
Appendix: simulation model 
Modeling setup 
We have developed a stochastic simulation to study, in silico, the in vitro cell culture experiment 
(Fig. 3A) discussed in Results Section III of the main text. We have chosen a cellular automaton 
framework, an individual based model in which each individual cell is tracked through time and 
space, and which follows simple update rules after preset time steps (𝛥𝑡 = 16ℎ𝑟𝑠, therefore 
1	𝑤𝑘»9𝛥𝑡). Each update includes randomly chosen cellular events, which include divisions, 
mutations and interactions with other cells in a regular grid in 2-dimensional space (illustrated in 
Math Supp. Fig. 1).  

We chose to model each colony individually, and therefore our cellular automaton model starts 
with a population size of one, and in each time step, each cell is assumed to have a chance to 
divide if there is an empty space in its (Moore) neighborhood. If it divides, it places a daughter 
into its current position and a uniformly randomly chosen empty neighboring space. If there is no 
direct empty neighboring space, it can still divide if there is an empty spot one lattice step 
beyond its immediate neighborhood by ‘pushing’ an adjacent cell to occupy that spot to divide. 
However, we assumed cells cannot divide by pushing two or more layers. 

There are 4 parameters involved, (i-ii) the upper and lower limits of division rates, 𝒅𝟎 and 𝒅𝟏, (iii) 
the number of mutation steps taken to reach 𝑑1 when starting from 𝑑2, 𝒏𝒔𝒕𝒆𝒑 (illustrated in Math 
Supp. Fig. 2), and (iv) mutation rate, 𝝁. The two biological hypotheses  were tested using 
different 𝑛:;<=:: 𝑛:;<= = 1 for a single mutation step, and 𝑛:;<= > 1 for multiple steps. Then, given 
a specific range of division rates, [𝑑2, 𝑑1], the mutational increase in division rate (fitness) is 
𝛥𝑑 = (𝑑1 − 𝑑2)/𝑛:;<= (see Math Supp. Fig. 1 for a visual explanations of 𝛥𝑑 in terms of other 
parameters). 

Additionally, in our study, higher values of 𝜇 have been paired with scenarios with higher 𝑛:;<= 
values, as such scenarios require more mutations to achieve equivalent (observed) division 
rates, necessitating higher mutation probabilities. The rule we used to choose 𝜇 for 𝑛:;<= is 
𝜇GHIJK = 𝑛:;<= ∗ 𝜇1, where 𝜇1 is the mutation rate in the single step scenario. In this way, we 
model low probability (rare) mutations with huge fitness effects to high probability (common) 
mutations with tiny fitness effects. 

The biological stochasticity is accounted for by randomly deciding the (i) spot to divide, as well 
as the (ii-iii) timing of division and mutation events, occurring with probability 𝑑 and 𝜇 
respectively. Math Supp. Fig. 1 shows a detailed algorithm for this model. With the inputs being 
division rate (𝑑(M)) and mutation stage (0 ≤ 	𝑛(M) ≤ 𝑛:;<=) of a cell at the 𝑖-th time step, if the cell 
divides, updated 𝑑(MQ1) and 𝑛(MQ1) are outputs, as well as a new topology of cell spatial 
occupation. 



 
Figure 1. Algorithm to update each cell into the next time step in the cellular automaton model. 

 

 

 
Figure 2. Illustration of the evolutionary increase in division rate, randomly increasing (by mutation) over time. With a 
given range of division rate, [𝑑2,𝑑1], three examples of fitness histories are shown for each scenario: the single-step 
scenario (red curves), and the six-mutation step scenario (blue curves). 

Parameter calibration 
We calibrated model parameters in two steps. 

(Step 1) calibration of range of division rates [𝒅𝟎,𝒅𝟏]: 



To calibrate the initial division rate, 𝑑2, we utilized the distribution data from the control assay 
colony sizes (Fig. 3C). Assuming only minor variance in the distribution of drug naïve cell 
division rates (in the presence of drug), we calibrated a single fixed value of 𝑑2 using the best fit 
to the observed initial distribution. However, when calibrating the upper limit, we derived multiple 
values of 𝑑1s, each of which is relevant to an individual resistant colony size. This empirical 
distribution of varying 𝑑1s was used to generate diverse in silico colonies. Specifically, we first 
generated 500 in-silico colonies for every 𝑑1 ∈ {0.01, 0.02, 0.03,…	,0.99,1.0} (with mutation not 
allowed for fully resistant cells, 𝑑 = 𝑑1), based on the algorithm described in Math Supp. Fig. 1. 
Then we interpolated values of 𝑑1 and the median of 500 colony sizes in 𝑑1, Y𝑑1, 𝑃[\] ^. These 
values were used to parameterize 𝑑1 (Math Supp. 3A) for each colony size. Math Supp 3B 
shows the distribution of 𝑑1 derived in this way. 

(a)                                                                          (b) 

         
Figure 3. (a) Simulated relationship between fixed division rates and final population sizes, after growing for one 
week. The thick blue line represents the median and dashed lines represent 0%, 25%, 50%, 75% and 100% quantiles 
of500 realizations. (b) Distributions of the upper limit of division rates, d1, calibrated based on the median curve from 
(a). 

 

Based on the relative homogeneity of drug naïve cell colony sizes, in drug, we calibrated just 
one fixed value for d2. The colony sizes simulated with a fixed d2 show a good fit to our data 
(see the first couple of columns in Math Supp. Fig. 4). However, the colony sizes generated 
with a distribution of varying d2 (based on the median curve calibration of Math Supp. 3A) does 
not, probably due to the right skewness of the distribution for low division rates (see the second 
couple of columns in Math Supp. Fig 4). Therefore, the calibration method using various 
division rates seems proper only for evaluating d1 (see the third couple of columns in Math 
Supp. Fig. 4). 



 
Figure 4. Comparison between experimental data and in-silico data simulated with the calibrated parameters, 𝑑2 and 
𝑑1.  

(Step 2) calibration of mutation steps (𝒏𝒔𝒕𝒆𝒑) and mutation rates (𝝁): 

Based on the calibrated 𝑑2, 𝑑1 and the clonogenic assay data for cells with different exposure 
times to the drugs (i.e., 1-, 2-, 3-weeks exposure duration), we performed an exhaustive 
parameter sensitivity analysis for 𝑛:;<= and 𝜇 values.  

For every choice of Y𝑛:;<=, 𝜇^, we ran 100,000 random simulations, following our stochastic 
algorithm, designed to mimic our experimental protocol. The simulation results in 100,000 virtual 
colonies of varying size when seeding cells with 1-, 2- and 3-weeks of drug exposure, as in the 
experimental conditions. To measure the closeness between our experimental and simulated 
results, we defined an error estimator between two distributions based on the Kullback–Leibler 
(KL) divergence. Specifically, we binned empirical observations into 10 bins based on the 
minimum (𝑚) and maximum (𝑀) values of the dataset. The lengths of the bins are all same: 
𝛥𝑏 = (𝑀 −𝑚)/9, and the bins are half-open intervals [𝑚 + (𝑖 − 1)𝛥𝑏,𝑚 + 𝑖	𝛥𝑏) for 𝑖 =
1, 2, … , 10. With such bin ends, we evaluated normalized bin counts for empirical data (𝑝M, 
∑ 𝑝M12
Mf1 = 1). Similarly, we binned the corresponding simulated data (𝑞M), but clipped it into the 

interval [𝑚,𝑀] before binning so that the total probability equals 1 (∑ 𝑞M12
Mf1 = 1) (see Math 

Supp. Fig. 5 for a visual explanation based on an example). As we have the data for three 
different exposure periods (𝑤𝑘 = 1,2,3), we measured KL divergence for each week, and used 
the average of them as the error, which is expressed by: 
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We estimated the error over a range of Y𝑛:;<=, 𝜇^ parameters. See the main text for results. 

 



 
Figure 5. An example distribution of experimental data binned into 10 bins (red), and the corresponding simulated 
distribution (blue) clipped by the minimum and maximum of the bin ranges (sky blue). 

Model extension by including (i) stochasticity in mutation step (𝛥𝑑) 
and (ii) cell death 
In the model described above, we accounted only for components that are indispensable when 
answering our primary question. In the main body of our article, we showed results based on 
this basic model. However, as an extension of this work, we developed extended models to 
account for two additional biological features, (i) variation in the influence of a mutation on 
fitness and/or (ii) cell death.  

In one of the models, we assigned a death probability of 𝛿 = 0.01 (≈ 0.1	𝑑2). Therefore, each 
cell can die with a probability 𝛿, divide with 𝑑, and remain the same otherwise (M1). In the 
second model, in addition to a death probability (𝛿 = 0.01), we considered bi-directional random 
changes in proliferation rates as a result of mutations (M2). Instead of the deterministic increase 
in division rate 𝛥𝑑, we used stochastic steps 𝑈({−1,1})	´	𝑃𝑜𝑖𝑠(1)	´	𝛥𝑑, where 𝑈({−1,1}) which 
follow a discrete uniform distribution drawing -1 and 1 with equal chances and arise according to 
a Poisson distribution with a mean of 1 timestep.  

With the modified versions of the model, we carried out an identical parameter calibration and 
KL divergence evaluation as with earlier models. The results still support a multi-step model of 
resistance evolution (Fig. S4E,F)  

 


