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Abstract 

The prediction of inter-residue contacts and distances from co-evolutionary data using deep 

learning has considerably advanced protein structure prediction. Here we build on these advances 

by developing a deep residual network for predicting inter-residue orientations in addition to 

distances, and a Rosetta constrained energy minimization protocol for rapidly and accurately 

generating structure models guided by these restraints. In benchmark tests on CASP13 and 

CAMEO derived sets, the method outperforms all previously described structure prediction 

methods. Although trained entirely on native proteins, the network consistently assigns higher 

probability to de novo designed proteins, identifying the key fold determining residues and 

providing an independent quantitative measure of the “ideality” of a protein structure. The method 

promises to be useful for a broad range of protein structure prediction and design problems.  
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Introduction 

Clear progress in protein structure prediction was evident in the recent CASP13 structure 

prediction challenge (1). Multiple groups showed that application of deep learning-based methods 

to the protein structure prediction problem makes it possible to generate fold-level accuracy 

models of proteins lacking homologs in the Protein Data Bank (PDB) (2) directly from multiple 

sequence alignments (MSAs) (3-6). In particular, AlphaFold (A7D) from DeepMind (7) and Jinbo 

Xu with RaptorX (4) showed that distances between residues (not just the presence or absence of a 

contact) could be accurately predicted by deep learning on residue coevolution data. The three 

top-performing groups (A7D, Zhang-Server and RaptorX) all used deep residual convolutional 

networks with dilation, with input features of coevolutionary couplings derived from MSAs either 

using pseudo-likelihood or by covariance matrix inversion. Because these deep learning-based 

methods produce more complete and accurate predicted distance information, 3D structures can be 

generated by direct optimization. For example, the Xu group (4) used CNS (8) and the AlphaFold 

group (7) used gradient-descent following conversion of the predicted distances into smooth 

restraints. Progress was also evident in protein structure refinement at CASP13 using energy 

guided refinement (9-11). 

 

In this work, we integrate and build upon the CASP13 advances. We show that through extension 

of deep learning-based prediction to inter-residue orientations in addition to distances, and the 

development of a Rosetta-based optimization method that supplements the predicted restraints 

with components of the Rosetta energy function, still more accurate models can be generated. We 

also explore applications of the model to the protein design problem. To facilitate further 

development in this rapidly moving field, we make all the codes for the improved method 

available. 

 

Results and Discussion 

Overview of the method 

The key components of our method (named trRosetta, transform-restrained Rosetta) include: (i) a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2019. ; https://doi.org/10.1101/846279doi: bioRxiv preprint 

https://doi.org/10.1101/846279
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

deep residual convolutional network which takes an MSA as the input and outputs information on 

the relative distances and orientations of all residue pairs in the protein, and (ii) a fast Rosetta 

model building protocol based on restrained minimization with distance and orientation restraints 

derived from the network outputs. 

 

(i) Predicting inter-residue geometries from MSAs using a deep neural network 

Unlike most other approaches to contact/distance predictions from MSAs, in addition to Cβ-Cβ 

distances, we also sought to predict inter-residue orientations (Fig. 1A). Orientations between 

residues 1 and 2 are represented by 3 dihedral (ω, θ12, θ21) and 2 planar angles (φ12, φ21) as shown 

on Fig. 1A. The ω dihedral measures rotation along the virtual axis connecting the Cβ atoms of the 

two residues, and θ12, φ12 (θ21, φ21) angles define the direction in which the Cβ atom of residue 2 (1) 

is seen from residue 1 (2). Unlike d and ω, θ and φ coordinates are asymmetric and depend on the 

order of residues (1-2 and 2-1 pairs yield different coordinates which is the reason why θ and φ 

maps on Fig. S1 are asymmetric). Together, the 6 parameters d, ω, θ12, φ12, θ21, φ21 fully define the 

relative positions of the backbone atoms of two residues. All the coordinates show characteristic 

patterns (Fig. S1), and we hypothesized that a deep neural network could be trained to predict 

these. 

 

The overall architecture of the network is similar to those recently described for distance and 

contact prediction (3, 4, 7, 12). Following RaptorX-Contact (4, 12) and AlphaFold (7),  we learn 

probability distributions over distances, and extend this to orientation features. The central part of 

the network is a stack of dilated residual convolutional blocks which gradually transforms 1- and 

2-site features derived from the MSA of the target to predict inter-residue geometries for residue 

pairs (Fig. 1B) with Cβ atoms closer than 20 Å. The distance range (2-20 Å) is binned into 36 

equally spaced segments, 0.5 Å each, plus one bin indicating that residues are not in contact. After 

the last convolutional layer, the softmax function is applied to estimate the probability for each of 

these bins. Similarly, ω, θ dihedrals and φ angle are binned into 24, 24 and 12, respectively, with 

15° segments (+ one no-contact bin) and are predicted by separate branches of the network. 

Branching takes place at the very top of the network, with each branch consisting of a single 
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convolutional layer followed by softmax. The premise for such hard parameter sharing at the 

downstream layers of the networks is that correlations between the different objectives (i.e. 

orientations and distance) may be learned by the network, potentially yielding better predictions 

for the individual features. We used cross-entropy to measure the loss for all branches; the total 

loss is the sum over the 4 per-branch losses with equal weight. Previous work (4) implicitly 

captured some orientation information by predicting multiple inter-residue distances (Cβ–Cβ, Cα–

Cα, Cα–Cg, Cg–Cg, and N–O), but in contrast to our multi-task learning approach a separate 

network was used for each of the objectives. Our network was trained on a non-redundant (at 30% 

sequence identity) dataset from PDB consisting of 15,051 proteins (structure release dates before 

May 1st, 2018).  The trained network is available for download at 

https://github.com/gjoni/trRosetta. 

 

We couple the derivation of residue-residue couplings from MSAs by covariance matrix inversion 

to the network by making the former part of the computation graph in TensorFlow (13). Sequence 

reweighting, calculation of 1-site amino acid frequencies, entropies, and coevolutionary couplings 

and related scores take place on the GPU, and the extracted features are passed into the 

convolutional layers of the network (most previous approaches have precomputed these terms). 

We took advantage of our recent observation (14) that with proper regularization, covariance 

matrix inversion yields inter-residue couplings (see Methods) with only minor decrease in 

accuracy compared to pseudo-likelihood approaches like GREMLIN (15) (the latter are 

prohibitively slow for direct integration into the network). Since the MSA processing steps are 

now cheap to compute (compared to the forward and backward passes through the network during 

parameter training), this coupled network architecture allows for data augmentation by massive 

MSA subsampling during training. At each training epoch, we use a randomly selected subset of 

sequences from each original MSA, so that each time the network operates on different inputs. 

 

(ii) Structure modeling from predicted inter-residue geometries 

Following AlphaFold, we generated 3D structures from the predicted distances and orientations 

using constrained minimization (Fig. 1C). Discrete probability distributions over the predicted 
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orientation and distance bins were converted into inter-residue interaction potentials by 

normalizing all the probabilities by the corresponding probability at the last bin (see Methods), 

and smoothing using the spline function in Rosetta. These distance and orientation dependent 

potentials were used as restraints together with the Rosetta centroid level (coarse grained) energy 

function (16), and folded structures satisfying the restraints were generated starting from 

conformations with randomly selected backbone dihedral angles by three rounds of quasi-Newton 

minimization within Rosetta. Only short-range (sequence separation < 12) restraints were included 

in the first round; medium-range (sequence separation < 24) restraints were added in the second 

round, and all were included in the third. A total of 150 coarse-grained models were generated 

using different sets of restraints obtained by selecting different probability thresholds for inclusion 

of the predicted distances and orientations in modeling. 

 

The 50 lowest-energy backbone+centroid models were then subject to Rosetta full-atom relaxation 

including the distance and orientation restraints, to add in sidechains and make the structures 

physically plausible. The lowest-energy full-atom model was then selected as the final model. The 

structure generation protocol is implemented in PyRosetta (17) and is available as a web server at 

http://yanglab.nankai.edu.cn/trRosetta/. 

 

Benchmark tests on CASP13 and CAMEO datasets 

Accuracy of predicted inter-residue geometries. We tested the performance of our network on 

31 FM (free modeling) targets from CASP13 (none of these were included in the training set, 

which is based on a pre-CASP PDB set). The precision of the derived contacts, defined as the 

fraction of top L/n (n = 1, 2, 5) predicted contacts realized in the native structure, is summarized in 

Tables 1 and S1. For the highest probability 7.5% of the distance/orientation predictions (Fig. 2C), 

there is a good correlation between modes of the predicted distance/orientation distributions and 

the observed values (Fig. 2C): Pearson’s r for distances is 0.72, and circular correlation rc (18) for 

ω, θ and φ are 0.62, 0.77, 0.60, respectively. The predicted probability of the top L long+medium-

range contacts correlates well (r = 0.84) with their actual precision (Fig. 2B). This correlation 

between predicted probability and actual precision allows us to further improve the results by 
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feeding a variety of MSAs generated with different e-value cutoffs or originating from searches 

against different databases into the network and picking the one which generates predictions with 

the highest predicted accuracy.  

 

Comparison with baseline network. We evaluated our extensions to previous approaches by 

generating a baseline model to predict distances only, with no MSA subsampling and selection; 

the contact prediction accuracy of this network is comparable to previously described models (3, 

12, 19, 20). Incorporating MSA subsampling during training and extending the network to also 

predict inter-residue orientations improve contact prediction accuracy by 1.7% and 2.2%, 

respectively.  Subsequent alignment selection improves performance an additional 3.1% on the 

CASP13 FM set (Table 1, last row). The improvements described above, together with increasing 

the number of layers in the network increase the accuracy of predicted contacts by 7.6% over the 

baseline network on the CASP13 FM set. Although we ensured that there is no overlap between 

the training and test sets by selecting pre-CASP PDBs only (before 05/01/2018), our model was 

trained at a later date when more sequences were available; we also included metagenomic 

sequence data. Hence, we may be overestimating the gap in performance between our method and 

those used by other groups in CASP13; future blind tests in CASP will be important in confirming 

these improvements. Nevertheless, the gain in performance with respect to the baseline model is 

independent of the possible variations in the training sets and sequence databases. All the targets 

in the CAMEO validation set below are more recent than both structural and sequence data in the 

training set. 

 

Accuracy of predicted structure models. We tested our method on the CASP13 FM targets, with 

results shown in Fig. 3. The average TM-score (21) of our method is 0.625, which is 27.3% higher 

than that (0.491) by the top Server group Zhang-Server (Fig. 3A). Our method also outperforms 

the top Human group A7D by 6.5% (0.625 vs 0.587; Fig. 3B). The relatively poor performance on 

T1021s3-D2 (the outlier in the upper triangle of Fig. 3B) reflects the  MSA generation procedure: 

the majority of sequence homologs in the full-length MSA for T1021S3 only cover the first of the 

two domains; performance is significantly improved (TM-score increased from 0.38 to 0.63; the 
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TM-score of A7D model is 0.672) using a domain-specific MSA. An example of the improved 

performance of our method is shown in Fig. 3C for the CASP13 target T0950; the TM-score of 

this model is 0.716, while the highest values obtained during CASP13 are: RaptorX-

DeepModeller (0.56), BAKER-ROSETTASERVER (0.46), Zhang-Server (0.44) and A7D (0.43). 

 

Fig. 3A deconstructs the contributions to the improved performance of the different components 

of our approach. When modeling is only guided by the distance predictions from the baseline 

network (no orientations and no MSA subsampling and selection; ‘baseline’ bar in Fig. 2A), the 

TM-score is 0.537, lower than A7D but significantly higher than Zhang-Server and RaptorX. 

When predicted distances from the complete network are used, the TM-score increases to 0.592, 

higher than that of A7D. When the orientation distributions are included, the TM-score is further 

increased to 0.625. The folding is driven by restraints; very similar models are generated without 

the Rosetta centroid terms, and very poor models are generated without the restraints. To compare 

our Rosetta minimization protocol (trRosetta) to CNS (8), we obtained predicted distance 

restraints and structure models for all CASP13 FM targets from the RaptorX-Contacts server 

(which uses CNS for structure modeling (4)), and used the distance restraints to generate models 

with trRosetta. The average TM-score of the trRosetta models is 0.45 compared to 0.36 for the 

RaptorX CNS models; the improvement is likely due to both improved sampling and the 

supplementation of the distance information with the general Rosetta centroid energy function. 

 

Comparison between distance and orientation-based folding. Both predicted distance and 

orientation can guide folding alone. The average TM-score of coarse-grained models for the 

CASP13 FM targets is 0.572 when folding with predicted orientation alone and 0.552 when 

folding with predicted distance only. Detailed head-to-head comparisons are shown in Fig. S2A. 

After relaxation, models are improved for both. For example, for orientation/distance-based 

folding, the TM-score increases to 0.58/0.59. Fig. S2B shows that the TM-score difference 

between the orientation- and distance-based models becomes smaller after relaxation. The 

differences in model quality for the models generated using either source of information alone 

suggest that the two are complementary, and indeed better models are generated using both 
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distance and orientation information (Fig. S2). 

 

Validation on hard targets from the CAMEO experiments. We further tested our method on 

131 hard targets from the CAMEO experiments (22) over the 6 months between 2018.12.08 and 

2019.06.01.  The results for contact prediction are summarized in Table 1 and Fig. 2A; as in the 

case of the CASP13 targets, the new method improves over the baseline network. The results for 

structure modeling are shown in Fig. 3D. The contributions of different components to our method 

are presented in Fig. S4. On these targets, the average TM-score of our method is 0.621, which is 

8.9% and 24.7% higher than Robetta and HHpredB, respectively. We note that the definition of 

‘hard’ is looser than the CASP definition; a ‘hard’ target from CAMEO can have close templates 

in PDB. Making the definition of ‘hard’ more stringent by requiring the TM-score of the HHpredB 

server to be less than 0.5 reduces the number of targets to 66. On this harder set, the TM-score for 

our method is 0.534, 22% higher than the top server Robetta and 63.8% higher than the baseline 

server HHpredB. Fig. 3E gives one example CAMEO target where our method predicts very 

accurate models (5WB4_H). For this target, the TM-scores of the template-based models by 

HHpredB, IntFOLD5-TS and RaptorX are about 0.4. In comparison, the TM-score of our 

predicted model is 0.921, which is also higher than the top server Robetta (0.879). 

 

Accuracy estimation for predicted structure models. We sought to predict the TM-score of the 

final structure model using the 131 hard targets from CAMEO. We found that, unlike direct-

coupling based methods such as GREMLIN, the depth of the MSA did not have a good correlation 

with the accuracy of the derived contacts. Instead, a high correlation (Pearson’s r = 0.90) between 

the average probability of the top predicted contacts and the actual precision was observed (Fig. 

S3A). The average contact probability also correlates well with the TM-score of the final structure 

models (r = 0.71, Fig. S3B). To obtain a structure-based accuracy metric, we re-relaxed the top 10 

models without any restraints. The average pairwise TM-score between these 10 non-constrained 

models also correlates with the TM-score of the final models (r = 0.65, Fig. S3C). Linear 

regression against the average contact probability and the extent of structural displacement 

without the restraints gave a quite good correlation between predicted and actual TM-score (r = 
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0.84; Fig. S3D). This method is used to provide an estimated model accuracy. 

 

Refinement of predicted models. As noted above, CASP13 showed that protein structure 

refinement methods can consistently improve models for cases where the sampling problem is 

more tractable (smaller monomeric proteins). We first evaluated the iterative hybridization 

protocol (23) previously used to improve models generated using direct contacts predicted from 

GREMLIN on the entire set of CASP13 and CAMEO targets (Fig. S5). Incorporating our network 

derived distance predictions resulted in consistent improvement in model quality when the starting 

model’s TM-score was over 0.7, in a few cases by more than 10% in TM-score. We also tested the 

incorporation of the network derived distance restraints into the more CPU-intensive structure 

refinement protocol we used in CASP13 (10) on the CASP13 FM targets with an estimated 

starting TM-score > 0.6 that were not heavily intertwined oligomers and not bigger than 250 

residues. Consistent improvements were observed on a set of six such targets (Fig. S6), with an 

average TM-score improvement of about 4%.  The net improvement in prediction for these targets 

using the combination of the new structure generation method and refinement using the distance 

predictions is indicated by the red points in Fig. 3B. 

 

Assessing the ideality of de novo protein designs 

Following up on the AlphaFold group’s excellent CASP13 prediction of the designed protein 

T1008, we systematically compared the ability of trRosetta to predict the structure of de novo 

designed proteins from single sequences compared to native proteins in the same length range. We 

collected a set of 18 de novo designed proteins of various topologies (24-26) (α, β and α/β) with 

coordinates in the PDB and a set of 79 natural proteins of similar size selected from the CAMEO 

set and ran trRosetta protocol to predict inter-residue geometries (Fig. 4A) and 3D models (Fig. 

4B, examples of 3D models are in panels C-E). There is a clear difference in performance for 

natural proteins and de novo designs: the latter are considerably more accurate. The predicted 

structures of the designed proteins are nearly superimposable on the crystal structures, which is 

remarkable given that there is no co-evolution information whatsoever for these computed 

sequences, which are unrelated to any naturally occurring protein. 
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The high-accuracy structure prediction in the absence of co-evolutionary signal suggests the 

model is capturing fundamental features of protein sequence-structure relationships. To further 

investigate this, we performed an exhaustive mutational scanning of the ‘wild-type’ sequences for 

three designs of distinct topology (24-26) (Fig. 4C-E and Fig. S7). For each single amino acid 

substitution at each position, we calculated the change in the probability of the top L 

long+medium-range contacts (-log(Pmutant/PWT). Mutations of core hydrophobic residues and of 

glycine residues in the β-turns produced large decreases in the probability of the designed 

structure. The effects of mutations depend strongly on context: the substitutions of the same amino 

acid type at different positions produce quite different changes in probability (Fig. 4C-E) which go 

far beyond the averaged out information provided by simple substitution matrices like BLOSUM 

or PAM. 

 

Discussion 

The results presented here suggest that the orientation information predicted from co-evolution 

can improve structure prediction. Tests on the CASP13 and CAMEO sets suggest that our 

combined method outperforms all previously described methods, as it should as we have 

attempted to build on the many advances made by many groups in CASP13. However, it should 

be emphasized that retrospective analyses such as those carried out in this paper are no substitute 

for blind prediction experiments (as in the actual CASP13 and CAMEO), and that future CASP 

and CAMEO testing will be essential. Although not fully explored in this work, the integrated 

network architecture allows for backpropagation of gradients down to the MSA processing step, 

making it possible to learn optimal sequence reweighting and regularization parameters directly 

from data rather than using manually tuned values. To enable facile exploration of the ideas 

presented in this paper and in CASP13, the codes for the orientation prediction from co-evolution 

data, and the Rosetta protocol for structure generation from predicted distances and orientations 

are all available at http://yanglab.nankai.edu.cn/trRosetta/ and https://github.com/gjoni/trRosetta. 

 

The accurate prediction of the structure of de novo designed proteins in the complete absence of 
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co-evolutionary signal has implications for both the model and protein design generally. First, the 

model is clearly learning general features of protein structures. This is not surprising given that the 

direct couplings derived by the co-evolutionary analysis on a protein family are the two-body 

terms in a generative model for the sequences in the family, and thus training on these couplings 

for a large number of protein families is equivalent to training on large sets of protein sequences 

for each structure in the training set. From the design point of view, we have asserted previously 

that de novo designed proteins are “ideal” versions of naturally occurring proteins (27); the higher 

probability assigned by the model to designed proteins compared to naturally occurring proteins 

makes this assertion quantitative. Remarkably, similar “ideal” features appear to have been 

distilled from native protein analysis by expert protein designers to be incorporated into designed 

proteins, and extracted by deep learning in the absence of any expert intervention. Our finding that 

the model provides information on the contribution of each amino acid in a designed protein to the 

determination of the fold by the sequence suggests the model should be directly applicable to 

current challenges in de novo protein design. 

 

This work also demonstrates the power of modern deep learning packages such as TensorFlow in 

making deep learning model development accessible to non-experts. The distance and orientation 

prediction method described here performs comparably or better than models previously 

developed by leading experts (of course we had the benefit of their experience), despite the 

relative lack of expertise with deep learning in our laboratory. These packages have now opened 

up deep learning to scientists generally-the challenge is more to identify appropriate problems, 

datasets and features than to formulate and train the models. The method developed here is 

immediately applicable to problems ranging from cryoEM model fitting to sequence generation 

and structure optimization for de novo protein design. 

 

Methods 

Benchmark datasets 

Training set for the neural network. To train the neural network for the prediction of distance 
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and orientation distributions, a training set consisting of 15,051 protein chains was collected from 

the PDB. First, we collected 94,962 X-ray entries with resolution ≤ 2.5� (PDB snapshot as of 

May 1st 2018), then extracted all protein chains with at least 40 residues, and finally removed 

redundancy at 30% sequence identity cut-off, resulting in a set of 16,047 protein chains with the 

average length of 250 amino acids. All the corresponding primary sequences were then used as 

queries to collect MSAs using the iterative procedure described below. Only chains with at least 

100 sequence homologs in the MSA were selected for the final training set. 

 

Independent test sets. Two independent test sets are used to test our method. The first is the 31 

FM domains (25 targets) from CASP13 (first target released on May 1st 2018). The second one is 

from the CAMEO experiment. We collected 131 CAMEO hard targets released between 

2018.12.08 and 2019.06.01 - along with all the models submitted by public servers during this 

period. Note that for the CASP13 dataset, the full protein sequences rather than the domain 

sequences are used in all stages of our method to mimic the situation of the CASP experiments. 

 

MSA generation and selection. The precision of predicted distance and orientation distribution 

usually depends on the availability of an MSA with ‘good’ quality. A deep MSA is usually 

preferable but not always better than a shallow MSA (see the examples provided  in (3)). In this 

work, five alternative alignments are generated for each target. The first four are generated 

independently by searching the Uniclust30 database (version 2018_08) with HHblits (version 

3.0.3) (28) with default parameters at four different e-value cutoffs: 1E-40, 1E-10, 1E-3, and 1. 

The last alignment was generated by several rounds of iterative HHblits searches with gradually 

relieved e-value cutoffs (1e-80, 1e-70, …, 1e-10, 1e-8, 1e-6, and 1e-4), followed by the 

hmmsearch (version 3.1b2) (29) against the metagenome sequence database (20) in case not 

enough sequences were collected at previous steps. The metagenome database includes about 7 

billion protein sequences from the following resources: (i) JGI Metagenomes (7835 sets), 

Metatranscriptomes (2623 sets) and Eukaryotes (891 genomes); (ii) UniRef100; (iii) NCBI TSA 

(2616 sets); (iv) genomes manually collected from various genomic centers and online 

depositories (2815 genomes). To avoid attracting distant homologs at early stages and making 
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alignment unnecessary deep, the search was stopped whenever either of the two criteria were met: 

at least 2000 sequences with 75% coverage or 5000 sequence with 50% coverage (both at 90% 

sequence identity cutoff) were collected. The final MSAs for the test datasets are available at 

http://yanglab.nankai.edu.cn/trRosetta/.  

 

Inter-residue geometries prediction by deep residual neural networks 

Protein structure representation. In addition to the traditional inter-residue distance matrices, 

we also make use of orientation information to make the representation locally informative. For a 

residue pair (i, j), we introduce ω dihedral between Cα, Cβ of one residue and Cβ, Cα of the other, 

as well as two sets of spherical coordinates centered at each of the residues and pointing to the Cβ 

atom of the other residue. These six coordinates (d, ω, θij, φij, θji, φji) are sufficient to fully define 

the relative orientation of two residues with respect to one another. Additionally, as it will be 

described below, any biasing energy term defined along these coordinates can be 

straightforwardly incorporated as restraints in Rosetta. 

 

Input features. All the input features for the network are derived directly from the MSA, and are 

calculated on-the-fly. The 1D features include: (i) one-hot-encoded amino acid sequence of the 

query protein (20 feature channels), (ii) position-specific frequency matrix (21 features: 20 amino 

acids + 1 gap), and (iii) positional entropy (1 feature). These 1D features are tiled horizontally and 

vertically and then stacked together to yield 2×42=84 2D feature maps. 

 

Additionally, we extract pair statistics from the MSA. It is represented by couplings derived from 

the inverse of the shrunk covariance matrix constructed from the input MSA. First we compute 

one-site and two-site frequency counts
,1 ,

1
( )

i m

M

i mm A A
eff

f A w
M




  and 

, ,, , ,1

1
( , )

i m j m

M

i j m A A B Am
eff

f A B w
M

 


  , where A and B, denote amino acid identities (20 + gap), 

δ is the Kronecker delta, indices i, j run through columns in the alignment, and the summation is 

over all M sequence in the MSA; wm is the inverse of the number of sequences in the MSA which 
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share at least 80% sequence identity with sequence m (including itself); 
1

M

eff mm
M w


  . We 

then calculate the sample covariance matrix 

 ,
, , ( , ) ( ) ( )A B

i j i j i jC f A B f A f B    (1) 

and find its inverse (also called the precision matrix) after shrinkage (i.e. regularization by putting 

additional constant weights on the diagonal): 

, , 1
, , , ,

4.5
( )A B A B

i j i j i j A B

eff

s c
M

        (2) 

(More details on tuning the regularization weight in Eq. 2 are provided in Fig. S8). The 21×21 

coupling matrices ,
,
A B
i js of the precision matrix (Eq. 2) are flattened, and the resulting L×L×441 

feature matrix contributes to the input of the network. The above couplings (Eq. 2) are also 

converted into single values by computing their Frobenius norm for nongap entries: 

20 20
* , 2
, ,

1 1

( )A B
i j i j

A B

s s
 

        (3) 

followed by the average product correction (APC): 

* * * *
, , ., ,. .,./i j i j j is s s s s       (4) 

where *
., js , *

,.is  and *
.,.s are row, column and full averages of the *

,i js matrix, respectively. The 

coefficient in Eq. 2 was manually tuned on a non-redundant set of 1,000 proteins to maximize 

accuracy of the top L predicted contacts. From our experience, the final results are quite stable to 

the particular choice of the regularization coefficient in Eq. 2. To summarize, the input tensor has 

526 feature channels: 84 (transformed 1D features) + 441 (couplings, Eq. 2) + 1 (APC score, Eq. 

4). 

 

Network architecture. The network takes the above L×L×526 tensor as the input, and applies a 

sequence of 2D convolutions to simultaneously predict 4 objectives: 1 distance histogram (d 

coordinate) and 3 angle histograms (ω, θ and φ coordinates). After the first layer, which 

transforms the number of input features down to 64 (2D convolution with filter size 1), the stack 

of 61 basic residual blocks with dilations are applied. Dilations cycle through 1, 2, 4, 8, 16 (12 full 
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cycles in total). After the last residual block, the network branches out into 4 independent paths - 

one per objective - with each path consisting of a single 2D convolution followed by softmax 

activation. Since maps for d and ω coordinates are symmetric, we enforce symmetry in the 

network right before the corresponding two branches by adding transposed and untransposed 

feature maps from the previous layer. All convolution operations, except the first and the last, use 

64 3×3 filters; ELU activations are applied throughout the network. 

 

Training. We use categorical cross-entropy to measure the loss for all four objectives. The total 

loss is the sum over the four individual losses with equal weight (=1.0), assuming that all 

coordinates are equally important for structure modeling. During training, we randomly subsample 

the input MSAs, uniformly in the log scale of the alignment size. Big proteins of more than 300 

amino acids long are randomly sliced to fit 300 residue limit. Each training epoch runs through the 

whole training set, and 100 epochs are performed in total. Adam optimizer with the learning rate 

1e-4 is used. All trainable parameters are restrained by the L2 penalty with the 1e-4 weight. 

Dropout keeping probability 85% is used. We train five networks with random 95/5% 

training/validation splits, and use the average over the five networks as the final prediction. 

Training a single network takes ~9 days on one NVIDIA Titan RTX GPU. 

 

Structure determination by energy minimization with predicted restraints 

Converting distance and orientation distribution to energy potential.  The major steps for 

structure modeling from predicted distributions are shown in Fig. 1C. For each pair of residues, 

the predicted distributions are converted into energy potential following the idea of Dfire (30). For 

the distance distribution, the probability value for the last bin, i.e. (19.5, 20], is used as a reference 

state to convert the probability values into scores by the following equation. 

score ( ) ln( ) ln(( ) ),   1, 2, ,d i
i N d

N

d
i p p i N

d
          (5) 

where pi is the probability for the i-th distance bin, N is the total number of bins, α is a constant 

(=1.57) for distance-based normalization, di is the distance for the i-th distance bin. For the 

orientation distributions, the conversion is similar but without normalization, i.e., 
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score ( ) ln( ) ln( ),   1, 2, ,o
i Ni p p i N         (6) 

All scores are then converted into smooth energy potential by the spline function in Rosetta and 

used as restraints to guide the energy minimization. The range for distances is [0, 20Å] with a bin 

size of 0.5 Å, while for orientations, the ranges are [0, 360°] for θ and ω, and [0, 180°]  for φ, all 

with a bin size of 15°; corresponding cubic spline curves are generated from the discrete scores 

defined by Eq. (5) or (6).  For the distance-based potential, the AtomPair restraint is applied. For 

the θ and ω-based potential, the Dihedral restraint is applied. For the φ-based potential, the Angle 

restraint is applied. 

 

Gradient-descent based energy minimization and full-atom based refinement.  To speed up 

the modeling, coarse-grained (centroid) models are first built with the gradient-descent based 

energy minimization (MinMover) in Rosetta. A centroid model is a reduced representation of 

protein structure, in which the backbone remains fully atomic but each side chain is represented by 

a single artificial atom (CEN). The optimization is based on the L-BFGS algorithm 

(lbfgs_armijo_nonmonotone). A maximum of 1,000 iteration is used and the convergence cutoff is 

0.0001. Besides the restraints introduced above, the following Rosetta energy terms are also used: 

ramachandran (rama), the omega and the steric repulsion van der Waals forces (vdw) and the 

centroid backbone hydrogen bonding (cen_hb). More details about these energy terms can be 

found in (16). The weights for the AtomPair, Dihedral and Angle restraints, rama, omega, vdw, 

and cen_hb are 5, 4, 4, 1, 0.5 and 1, respectively. The final models are selected based on the total 

score which includes both Rosetta energy and restraints scores. 

 

The MinMover algorithm is deterministic but can be easily trapped into local minima. It is 

sensitive to the initial structure and restraints. Two strategies are proposed to introduce 

randomization effect and those models trapped into local minima can be discarded based on total 

energy. The first strategy is to use different starting structures with random backbone torsion 

angles (10 are tried). The second strategy consists in using different sets of restraints. For each 

residue pair, we only select a subset of restraints with probability higher than a specified threshold 

(from 0.05 to 0.5, with a step of 0.1). 
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For each starting structure, three different models are built by selecting different subsets of 

restraints based on sequence separation s: short range (1 ≤ s <12), medium range (12 ≤ s <24) and 

long range (s ≥ 24). The first one is progressively built with short-, medium- and long-range 

restraints. The second one is built with short+medium-range restraints and then with long-range 

restraints. The last one is built by using all restraints together. 

  

In total, 150 (=10×5×3) centroid models were generated. The top 10 models (ranked by total 

energy) at each of the probability cutoff are selected for full-atom relax by FastRelax in Rosetta. 

In this relax, the restraints at probability threshold 0.15 are used together with the ref2015 scoring 

function. The weights for the AtomPair, Dihedral and Angle restraints are 4, 1 and 1, respectively. 

 

Data availability 

The multiple sequence alignments for proteins in the benchmark datasets, the codes for inter-

residue geometries prediction and the Rosetta protocol for restraint-guided structure generation are 

available at http://yanglab.nankai.edu.cn/trRosetta/ and https://github.com/gjoni/trRosetta. 
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Tables and Figures 

 

Table 1. The precision (%) of the top L derived contacts on the 31 CASP13 FM domains and the 

CAMEO targets compared with the top two contact predictors from CASP13. The values for other 

methods are slightly different from those listed on the CASP13 website, probably due to different 

treatment of target length L (i.e., length of full sequence or length of domain structures; the latter 

is used here). The sequence separation between two residues i and j is denoted by s (=|i-j|). 

Method 

CASP13 FM domains CAMEO  very hard targets 

s ≥ 24 s ≥ 12 s ≥ 24 s ≥ 12 

RaptorX-Contact 44.7 61.3 NA NA 

TripleRes 42.3 60.9 NA NA 

trRosetta 51.9 70.2 48.0 62.8 

Baseline a 44.3 60.7 41.6 57.5 

Baseline+1 b 46.0 62.2 43.1 57.4 

Baseline+1+2 c 48.2 64.6 44.4 58.7 

Baseline+1+2+3 d 51.3 69.3 46.1 61.4 

 

a Baseline trRosetta model consists of 36 residual blocks and was trained without MSA subsampling or selection to 

predict distances only. 

b 1 - adding MSA subsampling during training 

c 2 - extending the network to predict orientations 

d 3 - MSA selection based on predicted probability of the top L long+medium-range contacts 
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Fig. 1: Predicting inter-residue geometries and protein 3D structure from a multiple sequence 

alignment. (A) Representation of the rigid body transform from one residue to another using 

angles and distances. (B) Architecture of the deep neural network with multi-objective training to 

predict inter-residue geometries from an MSA. (C) Outline of the structure modeling protocol 

based on the restraints derived from the predicted distance and orientation (see Methods for 

details). 
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Fig. 2: Accuracy of predicted inter-residue geometries. (A) Contribution of different factors to the 

increase in trRosetta performance on CASP13’s free modeling and CAMEO’s very hard targets. 

Incorporation of MSA subsampling, orientations and MSA selection in the modeling pipeline 

increases precision of the top L long-range predicted contacts by 1.7% (red bar), 2.2% (yellow) 

and 3.1% (green) respectively, and increasing the depth of the network from 36 to 61 residual 

blocks boosts the performance by an additional 0.6% (orange bar). (B) Correlation between 

predicted probability of the top L long+medium-range contacts and their actual precision 

measured based on the native structures. (C) Distribution of predicted probabilities for residue 

pairs to be within 20 Å in the native structure; populations in blue and red correspond to residue 

pairs with d ≤ 20 Å and d > 20 Å in experimental structures, respectively. Confident predictions 

are clustered at probability values P(d < 20 Å) > 92.5%; probabilities for unreliable background 

predictions are predominantly < 15%. (D) Correlations between actual rigid body transform 

parameters from the experimental structures with the modes of the predicted distributions for the 

most reliable long- and medium-range contacts from the top 7.5% percentile; color coding 

indicates probability density. 
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Fig. 3. Comparison of model accuracy. (A) average TM-score of all methods on the 31 FM targets 

of CASP13. The colored stacked bar indicates the contributions of different components to our 

method. A7D was the top human group in CASP 13; Zhang-Server and RaptorX were the top two 

server groups. (B) head-to-head comparison between our method and the A7D’s TM-scores over 

the 31 FM targets (blue points; red points are for six targets with extensive refinement). (C) 

structures for the CASP13 target T0950; the native structure and the predicted model are shown in 

gray and rainbow cartoons, respectively. (D) Comparison between our method and the top servers 

from the CAMEO experiments. (E) Native structure (in gray) and the predicted model (in rainbow) 

for CAMEO target 5WB4_H. In all of these comparisons, it should be emphasized that the CASP 

and CAMEO predictions, unlike ours, were made blindly. 
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Fig. 4. trRosetta accurately predicts structures of de novo designed proteins and captures effects 

of mutations. Differences in the accuracy of predicted contacts (A) and trRosetta models (B) for de 

novo designed and natural proteins of similar size from single amino acid sequences (C-E) 

Examples of trRosetta models for de novo designs of various topology: (C) non-functional β-

barrel, PDB ID 6D0T, (D) α-helical IL2-mimetic, PDB ID 6DG6, (E) Foldit design with α/β 

topology, PDB ID 6MRS. Experimental structures are in gray and models are in rainbow. Framed 

panels show experimental structures color-coded by estimated tolerance to single-site mutations 

(red - less tolerant, blue - more tolerant); the 8 residues least tolerant to mutation are in stick 

representation, and glycine residues are indicated by arrows. Heat maps on the right show the 

change in probability of the designed fold for substitutions of the same residue type (indicated at 

top) at different sequence positions (indicated at bottom). 
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