differences may be explained by weaker polyadenylation signals at intronic

PAS compared to 3’ UTR PAS, but we hypothesized that some intronic PAS might have low usage because

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845966doi: bioRxiv preprint 

https://doi.org/10.1101/845966
http://creativecommons.org/licenses/by-nc-nd/4.0/


premature polyadenylation at intronic sites can produce short-lived transcripts that are rapidly degraded

and thus under-represented in the total mRNA fraction. To test this hypothesis, we identified PAS that are

used more often, or exclusively, in the nuclear fraction compared to the total fraction. By comparing PAS

usage estimated in the nuclear and total fractions from all 52 individuals, we identified 591 PAS in 585 genes

that are used more often in the nuclear fraction (10% FDR). 134 of these 591 PAS were found to be used by

1% or less of the transcripts in the total fraction, suggesting that these transcripts may be absent from the

cytoplasm (Fig. 1E, Supplementary Fig. 4, Methods). Notably, we found that 387 of the nuclear-enriched

PAS are intronic (Supplementary Fig. 4; see example in Fig. 1F), a large proportion of which (83.4% vs 43%

for all PAS) are absent from a comprehensive annotation of PAS compiled from 78 human studies that used

3’ Seq (Methods, Supplementary Fig. 5) (Wang, Nambiar, Zheng, & Tian, 2018). These findings suggest that

mRNA transcripts are polyadenylated in introns at a higher frequency than generally appreciated, and that

many of these isoforms escape detection from studies of total mRNA owing to their rapid decay.

Genetic loci associated with variation in APA

We next sought to identify genetic loci associated with inter-individual variation in APA. We quantified

APA as the normalized ratio of reads mapping to each PAS compared to reads mapping to all PAS assigned

to the same gene (Methods, Supplementary Fig. 6-7). We tested cis-association between genetic variants

and PAS usage, correcting for batch and the top principal components (Methods, Supplementary Fig. 8).

Using 3’ Seq data from the nuclear fraction, we identified 602 nuclear apaQTLs in 479 genes at 10% FDR.

In the total fraction, we identified 443 apaQTLs in 353 genes at 10% FDR. For example, individuals with

the C/C genotype (rs11032578) are more likely to use an intronic PAS in the ABTB2 gene compared to

individuals that are heterozygous C/T or homozygous T/T (Fig. 2A). In both fractions, apaQTLs occur near

the PAS they most strongly correlate with and are located at the 3’ ends of gene bodies (Fig. 2B-C). While

the proximity of the apaQTLs to PAS may suggest that genetic variants that affect polyadenylation signal

motifs drive most of the genetic effects on APA, we found limited evidence that supports this possibility

(Supplementary Fig. 9).

Next, we quantified the sharing and specificity of genetic effects on APA in the nuclear and total frac-

tions. We estimated that the vast majority of nuclear apaQTLs were shared with total apaQTLs (π1 1=0.85)

and vice-versa (π1=0.87, Supplementary Fig. 10). Additionally, we observed that their effect sizes were

highly correlated (r2 = 0.66; p = 10−16, Fig. 2D, Supplementary Fig. 11). These results suggest that the

predominant mechanism by which genetic variants affect steady-state PAS usage is to directly impact PAS
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Figure 1: (A) Meta gene plot showing read coverage for five RNA sequencing libraries collected from LCLs (Pick-
rell) (Left) and for five 3

′
Seq libraries collected from nuclei isolated from LCLs (Right). (B) Nuclear 3’ Seq capture

polyadenylation of nascent transcripts. The ratio of new mRNA to steady-state mRNA (Y. I. Li et al., 2016) (x axis) are
plotted against the ratio of 3’ Seq reads from the nuclear fraction to 3’ Seq reads from the total fraction (y axis). (C)
(Main) Density of canonical (AATAAA, AATTAA) and other polyadenylation signal sites upstream of identified PAS.
(Inset) Proportion of PAS in different genomic regions with a polyadenylation signal site 10–50bp upstream of cleavage
site. The red dotted line represents the proportion of signal site in random 40bp windows, i.e. the intronic background.
(D) Number (orange) and proportion (purple) of PAS in the 3’ UTR (Left) and introns (Right) are plotted against usage
cutoff in the nuclear fraction. The proportion of intronic PAS increases as the usage cutoff decreases, implying that a
disproportionate number of intronic PAS are used at low frequencies. (E) (Main) Meta gene plot showing the number
of differentially used PAS identified by LeafCutter (Online Methods) with a ∆ PAU of 0.20 across the gene body. (Inset)
Estimated number of genes identified with differential PAS usage between total and nuclear fractions. (F) ZBTB2 was
identified to harbor a differentially used PAS between total and nuclear fractions. 3

′
Seq tracks represent aggregated

read counts from all 52 individuals.

choice rather than to affect the stability of an isoform ending at one site relative to that with another ending

(e.g. by affecting isoform-specific decay). Nevertheless, we identified 153 nuclear-specific apaQTLs and 97

total-specific apaQTLs (Methods).
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Figure 2: (A) An apaQTL in the ABTB2 gene impact usage of an intronic PAS. (Top) Gene track and identified PAS. Each
bar represents a potential isoform. The red bar corresponds to the isoform most strongly associated with the apaQTL.
The vertical dotted line represents the position of the strongest apaQTL SNP. (Bottom) Polyadenylation site usage at
each PAS by genotype listed according to isoform order above. The C allele increases usage of the intronic PAS. (B)
Location of the top nuclear (Left) and total (Right) apaQTL SNPs relative to their corresponding PAS. (C) Meta gene plot
showing the distribution of apaQTL SNPs in the annotated gene body, where 0 represents the TSS and 1 represents the
annotated transcription end site. (D) Effect sizes of apaQTLs originally identified at 10% FDR in nuclear (Left) and total
(Right) fraction plotted against the effect sizes ascertained in total and nuclear fractions, respectively.

APA explain eQTLs that are not associated with chromatin phenotypes

Given that most apaQTLs identified in our study are represented in the nuclear fraction, we focused on

the 602 nuclear apaQTLs for subsequent analyses. Although APA produces isoforms with distinct ends, it

is possible that the isoforms are functionally identical, especially when they differ only in 3’ UTR lengths

and thus encode the same protein sequence. To better understand the functional impact of apaQTLs, we

asked whether they are also associated with changes in gene or protein expression levels. We found that

genes associated with apaQTLs are enriched for both genes with eQTLs (eGenes, Wilcoxon rank sum test

p = 1.36 × 10−12) and genes with protein expression QTLs (pGenes; p = 0.0006) compared to genes with

neither association (Fig. 3A, Supplementary Fig. 12) (Y. I. Li et al., 2016; Battle et al., 2015). Notably, we

found that nuclear-specific apaQTLs are even more enriched for eGenes (p = 0.002) compared to apaQTLs

that are shared in both fractions. This observation led us to hypothesize that intronic apaQTLs affect gene

expression levels by increasing the number of transcripts that use premature intronic PAS, of which many

may be subject to rapid decay. Indeed, we found a negative correlation between the genetic effect sizes for

intronic PAS usage and mRNA expression levels (p = 8.97 × 10−7, Fig. 3B, Supplementary Fig. 13). Thus,
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our analyses suggest a widespread mechanism whereby genetic variants decrease mRNA expression levels

by increasing usage of premature PAS located in introns. Of note, 13 of the apaQTLs that were detected

only in the nuclear fraction are also eQTLs, which highlights the importance of considering multiple stages

of mRNA biogenesis to uncover eQTL mechanisms.

To further investigate the contribution of APA to gene expression, we focused on a set of eQTLs that

we previously classified as those with explained putative mechanisms eQTLs (1164 eQTLs, ∼ 60%) or as

unexplained eQTLs (801 eQTLs, ∼ 40%) using data from the same LCLs (Y. I. Li et al., 2016). The eQTLs

with explained putative mechanisms were associated with chromatin-level phenotypes including DNase-I

hypersensitivity, histone marks, or DNA methylation, and thus are likely to be mechanistically explained

by effects mediated by chromatin-level phenotypes (e.g. enhancer or promoter activity). By contrast, 40%

of eQTLs were not associated with any chromatin-level measures, and thus their mechanisms of action

remain unknown. To test whether apaQTLs might account for unexplained eQTLs, we first asked whether

genes with unexplained eQTLs were more likely to also harbor apaQTLs than compared to genes with

explained eQTLs. Indeed, we found a significantly higher enrichment of low p-value associations with

APA for genes with unexplained eQTLs (p = 0.01) (Fig. 3C, Supplementary Fig. 14). We also found that

apaQTLs exhibited a chromatin enrichment profile that was more similar to the unexplained eQTLs than

the explained eQTLs. In particular, apaQTLs and unexplained eQTLs were more likely to lie in regions

of transcription elongation or are associated with weak transcription, and less likely to lie in enhancers or

promoters than explained eQTLs (Fig. 3D. Overall, we estimated that the apaQTLs can provide a putative

mechanism for 17.3% of otherwise unexplained eQTLs (see Methods). For example, an unexplained eQTL

for C10orf88 (rs7904973) colocalizes with an apaQTL associated with increased usage of an intronic PAS

(Fig. 4A). This observation thus highlights APA as one important mechanism by which genetic variation

impacts gene expression without affecting enhancer and promoter activity.

APA mediates gene regulation independently of mRNA expression levels

Previous joint analyses of molecular QTLs suggested that functional genetic variants tend to affect gene reg-

ulation in a simple and straightforward manner: first impacting chromatin activity, then mRNA expression,

and finally protein expression (Y. I. Li et al., 2016; Battle et al., 2015). However, we found 24 apaQTLs that

affect protein expression, but not mRNA expression (Supplementary Table 1), suggesting a more complex

mode of gene regulation independent of mRNA expression that involves APA. We found that five of these

24 apaQTLs were significantly associated with ribosome occupancy (Supplementary Table 1). This finding
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Figure 3: (A) Quantile-quantile (Q-Q) plot for apaQTLs shows an enrichment in both eGenes and pGenes. (B) Scatter
plot of intronic apaQTL effect sizes plotted against their eQTL effect sizes shows negative correlation. (C) Quantile-
quantile (Q-Q) plot for apaQTLs shows that apaQTLs are more highly enriched in unexplained eGenes compared to
explained eGenes. (D) Proportion of apaQTL, explained eQTL, and unexplained eQTL SNPs in different genomic
annotations. The annotation profiles of apaQTLs show more similarity to that of unexplained eQTLs than to that of
explained eQTLs. Error bars represent 95% confidence intervals from bootstraps (Online Methods).

is particularly noteworthy because nearly all genetic effects on ribosome occupancy have been proposed

to be mediated by effects on mRNA expression (Battle et al., 2015). Yet, here we provide direct evidence

that APA can mediate genetic effects on ribosome occupancy without affecting mRNA expression levels.

For example, the apaQTL in the EIF2A gene that is associated with a switched usage of two 3’ UTR PAS,

colocalizes with a pQTL and a ribosome occupancy QTL (Fig 4B, Supplementary Fig. 15), but is not as-

sociated with EIF2A mRNA levels (Fig. 4B). Interestingly, the QTL in EIF2A affects usage of two PAS in

the same 3’ UTR implying that the protein sequence encoded by the two isoforms are identical. Thus, the

regulatory associations uncovered at EIF2A cannot simply be explained by differences in protein isoform

stability. Moreover, while differences in 3’ UTR are often assumed to play a regulatory function by influ-

encing decay (Mayr, 2017), mechanisms involving RNA decay cannot be operational in this case because

steady-state mRNA expression is unchanged. Instead, differences between the two isoforms may reflect

differential binding of factors that impact translation (Yamashita & Takeuchi, 2017), or differential rates of

translation re-initiation at the end of a translation cycle (Rogers, Böttcher, Traulsen, & Greig, 2017).

We identified 19 pQTLs that were associated with APA but not steady-state gene expression or ribosome

occupancy levels. Two previous studies also reported the discovery of pQTLs that were not eQTLs. In
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both studies, the authors proposed that some genetic effects on protein expression levels were mediated

by changes in the protein sequence, which would manifest post-translationally. Our finding reveals yet

another complex mode of genetic regulation of protein expression level by APA (e.g. perhaps by affecting

recruitment of interacting proteins). Thus, these findings provide clear evidence that APA can affect protein

expression levels without affecting gene expression levels through multiple regulatory pathways.

APA mediates genetic effects on complex traits

Lastly, we hypothesized that genetic variation may impact disease risk through APA. Indeed, 19.3% of

apaQTLs (including SNPs in LD) are significantly associated with at least one trait in the UCSC GWAS

catalog (Kent et al., 2002). Interestingly, an apaQTL in the C10orf88 gene (rs7904973) has been associated

with increased LDL cholesterol (Klarin et al., 2018), suggesting that eQTLs mediated by APA can impact

organismal phenotypes. APA is complex regulatory mechanism relevant to our understanding of how

genetic variation can affect disease; therefore, comprehensive maps of apaQTLs can enhance our ability to

interpret GWAS loci, particularly when the implicated variants are not eQTLs (Joehanes et al., 2017; Lee

et al., 2018). For example, an apaQTL in the ELL2 gene (rs56219066) is correlated with increased usage of

an intronic PAS and is associated with risk for multiple myeloma. (Swaminathan et al., 2015) Interestingly,

multiple myeloma is among the cancer types in which widespread dysregulation of intronic APA has been

documented previously (Singh et al., 2018; Lee et al., 2018).

Discussion

Obtaining a comprehensive understanding of the mechanisms that affect gene regulation is crucial for the

functional interpretation of noncoding genetic variation. Yet, existing studies that examine the role of ge-

netic variation on APA are generally characterized by two important shortcomings. Firstly, the study of

inter-individual variation in PAS usage have been mostly restricted to APA in the 3’ UTRs (L. Li et al., 2019;

Yoon et al., 2012; Yang et al., 2019), leaving genetic variants that impact PAS usage in other regions, e.g.

intronic PAS, understudied. Secondly, nearly all existing studies use standard RNA-seq to estimate PAS

usage, which not only limits the accuracy of usage quantification, but also makes it difficult to disentangle

the contribution of co-transcriptional mechanisms to APA regulation from post-transcriptional mechanisms

such as isoform-specific decay.

To overcome these shortcomings, we applied 3’ Seq to total and nuclear cell fractions separately to

directly measure PAS usage including that of PAS in intronic regions. These data allowed us to study the
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Figure 4: (A) Example of an apaQTL that is also an unexplained eQTL in C10orf88. (Top Left) Gene track and identified
PAS in the C10orf88 gene. The red bar corresponds to the isoform most strongly associated with the apaQTL. The
vertical dotted line represents the position of the strongest apaQTL SNP. (Bottom Left) Polyadenylation site usage (PAU)
at each PAS by genotype listed according to isoform order above. (Right) Locus zoom plot for eQTL and apaQTL
associations. Interestingly, the top associated SNP, rs7904973, has been linked to increased LDL cholesterol through
GWAS (Klarin et al., 2018). (B)(Top Left) Gene track and identified PAS in the EIF2A gene. (Bottom Left) Polyadenylation
site usage (PAU) at each PAS by genotype listed according to isoform order above. (Right) Boxplots showing normalized
mRNA expression, ribosome occupancy, and protein expression for EIF2A by genotype at the apaQTL SNP (rs9820529).
(C) Diagram representing multiple pathways by which genetic variation mediates gene regulation through alternative
polyadenylation.

effects of genetic variation on polyadenylation at multiple stages of the mRNA life cycle, and to distinguish

putative regulatory mechanisms by noting the stages at which the genetic effects on APA were observed.

For example, genetic variants can impact steady-state isoform ratio either co-transcriptionally by affecting

PAS choice during transcription, or post-transcriptionally by affecting binding of miRNAs or RNA-binding

proteins and consequently isoform decay. However, we found that the vast majority of genetic variants

that affect PAS usage ratio in total mRNA, were also found to have highly similar effect sizes on PAS usage

ratio in the nucleus. This observation implies that inter-individual variation in steady-state APA levels

can generally be explained by variation in co-transcriptional mRNA processing, or mRNA processing that
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occur very soon after transcription.

There are several co-transcriptional mechanisms that may result in variation in PAS usage. For example,

previous reports have suggested that variation in the polyadenylation signal site may cause variation in

PAS usage. While we found that this was the case for a handful of examples, disruption of canonical

signal motifs does not appear to be a major mechanism for generating apaQTLs, an observation that is also

supported by a recent study on APA in GTEx data (Supplementary Fig. 9) (L. Li et al., 2019). Other possible

co-transcriptional mechanisms involved in PAS choice include competition between the spliceosome and

polyadenylation factors for example mediated by the spliceosomal RNA U1 (Oh et al., 2017), and RNAP

II pausing (Fusby et al., 2016). Indeed, recent studies have reported that sequence and chromatin context

can pause or slow down RNAP II elongation across the gene body (Mayer et al., 2015), suggesting that

variation in RNAP II pausing may impact PAS choice (Fusby et al., 2016). For example, in Drosophila

melanogaster, paused RNAP II promotes the recruitment of ELAV on the pre-mRNA, which prevents usage

of a proximal PAS (Oktaba et al., 2015). Interestingly, the human ortholog, ELAVL1 has been implicated in

mRNA localization and may influence APA through competition for binding with other factors (Neve,

Patel, Wang, Louey, & Furger, 2017; Berkovits & Mayr, 2015; Dai, Zhang, & Makeyev, 2012).

Although our data suggest that apaQTLs do not generally impact rates of mRNA decay, e.g. by affecting

miRNA or RBP binding motifs, we found clear evidence that apaQTLs may promote polyadenylation site

choices that result in the production of isoforms with different rates of decay. For example, we observed

that genetic variants that increase the usage of isoforms ending at intronic PAS tend to be associated with

lower levels of gene expression. This observation is consistent with reports that isoforms with premature

polyadenylation are often substrates for nonsense mediated decay or nonstop decay (Tian & Manley, 2017;

Vasudevan, Peltz, & Wilusz, 2002). More generally, our results suggest that apaQTLs can affect gene expres-

sion levels post-transcriptionally by impacting the production of isoforms with varying levels of stability.

Overall, our study highlights APA as an eQTL mechanism independent of promoters and enhancers.

While the effect of genetic variants on gene regulation is generally assumed to move linearly from chro-

matin, to mRNA, to protein level, our findings reveal several complex modes of genetic regulation for both

gene expression and protein expression levels by APA (Fig. 4C). Although we were unable to study the

genome-wide effects of APA on protein expression owing to a scarcity of protein-level data, we identified

several apaQTLs that affect protein, but not gene expression levels. These results strongly suggest that APA

can affect protein expression levels without affecting gene expression levels, because our power to detect

genetic effects on gene expression levels far exceeds that to detect genetic effects on protein expression
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levels. Furthermore, some of these pQTLs were associated with ribosomal occupancy and some were not,

which implies multiple pathways by which genetic variants can impact protein expression levels through

APA.

In conclusion, there are many pathways through which genetic variants can impact gene regulation

and, consequently, organismal phenotypes. While many studies have demonstrated the importance of

gene expression regulation through promoters or enhancers, very few studies have focused on co- or post-

transcriptional gene regulation. Our study shows that co- and post-transcriptional processes such as APA

can mediate the effects of a substantial number of genetic variants on mRNA expression levels, protein

expression levels, and risk for complex diseases.
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Methods

Cell Culture

We cultured 54 Epstein-Barr virus transformed LCLs under identical conditions at 37 C and 5% CO2.

These LCLs were derived from Yoruba individuals originally collected as part of the HapMap project

(International HapMap Consortium, 2005; Moll, Ante, Seitz, & Reda, 2014). Details for each cell line are

found in Supplementary Table 2. We grew cells in a glutamine depleted RPMI [RPMI 1640 1X from Corn-

ing (15-040-CM)] completed with 15% FBS, 2mM GlutaMAX (from gibco (35050-061), 100 IU/ml Penicillin,

and 100 ug/ml Streptomycin. After passaging them 3 times the lines were maintained at a concentration

of 1 × 106 cells per mL. In preparation for extraction, we allowed the cells to grow until a concentration of

1 × 106 cells per mL was reached and then proceeded to extraction.

Collection and RNA extraction

We collected 30 million cells from each line and divided them into two 15 million cell aliquots. We spun

the cells down at 500 RPM at 4C for 2 min, and then washed the pellets with phosphate-buffered saline

(PBS) and spun down again. After this we aspirated the PBS, leaving the cell pellet. All washing steps

occurred on ice or in cooled centrifuges. At this point every cell line had two separate pellets each from

an input of 15 million cells. From each line we took one of these pellets for nuclear isolation. We then

carried out nuclear isolation using the nuclear isolation steps outlined by (Mayer & Churchman, 2016).

Once we washed and spun down the pellets in the nuclei wash buffer, we resuspended them in 700 ul

of the QIAzol lysis reagent (Qiagen). We extracted both RNA cell pellets from the same line in the same

batch using the miRNeasy kit (Qiagen) according to manufacture instructions, including the DNase step

to remove potentially contaminated genomic DNA. Details for the collection such as cell viability and cell

concentration at time of collection are found in Supplementary Table 2. We checked the quality of the

collected RNA using a nanodrop. RNA concentrations and absorbance levels from the collection are in

Supplementary Table 2.

In order to verify fraction separation, we completed the Mayer and Churchman protocol to isolate chro-

matin and collected cell lysates for each step in the fractionation (Mayer & Churchman, 2016). We per-

formed western blots against both GAPDH (GAPDH antibody (6C5) Life Technologies AM4300) and the

Carboxyl Terminal Domain of Pol-II (CTD) (Pol II CTD Ser5-P antibody, Active Motif, 61085). We ran each

lysate on Mini-protean TGX precast gels (bioRad 456-1093) after digesting any remaining DNA molecules
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from the nuclear isolate with benzonase nuclease. We used Goat anti-Mouse IgG (H+L) (Invitrogen 32430)

as a secondary antibody for the GAPDH antibody and Goat anti-Rat IgG (H +L) (Invitrogen 31470) as a sec-

ondary antibody for the CTD antibody. We diluted all antibodies in a 1:1000 dilution with blocking solution

made from dry milk (LabScientific Lot 1267N Cat M0841). We show GAPDH isolated in the cytoplasm and

CTD to the chromatin fraction (Supplementary Fig. 16).

3
′

Sequencing library generation

We generated 108 single-end RNA 3
′
sequencing libraries from the total and nuclear RNA extract using the

QuantSeq 3
′

mRNA-Seq Library Prep Kit (Moll et al., 2014) as directed by the manufacturer. We used 5ng

of each sample as input. We submitted the libraries for sequencing on the Illumina NextSeq5000 at the

University of Chicago Genomics Core facility using single end 50bp sequencing.

3
′

Sequencing data processing

We mapped 3
′

Seq reads to hg19 (Church et al., 2011) using STAR RNA-seq aligner (Dobin et al., 2013)

using default settings with the WASP mode to filter out reads mapping with allelic bias (van de Geijn,

McVicker, Gilad, & Pritchard, 2015). Similar to previously published 3
′

Seq methods, we accounted for

internal priming by filtering reads preceded by 6 Ts in a row or 7 of 10 Ts in the 10 bases directly upstream

of the mapping position in the reference genome (Tian, Hu, Zhang, & Lutz, 2005; Sheppard, Lawson, &

Zhu, 2013; Beaudoing, Freier, Wyatt, Claverie, & Gautheret, 2000). We verified the individual identity of all

bam files using VerifyBamID (Jun et al., 2012). Due to low confidence in the identity of 2 individuals, they

were removed from all analysis. Raw read and mapped read statistics after accounting for internal priming

can be found in Supplementary Table 1 (Supplementary Fig. 17).

Identification of PAS

We merged all mapped reads and called peaks using an inclusive method, identifying all regions of the

genome with non-zero read counts in 90% percent of libraries and an average read count of greater than

2 counts. This resulted in 138,181 peaks. We assigned each of these peaks to a genic location according to

NCBI Refseq annotations for 5
′

UTRS, 3
′

UTRs, exons, introns, and regions 5kb downstream of annotated

genes downloaded from the UCSC table browser (Kent et al., 2002). When a region mapped to multiple

genes we used a hierarchical model, similar to the method used by Lin et al. (Lin et al., 2012) to assign

the peak to a gene annotations. Our method prioritizes annotations in the following order: 3
′

UTRs, 5kb
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downstream of genes, exons, 5
′

UTRs, and introns. To further verify absence of PAS detected as a result of

internal priming we removed PAS with 6A’s or 70% As in the 15 basepairs downstream of the site. We next

utilized a gene level noise filter to account for non-uniform read coverage across the genome. We created

a usage score for each PAS based on of the number of reads mapping to the PAS over the number of reads

mapping to any PAS associated with the same gene. We filtered out peaks with a mean usage of less than

5% in both the total and nuclear libraries. After this filter, we were left with 35,032 PAS in the total fraction

and 39,164 PAS in the nuclear fraction. The merged set with PAS from both fractions used for PAS QC

is available on GEO and has 41,810 PAS. We compared our set of PAS to the human PolyADB release 3.2

annotation (Wang et al., 2018)(Supplementary Fig. 5).

PAS Signal site enrichment and locations

To explore the location of the signal site relative to the PAS (most 3
′

end of each identified peak), we deter-

mined the relative position of previously described potential signal sites to this position (Beaudoing et al.,

2000). We then extended each PAS 100bp upstream and identified the starting position of each of the 12 PAS

signal site variations identified by Beaudoing et al. without allowing for sequence mismatch (Beaudoing et

al., 2000).

Differential Isoform analysis

We mapped 3
′

Seq reads to all PAS peaks with mean coverage of 5% in the total or nuclear fraction libraries.

This results in 41,813 annotated sites. We assigned reads to PAS using the featureCounts tool with the -O

flag to assign reads to all overlapping features (Liao, Smyth, & Shi, 2014). We ran the leafcutter ds.R script

on chromosomes 1-22 separately using the cellular fraction label as the sample group identifier (Y. I. Li et

al., 2018). This analysis tests 9790 genes and resulted in 8227 genes with significant (FDR 10%) isoform level

differences between the total and nuclear cellular fraction. We called differentially used PAS as sites with

a ∆ polyadenylation site usage (∆ PAU) greater than 0.2 or less than -0.2. In our analysis a positive ∆PAU

corresponds to increase usage in the total cellular fraction while a negative ∆ PAU corresponds to increased

usage in the nuclear fraction.

Relationship with nascent transcription

We used 30 min 4su data and RNA decay measurements collected in the same panel of LCLs as used in this

study. RNA decay data was originally collected and processed in Pai et al. 2012. (Pai et al., 2012) The 4su
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data collection and processing can be found in Li et al. 2016(Y. I. Li et al., 2016). We used RNA sequencing

data collected in the same LCLs as used in this study. The data collection information can be found in

Pickrell et al, 2010 and further processing can be found in Li et al. 2016 (Pickrell et al., 2010; Y. I. Li et al.,

2016). We computed a nascent transcription phenotype for each gene as the normalized 4su expression

level over the sum of the RNA expression and 4su expression level. We calculated the correlation between

this value as well as nuclear 3
′
Seq read counts for each gene divided by the sum of total 3

′
Seq read counts

and nuclear 3
′

Seq read counts for each gene. We also calculated the correlation between the difference in

the number of PAS identified both fractions and the nascent transcription phenotype using the summary

lm function in R.

apaQTL calling in both fractions

We used the leafcutter prepare phenotype table.py script with default settings to normalize the PAS usage

ratios across individuals within each fraction. This method also outputs the top principal components (PCs)

of the data to use as covariates. We plotted the proportion of variation explained by each PC in order to

identify the number of PCs to include in the analysis (Supplementary Fig. 8). We included the top 4 PCs as

well as the library preparation batch as the covariates. The top four PCs correlate most strongly with the

cell count at collection (Supplementary Fig. 8). We used the same genotypes from Li et al. 2016(Y. I. Li et

al., 2016), available at http://eqtl.uchicago.edu/jointLCL/genotypesYRI.gen.txt.gz (Y. I. Li et al., 2016). We

removed individual NA19092 due to lack of genotype information in this file, bringing our sample size to

51 individuals for this part of the analysis. Only SNPs with a MAF > 5% in our sample were included. We

used FastQTL to map apaQTLs in cis (25kb on either side) with 1000 permutations to select the top SNP-

PAS association (Ongen, Buil, Brown, Dermitzakis, & Delaneau, 2016). We called apaQTLs in each fraction

as variants passing 10% FDR (Benjamini-Hockberg) after permutations. In order to plot interpretable effect

sizes for each association we computed nominal PAS:SNP associations for the pre-normalized PAS ratios.

Association of apaQTLs with chromatin states

We downloaded the GM12878 chromatin HMM annotations for Hg19 from the UCSC table browser (Kent

et al., 2002). We overlapped the eQTLs identified and published in Li et al. 2016(Y. I. Li et al., 2016) as well

as the total and nuclear fraction apaQTLs with these categories. We calculated 95% confidence intervals for

each measurement by sampling the number of QTLs in the set with replacement 1000 times (Fig. 3d and

Supplementary Fig. 18).

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2019. ; https://doi.org/10.1101/845966doi: bioRxiv preprint 

https://doi.org/10.1101/845966
http://creativecommons.org/licenses/by-nc-nd/4.0/


apaQTL overlap with eQTLs

We obtained the set of explained and unexplained eQTLs from Li et al. 2016 (Y. I. Li et al., 2016). In order

to test whether genes with an unexplained eQTL are more likely to be explained by variation in APA, we

separated the permuted apaQTL association (top snp per PAS) into three categories: unexplained eGene,

explained eGene, non eGenes. We tested for significant enrichment of apaQTLs in each category using one-

sided Wilcoxon rank sum tests. In order to test if each explained and unexplained eQTLs described in Li et

al. 2016(Y. I. Li et al., 2016) overlaps with an apaQTL, we extracted the nominal associations for each eQTL

gene-SNP pair from the apaQTL data in both fractions. In order to account for multiple PAS associations

for each pair, we selected the most significant p-value and used a Bonferroni correction to account for the

number of PAS tested in the gene. We consider an eQTL as explained by an apaQTL if the corrected p-value

is less than 0.05 but report the values for a range of cutoffs in (Supplementary Fig. 19).

apaQTLs overlap with protein specific QTLs

The list of protein specific QTL genes can be found in the supplementary information from Battle et al.

2015(Battle et al., 2015). In order to show that genes with an eQTL and protein specific QTLs are likely

to be associated with APA, we separated the permuted apaQTL association (top snp per PAS) into three

categories: eGene, pGene, or neither pGene or eGene. We tested for significant enrichment with one sided

Wilcoxon rank sum tests.

Identification of molecular QTL associations

We sought to test if SNPs identified as apaQTLs are significantly associated with other molecular pheno-

types previously tested in the same panel of LCLs. We tested for associations between the genotypes used

in this study and each gene for each phenotype with fastqtl using the top 5 PCs calculated in Li et al. 2016

as covariates (Y. I. Li et al., 2016). We used normalized RNA expression, RiboSeq values, and protein levels,

published in Li et al. 2016 (Y. I. Li et al., 2016).

apaQTL overlap with GWAS Catalog

We downloaded the CRCh37hg19 GWAS catalog for UCSC table browser (Kent et al., 2002). We identified

SNPs in LD with the nuclear apaQTLs using the LDproxy tool from LDlink with YRI as the population

(Machiela & Chanock, 2015). We filtered all results to SNPs with an r2 greater than 0.9. We overlapped the

full set with the GWAS catalog using pybedtools.
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