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Abstract

Vector-borne diseases are becoming increasingly widespread in a growing number of
countries and it has the potential to invade new areas and habitats, either associated to
changes in vectors habitats, human circulation or climate changes. From the dynamical
point of view, the spatial-temporal interaction of models that try to adjust to such
events are rich and challenging. The first challenges are to address the dynamics of the
vectors (very fast and local) and the dynamics of humans (very heterogeneous and
non-local). The objective of the present paper is to use the well-known Ross-Macdonald
models, incorporating spatial movements, identifying different times scales and estimate
in a suitable way the parameters. We will concentrate in a practical example, a
simplified space model, and apply to Dengue’s spread in the state of Rio de Janeiro,
Brazil.

Introduction 1

Vector-borne diseases have now received increased attention because of their high 2

potential of dissemination [1, 2]. Mosquitoes of the species Aedes Albopictus and Aedes 3

Aegypti are the most responsible for virus transmission, such as Dengue, Zika, 4

Chikungunya and Yellow Fever. Due to lack of vaccination, basic sanitation, climate 5

changes, and with increasing human mobility, such diseases are spreading and appearing 6

in new regions, where the climate favors the proliferation of vectors. For instance, we 7

may cite locations in Portugal, France and Italy where cases of Dengue and 8

Chikungunya have already been recorded, and the United States with cases of dengue 9

fever and Zika virus [3–6]. In addition, hosts may be infected in environments that are 10

different from their place of residence because mosquitoes do not travel long distances, 11

and this may lead to increased population heterogeneity and consequently in changes of 12

the disease dynamics. 13

Dengue is currently the human viral disease with the highest number of cases, being 14

an arbovirus of the family Flaviviridae, genus Flavivirus, is transmitted through the bite 15

of female mosquitoes of the genus Aedes infected with the virus. It is estimated to be 16

endemic in more than 100 countries, where climate favors the proliferation of vectors, 17

and approximately half of the world’s population is at risk of contracting the 18

disease [7–10]. For dengue, the current control measures are related to the vector 19

population and its breeding sites, with the use of insecticides, adulticides and 20

population awareness campaigns. More recently, control measures with Wolbachia 21

November 18, 2019 1/12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/759308doi: bioRxiv preprint 

https://doi.org/10.1101/759308
http://creativecommons.org/licenses/by/4.0/


bacteria have also been successfully tested, which prevents the vector from transmitting 22

the virus [11,12]. Some vaccines have been tested and others are in testing phase, but 23

the greatest difficulty is that such vaccines should be tetravalent, that is, they must be 24

effective against the 4 existing serotypes of the disease [13,14]. 25

Mathematical models used to describe indirectly transmitted infectious diseases have 26

the interesting characteristic of coupling the dynamics of hosts and vectors, whose 27

parameters have different time scales, the life cycle of mosquitoes is in days while 28

humans life cycle is in years. Dengue is an example of infectious disease in which this 29

occurs, in addition of having the particularity of different serotypes. Studies with 30

spatial networks, or meta-populations, provide a way to understand the interactions 31

between individuals in different scales, being a powerful tool to understand the 32

characteristics of transmission in communities, regions and countries incorporating 33

spatial heterogeneity [6, 15–21]. In addition, as in modelling the dynamics of several 34

vector-borne diseases, if the goal is to fit the model to real data, one has to deal with 35

the asymptomatic cases, reliable data, in particular for the mosquitoes population, 36

besides having to take into account the different time scales of vectors and hosts, which 37

makes it difficult to study and understand disease dynamics [22–24]. 38

In this work, we consider a basic compartmental model that divides the human 39

population into susceptible S, infected I and recovered R (sometimes making it a little 40

simpler), coupled with susceptible Sm and infected Im mosquitoes. This model depends 41

on parameters such as the mosquito mortality rate, the transmission rate and the total 42

vectors population, which are very difficult to measure. From this model we do the time 43

scale separation of humans and vectors. As a consequence, we have that the mosquitoes 44

equations do not appear explicitly in the model, and the new parameters depend only 45

on the total mosquitoes population. Finally, we incorporate spatial movements, 46

considering mobility between cities two to two. We will adjust this model to dengue 47

incidence data, whose cities were chosen based on [4]. Thereby, our main purpose is to 48

show that it is possible to have a good fit of this reduced model in the beginning of the 49

infection, as well as to estimate parameters related to mobility between two cities. 50

First of all, our approach will be deterministic, we will not take into account 51

stochastic effects or incorporate the element of chance in the models. Secondly, being 52

more precise, the goal is to consider the effects of the spatial dynamics into the 53

Ross-Mcdonald models and use it to fit to the real data. This can be done either by a 54

continuous space domain, which in turn will give us Partial Differential Equations, local 55

or non-local, or consider discrete networks in space, which will provide system of 56

ordinary differential equations ODE. There are advantages and disadvantages to both 57

approaches. From the mathematical point of view, there are several theoretical 58

challenges in the continuous model, in particular if non-local operators are considered, 59

even if one proves that the second approach can be viewed as an approximation of the 60

first and that the dynamics must somehow converge. The second approach can more 61

easily be used to fit the real data, since they are always discrete in nature. Since, in this 62

work, we are interested in concrete data and fit the dynamics, we will concentrate in the 63

second model. For the continuous model, one can refer to [25–27]. 64

The paper is organized as follows. First we set up the local dynamics, that will be 65

used to describe the dynamic in each city, we also identify the small parameter that will 66

be used. Next we set up the network dynamic, introducing a diffusion operator. With 67

this two ingredients, for completeness, we show a formal expansion that reflect the 68

general ODE singular perturbation results. Finally we can estimate our parameters 69

using a network found to represent the initial spread of the disease in the State of Rio 70

de Janeiro, Brazil and present our results. 71
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Methods and Materials 72

Transmission model 73

Let us consider a model based on the classic Ross-Macdonald model. In our model, the 74

total human population (Nh) is divided in susceptible (S), infected (I) and recovered 75

(R) and it is coupled with the compartments of susceptible Sm and infected Im 76

mosquitoes with total population given by Nm, this model is named SIRSmIm. The 77

interaction dynamics between the compartments is described through a system of 78

ordinary differential equations (ODEs): 79

dS

dt
= µh(Nh − S)− βIm

S

Nh
dI

dt
= βIm

S

Nh
− (γ + µh)I

dR

dt
= γI − µhR

dSm

dt
= µm(Nm − Sm)− ΩSm

I

Nh
dIm
dt

= ΩSm
I

Nh
− µmIm

(1)

In this model, a susceptible human becomes infected at a transmission rate β when in 80

effective contact with an infected mosquito, reciprocally, a susceptible mosquito 81

becomes infected when it bites an infected individual at a transmission rate Ω. The 82

parameter µh represents the birth/mortality rate of humans, γ is the recovery rate of 83

humans and µm is the mosquitoes birth/mortality rate. 84

Assuming that birth and mortality rates are equal, we have that populations remain 85

constant over time, that is, Nh(t) = S(t) + I(t) +R(t) and Nm(t) = Sm(t) + Im(t), 86

consequently we can easily obtain R(t) = Nh(t)− S(t)− I(t) and 87

Sm(t) = Nm(t)− Im(t) and then work with the equivalent reduced system: 88

dS

dt
= µh(Nh − S)− βIm

S

Nh
dI

dt
= βIm

S

Nh
− (γ + µh)I

dIm
dt

= Ω(Nm − Im)
I

Nh
− µmIm

(2)

Considering that the life expectancy of an adult female mosquito is about 10 89

days [22], and a human life expectancy of 70 years, we have that the value of the 90

parameter µm = 7/10 (weeks) is bigger than the parameter of humans 91

µh = 7/(365× 70) (weeks). Thus, to describe the time scales separation, we define 92

µm = µm/ε, with µm in the time scale of µh [22, 23]. So, setting up µm := µh, we 93

obtain ε = µh/µm = 0.000392465 and Ω := Ω/ε, and then replacing these parameters in 94

Model (2), we have 95

dS

dt
= µh(Nh − S)− βIm

S

Nh
dI

dt
= βIm

S

Nh
− (γ + µh)I

dIm
dt

=
1

ε

(
Ω(Nm − Im)

I

Nh
− µmIm

) (3)
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which is equivalent to 96

dS

dt
= µh(Nh − S)− βIm

S

Nh
dI

dt
= βIm

S

Nh
− (γ + µh)I

ε
dIm
dt

= Ω(Nm − Im)
I

Nh
− µmIm

(4)

Making ε = 0 in the third equation, we have that Im(t) can be obtained as a 97

function of I(t) at any time t: 98

Im(t) =
(Ω/Nh)I(t)Nm

(Ω/Nh)I(t) + µm

(5)

Replacing this value of Im Eq (5) into the equations of S and I, it results in 99

dS

dt
= µh(Nh − S)− β

(
(Ω/Nh)INm

(Ω/Nh)I + µm

)
S

Nh

dI

dt
= β

(
(Ω/Nh)INm

(Ω/Nh)I + µm

)
S

Nh
− (γ + µh)I

(6)

and then defining a = β ΩNm, b = Ω and c = µmNh, we have a new equivalent system 100

without the variables related to mosquitoes: 101

dS

dt
= µh(Nh − S)−

(
aI

bI + c

)
S

Nh

dI

dt
=

(
aI

bI + c

)
S

Nh
− (γ + µh)I

(7)

Mobility 102

The SIRSmIm model characterizes the dynamics of a disease within a population. 103

Thus, if we want to describe its transmission dynamics more realistically, we must 104

consider a mobility network that includes interaction between populations. Such a 105

network can be represented by a graph, where each node corresponds to a population 106

and an arrow that leaves the population r to s means existence of mobility of 107

individuals from population r to s [28]. 108

Let Nhr be the total human population that is registered in node r = 1, 2, ...,M , so 109

that the disease dynamics in each location is described by the SrIrRrSmr
Imr

model. 110

The parameter drs ∈ [0, 1] corresponds to the mobility rate from the population r to s 111

per unit of time [18,28]. Accordingly, to include mobility in the Model (1), we must 112

consider the inflow and outflow of humans in each compartment, and since mosquitoes 113

do not move large distances, their respective compartments remain unchanged. Thus, 114

the system of equations representing mobility between cities r and s, r 6= s, is given by 115

dSr

dt
= µh(Nhr − Sr)− βrImr

Sr

Nhr
+
∑
r 6=s

(dsrSs − drsSr)

dIr
dt

= βrImr

Sr

Nhr
− (γ + µh)Ir +

∑
r 6=s

(dsrIs − drsIr)

dRr

dt
= γIr − µhRr +

∑
r 6=s

(dsrRs − drsRr)

dSmr

dt
= µm(Nmr

− Smr
)− ΩrSmr

Ir
Nhr

dImr

dt
= ΩrSmr

Ir
Nhr

− µmImr

(8)
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with initial conditions Sr(0), Ir(0), Rr(0), Smr
(0), Imr

(0). Here, we suppose that the 116

parameters are different for each location except the human birth/mortality rate µh, 117

and the human recovery rate γ. The total human population for each patch is given by 118

Nhr = Sr + Ir +Rr, so 119

dNhr

dt
=

dSr

dt
+
dIr
dt

+
dRr

dt

= µh(Nhr − Sr − Ir −Rr) +
∑
r 6=s

((dsr(Ss + Is +Rs)− drs(Sr + Ir +Rr))

=
∑
r 6=s

(dsrNhs − drsNhr)

Similarly, we include mobility in (7), resulting in the ODE system, named SrIr: 120

dSr

dt
= µh(Nhr − Sr)−

(
arIr

brIr + cr

)
Sr

Nhr
+
∑
r 6=s

(dsrSs − drsSr)

dIr
dt

=

(
arIr

brIr + cr

)
Sr

Nhr
− (γ + µh)Ir +

∑
r 6=s

(dsrIs − drsIr)
(9)

Asymptotic expansion 121

Here we use a power series expansion to analyze the asymptotic behavior at ε = 0 of the 122

perturbed System (3) with mobility given by (8). In order to do that, let S, I and Im 123

be vectorial functions whose coordinates are denoted respectively by Sr, Ir and Imr for 124

r = 1, 2, ...,M . We consider the following singular perturbed system of ODEs: 125

dSr

dt
= µh(Nhr

− Sr)− βrImr

Sr

Nhr

+
∑
r 6=s

(dsrSs − drsSr)

dIr
dt

= βrImr

Sr

Nhr

− (γ + µh)Ir +
∑
r 6=s

(dsrIs − drsIr)

dImr

dt
= ε−1

(
Ωr(Nmr − Imr )

Ir
Nhr

− µmImr

) (10)

Now let us expand the solutions with respect to the small parameter ε, that is, let us 126

assume that vectorial functions S, I and Im given by (10) satisfy 127

S = S0 + εS1 + ε2S2 + . . . I = I0 + εI1 + ε2I2 + . . .

and 128

Im = Im0 + εIm1 + ε2Im2 . . .

Thus, the time derivatives themselves set 129

dS

dt
=
dS0

dt
+ ε

dS1

dt
+ . . .

dI

dt
=
dI0
dt

+ ε
dI1
dt

+ . . .

and 130

dIm
dt

=
dIm0

dt
+ ε

dIm1

dt
+ . . .
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which gives us from the right-hand side of (10) that 131

dSr

dt
=

µh(Nhr − Sr0)− βrImr0

Sr0

Nhr

+
∑
r 6=s

(dsrSs0 − drsSr0)


+ ε

−µhSr1 −
βr
Nhr

(Imr0Sr1 + Imr1Sr0) +
∑
r 6=s

(dsrSs1 − drsSr1)

+O(ε2)

dIr
dt

=

βrImr0

Sr0

Nhr

− (γ + µh)Ir0 +
∑
r 6=s

(dsrIs0 − drsIr0)


+ ε

 βr
Nhr

(Imr0Sr1 + Imr1Sr0)− (γ + µh)Ir1 +
∑
r 6=s

(dsrIs1 − drsIr1)

+O(ε2)

ε
dImr

dt
=

[
Ωr

Nhr

(Nmr − Imr0)Ir0 − µmImr0

]
+ ε

[
Ωr

Nhr

((Nmr − Imr0)Ir1 − Imr1Ir0)− µmImr1

]
+O(ε2)

Then, if we plug these expressions in the System (10), we obtain at ε = 0 that 132

dSr0

dt
=

µh(Nhr − Sr0)− βrImr0

Sr0

Nhr

+
∑
r 6=s

(dsrSs0 − drsSr0)


dIr0
dt

=

βrImr0

Sr0

Nhr

− (γ + µh)Ir0 +
∑
r 6=s

(dsrIs0 − drsIr0)


0 =

[
Ωr

Nhr

(Nmr − Imr0)Ir0 − µmImr0

]
Hence, we get as in (5) 133

Imr0
=

(Ωr/Nhr
)Ir0Nmr

(Ωr/Nhr
)Ir0 + µm

and then, we deduce the reduced equations 134

dSr0

dt
=

µh(Nhr
− Sr0)− βr

(
(Ωr/Nhr

)Ir0Nmr

(Ωr/Nhr
)Ir0 + µm

)
Sr0

Nhr

+
∑
r 6=s

(dsrSs0 − drsSr0)


dIr0
dt

=

βr ( (Ωr/Nhr
)Ir0Nmr

(Ωr/Nhr
)Ir0 + µm

)
Sr0

Nhr

− (γ + µh)Ir0 +
∑
r 6=s

(dsrIs0 − drsIr0)


with initial condition Sr0(0) and Ir0(0). Thus, if we proceed as in (7) defining 135

ar = βrΩrNmr, br = Ωr and cr = µmNhr, we can obtain the limit system (9) without 136

the mosquitoes equations. Hence, the solutions S and I of the System (10) can be 137

approximated to the solutions given by the limit equation (9). Indeed, under 138

appropriated assumptions, it has been shown in [29][Theorem 4.4] (see also [22,23]) that 139

the convergence is uniform in finite time with order O(ε) justifying our approach. 140
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Parameter estimation 141

We have the reduced System (9) which does not depend directly on the mosquitoes 142

parameters. For the parameter’s estimation, we employed the pomp package 143

implemented in language R [30], in order to obtain the values for: ar, br, cr, drs, γ and 144

the initial conditions of each location Sr(0) and Ir(0). The algorithm was applied to fit 145

the SrIr model to dengue data of Brazilian cities which presents evidence of mobility 146

according to the results obtained in [4]. 147

The adjustment is done using the error of the least squares method. We set up a 148

function that will calculate the sum of the squared errors which consists of the 149

differences between the result obtained with the model and the data [30,32]. In our 150

work we do the fitting of two time series each time. The model with time scale 151

separation and considering mobility among two cities is given by: 152

dS1

dt
= µh(Nh1 − S1)−

(
a1I1

b1I1 + c1

)
S1

Nh1
+ d21S2 − d12S1

dI1
dt

=

(
a1I1

b1I1 + c1

)
S1

Nh1
− (γ + µh)I1 + d21I2 − d12I1

dS2

dt
= µh(Nh2 − S2)−

(
a2I2

b2I2 + c2

)
S2

Nh2
+ d12S1 − d21S2

dI2
dt

=

(
a2I2

b2I2 + c2

)
S2

Nh2
− (γ + µh)I2 + d12I1 − d21I2

(11)

where 153

dNh1

dt
= d21Nh2 − d12Nh1

dNh2

dt
= d12Nh1 − d21Nh2

(12)

and the sum of the squared errors is: 154∑
(E2

1 + E2
2) (13)

where E1 = I1 − C1, E2 = I2 − C2, and C1 and C2 are the weekly incidences of City 1 155

and City 2, respectively. 156

After set up the error function which is the objective function, we apply an 157

optimization algorithm in order to minimize its value. To each parameter and variable 158

can be given a lower and/or upper bound, then it is necessary to start with an initial 159

value which satisfies the constraints and from this point, the optimization algorithm will 160

search the parameter space for the value that minimizes the objective function. The 161

algorithm uses function values and gradients to build up a picture of the surface to be 162

optimized [30]. It is important to note that it is a ill-posed problem and a change in the 163

initial conditions may change the estimated value of the parameters. 164

Data 165

We will consider dengue data for our simulations, which were obtained from the 166

brazilian Notification Disease Information System (SINAN) [31]. The year 2008 was 167

chosen for results presentation due the high incidence of dengue cases in Rio de Janeiro 168

state, considering the period from the 1st week to the 35th week of 2008. The number 169

of reported cases per week (incidence per week) in Duque de Caxias, Itaboráı, Niterói 170

and Nova Iguaçu are shown in Fig 1. These cities where chosen among all others based 171

on [28], which used the ideas of [33,34] to estimate an effective network that explained 172
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the epidemic in Rio de Janeiro. In this year, they detected that the disease started and 173

spread to such cities, before spreading to the whole state. The fixed parameters are the 174

total population of each city and the birth/mortality rate of humans (see Table 1), and 175

the other parameters need to be estimated. 176

Fig 1. Incidence of dengue. Incidence of dengue in Duque de Caxias, Itaboráı,
Niterói and Nova Iguaçu in the period from the 1st week of 2008 to the 35th week of
2008.

Table 1. Parameters that are fixed in all simulations; the total population of each city
Nhi and the human birth/mortality rate µh.

Cities Nhi µh (weeks)
Duque de Caxias 855048 1/(70*52)
Itaboráı 218008 1/(70*52)
Niterói 487562 1/(70*52)
Nova Iguaçu 796257 1/(70*52)

Results 177

Regarding the initial values of the parameters, we will consider that the initial 178

susceptible population is 90% of the total population of each city due to the fact that 179

dengue is endemic in Brazil, so Sr(0) = 0.90×Nhr. The human recovery rate is initially 180

γ = 1 (week). Also the parameters of mobility start with the values drs = 0.0001, being 181

able to assume values in the interval [0, 1], where the indices represent the proportion of 182

the population that leaves City r and goes to City s. 183

Recalling that by definition: ar = βr ΩrNmr
, br = Ωr and cr = µmNhr

. As a 184

consequence of considering the System (11) with time scale separation, we have that the 185

mosquitoes equations do not appear in the system, however the values ar, br and cr, 186

r = 1, 2 depend on the mosquito’s parameter, being necessary to make an initial 187

assumption for its values. Lets consider that initially, µm = 7/10 (weeks), so we use an 188

initial approximation for βr as βr = 2γ, Ωr as Ωr = 1µm and Nmr
= mNhr

. Actually, 189

by defining the parameter ε = µh/µm, it follows that 190

cr = µmεNhr = µm ×
µh

µm
×Nhr = µh ×Nhr ,

br = Ωr = εΩr =
µh

µm
× µm = µh,

ar = βr ΩrNmr
= 2γ × µh ×Nmr

.

Thus, we have that the total mosquito population Nmr , is the only parameter of the 191

mosquitoes being used, which interferes with the initial value of the parameter ar. 192

Therefore, we will analyze the fit of the model to the data considering: Nmr
= Nhr

, 193

Nmr
= 2Nhr

, Nmr
= 3Nhr

and Nmr
= 4Nhr

, and also by varying the initial amount of 194

infected individuals Ir = 1, 2, 3, 4. We will present the results with the value of Nmr
195

that best fits the data, that is, the one that results in smaller quadratic error. 196

Simulations with the mosquitoes population larger than 4 times the human population 197

were not successful. 198

The results of the estimated parameters are presented in Table 2 for each pair of 199

cities, and in the sequence the figures with their respective adjustments, where the 200

incidence is the number of new cases recorded per week (black dots) and the solid lines 201
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in red are the amount of infected individuals obtained with the model according to the 202

estimate obtained. 203

Table 2. Results of parameters estimation for all pairs of cities.

Pairs of Cities Parameters (weeks)
ar br cr γ drs Sr Ir Nmr

Duque de Caxias 1.878986e+03 5.671e-03 2.341141e+02 6.297 9.4257e-02 769543 8.3e-02 4Nhr

Itaboráı 4.789921e+02 5.062e-02 5.907874e+01 6.297 7.4973e-02 196207 1.4e-02
Duque de Caxias 1.878995e+03 3.109e-03 2.340501e+02 6.627 5.0764e-02 769543 1.4e+00 4Nhr

Niterói 1.070994e+03 4.297e-03 1.330624e+02 6.627 1.0000e-01 438805 1.7e+00
Duque de Caxias 1.408780e+03 1.076e-02 2.353302e+02 4.929 2.5779e-02 769543 3.9e+00 3Nhr

Nova Iguaçu 1.312448e+03 0.000e+00 2.153070e+02 4.929 1.0000e-01 716631 6.9e+00

Itaboráı 4.789864e+02 2.328e-02 5.912304e+01 6.589 6.6075e-02 196207 5.3e-01 4Nhr

Niterói 1.070993e+03 0.000e+00 1.330685e+02 6.589 1.0000e-01 438806 3.9e-01
Itaboráı 4.789976e+02 3.126e-02 5.904774e+01 6.500 8.5175e-02 196207 6.1e-01 4Nhr

Nova Iguaçu 1.749988e+03 1.013e-03 2.180959e+02 6.500 8.9205e-02 716631 9.6e-05

Niterói 1.070991e+03 0.000e+00 1.330849e+02 6.746 1.0000e-01 438805 3.8e+00 4Nhr

Nova Iguaçu 1.750001e+03 0.000e+00 2.179996e+02 6.746 5.1194e-02 716631 3.8e+00
In the first column is shown the pairs of cities City 1 and City 2, and in the following columns, the results of the parameters
obtained for each city. The first parameter related to mobility of each pair of cities is d12 and the second is d21, corresponding
to the proportion of the population leaving City 1 and going to City 2 and vice versa.

Fig 2. Fitting for Duque de Caxias and Itaboráı. Result of adjusting the Model
11 to dengue data of the cities: Duque de Caxias and Itaboráı, according to the
parameters of Table 2.

Fig 3. Fitting for Duque de Caxias and Niterói. Result of adjusting the Model
11 to dengue data of the cities: Duque de Caxias and Niterói, according to the
parameters of Table 2.

Fig 4. Fitting for Duque de Caxias and Nova Iguaçu. Result of adjusting the
Model 11 to dengue data of the cities: Duque de Caxias and Nova Iguaçu, according to
the parameters of Table 2.

Fig 5. Fitting for Itaboráı and Niterói. Result of adjusting the Model 11 to
dengue data of the cities: Itaboráı and Niterói, according to the parameters of Table 2.

Fig 6. Fitting for Itaboráı and Nova Iguaçu. Result of adjusting the Model 11 to
dengue data of the cities: Fitting for Itaboráı and Nova Iguaçu, according to the
parameters of Table 2.

Fig 7. Fitting for Niterói and Nova Iguaçu. Result of adjusting the Model 11 to
dengue data of the cities: Niterói and Nova Iguaçu, according to the parameters of
Table 2.
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Discussion 204

From a SIRSmIm model with humans and vectors, we made a separation of time scales 205

and reduced the system to an equivalent system independent of the mosquitoes 206

equations, and then we add mobility in this new system. So, the new parameters depend 207

only on the respective parameters for humans and the total mosquitoes population. 208

We made some considerations about the initial value of the parameters, and then we 209

applied an algorithm to fit the model to dengue data of some cities in Rio de Janeiro 210

state. The results showed that the reduced model was able to successfully adjust the 211

beginning of the dengue outbreak for all pairs of cities, also obtaining values for the 212

parameters related to mobility. This gives us an indication that human mobility 213

actually has influence on the spread of dengue. 214

In addition, we have that the model with time-scale separation SrIr depends only on 215

one parameter related to mosquitoes, whereas the SIRSmIm model contains three 216

parameters of the vectors, which makes it more difficult to fit the model to the data due 217

to the lack of available information about mosquitoes, since the time series of dengue 218

provide only the amount of humans infected weekly. This gives us perspectives for a 219

future study involving more complex mobility networks applied to analyse vector-borne 220

diseases. 221
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28. Vega LVF. Análise da dinâmica de uma rede para a dengue. M.Sc. Thesis,
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