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Supplementary Material 

 

NAIVE BAYES DETAILS 

Covariate Distances 

When we transform our starting dataset of individuals into a dataset of ordered pairs, we convert 

the individual-level covariates (X1, X2, … , Xp) into pair-level covariates (𝑍1, 𝑍2, … , 𝑍𝑝) by 

computing the “distances” between the covariate values for the two cases. These distances can be 

dichotomous where a value of 1 indicates that the covariate values match and 0 indicates that 

they do not match as in Equation 1 for covariate 𝑍𝑘 (where 𝑘 ∈  1, 2, … , 𝑝): 

𝑍𝑘𝑖𝑗 = 𝑑(𝑋𝑘𝑖, 𝑋𝑘𝑗) =  {
1 𝑖𝑓 𝑋𝑘𝑖 = 𝑋𝑘𝑗
0 𝑖𝑓 𝑋𝑘𝑗 ≠ 𝑋𝑘𝑗  

. 

Or the distances could be categorical where different combinations of individual-level values 

result in 𝑛𝑘 different pair-level values such as:  

𝑍𝑘𝑖𝑗 = 𝑑(𝑋𝑘𝑖, 𝑋𝑘𝑗) =

{
 
 

 
 

𝑧𝑘1 𝑖𝑓 𝑋𝑘𝑖 = 𝑋𝑘𝑗 = 𝑥𝑘1
𝑧𝑘2 𝑖𝑓 𝑋𝑘𝑖 = 𝑋𝑘𝑗 = 𝑥𝑘2

𝑧𝑘3 𝑖𝑓 𝑋𝑘𝑖 = 𝑥𝑘1;  𝑋𝑘𝑗 = 𝑥𝑘2
…

𝑧𝑘𝑛𝑘  𝑖𝑓 𝑋𝑘𝑖 = 𝑋𝑘𝑗 = 𝑥𝑘𝑤

 

where 𝑥𝑘1, 𝑥𝑘2, … ,  𝑥𝑘𝑤 are the different values of 𝑋𝑘 and 𝑧𝑘1, 𝑧𝑘2, … , 𝑧𝑘𝑛𝑘  are the different 

values of 𝑍𝑘 . 

 

Training Dataset Creation Algorithm 

To estimate the transmission probabilities, we split our training set into n subsets called folds 

where n - 1 folds are used to train the model and the remaining fold is included in the prediction 

set. The fact that we assume that each case has only one true infector presents two problems for 

the creation of a proper training set: 1) since the method of defining transmission events in the 



training set is not perfect, there could be multiple possible links for each infectee, and 2) once we 

denote a case pair as linked in the training set, all other possible pairs that share that infectee 

have a zero-probability of being linked.  

 

To solve the first problem, we create the links in the training set by randomly choosing one of 

the possible infectors defined by pathogen WGS or contact investigation data to be designated 

the linked case-pair for this run and then repeat this selection multiple times to capture the 

uncertainty around the true infector. To solve the second problem, when a pair is designated as a 

link in the training set, all other appropriately timed pairs with the same infectee as the link are 

also included in the training set as non-links. This procedure means that when a linked pair is in 

the prediction dataset so are all of the other pairs involving the infectee, so the probability of all 

pairs possible involving that infectee can be estimated. 

 

In order to capture the valuable information provided by the pathogen WGS or contact 

investigation data used to define probable transmission events in the training set, when a pair is 

denoted as linked or unlinked for a particular run by that information, the predicted probability 

for that run is set to 1 if the pair is linked and 0 if the pair is not linked. Note the probability is 

not set to 0 for those pairs that are just included in the training dataset because they share an 

infectee with a designated link. The following algorithm describes the training dataset creation 

and iterative estimation procedure: 

1. Create a dataset of possible training case pairs by subsetting the dataset to only the pairs 

involving individuals that have information used to define probable links in the training 

set. 



2. Randomly select one infector for each infectee out of all possible infectors and designate 

those pairs as “linked” (𝐿𝑖𝑗 = 1). 

3. Temporarily remove all pairs that share an infectee with the linked pairs defined in step 2 

from the training set. 

4.  Designate all remaining unlinked pairs as not linked (𝐿𝑖𝑗 = 0). 

5.  Split this dataset of possible training pairs into n folds (we used 10): n-1 for training and 

1 for prediction. 

a.  Reserve 1 fold for prediction and combine with all of the pairs not in the training 

set. 

b. Set the predicted probabilities for training set pairs to 1 for links and 0 for non-

links. 

c. For all linked pairs in the n-1 training folds, move all other pairs involving the 

infectee from the prediction set to the training set as unlinked (𝐿𝑖𝑗 = 0). This is 

the final training set for this iteration. 

d. Use the training set to train the model and calculate predicted probabilities in the 

prediction set. 

e. Repeat (a)-(d) n times so that each fold has a turn in the prediction set. 

6.  Repeat steps 2-5 multiple times (we used 10) to allow for different possible infectors to 

be designated the true infector. 

7. Average over all the predicted probabilities for each pair. 

8.  Scale the resulting probabilities using equation 6 to obtain the relative transmission 

probabilities for all case pairs. 

 



(1) 

(2) 

Bootstrap confidence intervals for the reproductive number 

In order to estimate confidence intervals for 𝑅𝑡 and 𝑅𝑡̅̅ ̅ we use parametric bootstrapping. First, 

we re-sample the 𝑅𝑖 values 100 times using the estimated probabilities, 𝑝(𝑖 → 𝑚)𝑆, for all 

possible infectees according to their distribution: 

𝑅𝑖 ∼ ∑𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝑖 → 𝑚)𝑆)

𝑚≠𝑖

   

as detailed in (1). For each re-sampling we calculate the 𝑅𝑡 values at each month and average 

them to estimate 𝑅𝑡̅̅ ̅. We then use the distributions of the estimated values of 𝑅𝑡 and 𝑅𝑡̅̅ ̅ to derive 

95% bootstrap confidence intervals:  

LowerBound =  R̂ − (Q�̃�(1 − 𝛼 2⁄ ) − R̂) 

UpperBound =  R̂ − (Q�̃�(𝛼 2⁄ ) − R̂) 

where �̂� can be either𝑅𝑡̅̅ ̅̂ or 𝑅�̂� and Q�̃� is the quantile function of the bootstrap estimates of 𝑅. 

 

 

SIMULATION DETAILS 

Initial set-up 

We simulate 1000 outbreaks using the simulateOutbreak function and generate the 

phylogenetic trees for those outbreaks using the phlyoFromPTree, function both from 

TransPhylo v1.0 (2). Then we use the simSeq function in phagnorn v2.5.3 (3) to generate 

genetic sequences corresponding to the phylogenetic tree. This method was used in Stimson et al. 

(4) for a similar purpose, though we extend it to include multiple transmission chains. Each chain 

has at least two cases and we simulate the chains iteratively until the total sample size exceeds 



500. The different transmission chains all last for 20 years but have start and end points that vary 

in time. We used an effective population size times generation time (𝑁𝑒𝑔) of 0.25. 

 

Although pathogen genomes are thousands to millions of base-pairs long, for computational 

efficiency, we simulate a 300 base pair genome where each transmission chain starts with a 

unique set of base pairs to allow for genetic diversity across different strains. The shortened 

genome length we simulate is meant to represent the locations that differ amongst cases sampled 

as part of one outbreak instead of the full genome. This simplification is appropriate because we 

aim to replicate a slow mutating pathogen such as TB which mutates at a rate of around 0.5 

SNPs per genome per year (5). With this mutation rate, over the course of one 20 year 

transmission chain, very few mutations will accrue thus allowing a smaller genome to provide a 

good proxy for the full genome. We also performed a sensitivity analysis which showed that the 

SNP distance for a fixed mutation rate did not notably change as genome length increased 

(Figure S5). It is possible that this approach underestimates the true SNP distance distribution 

which makes it a conservative representation of the true SNP distance distribution using the full 

pathogen genome. 

 

Covariate Simulation 

We added covariates to the outbreak structure produced by TransPhylo that were associated 

with link status. We simulated four covariates at the individual level, 𝑋1 − 𝑋4, with pair level 

analogs, 𝑍1 − 𝑍4. The covariate values for each source case were chosen randomly using the 

population frequencies (Table S1). We looped through the pairs starting with the earliest case 

with a sampled infector and chose the covariate values for that case based on the values for their 



infector according to the rules set for that particular covariate (Table S1). We also included the 

time between infection dates for each case pair into the model categorized as follows: less than 1 

year, 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years, and more than 5 years. 

 

These covariates were chosen arbitrarily simply to create covariates with different structures that 

had different magnitudes of association with whether or not a pair was linked. However, 𝑋1/𝑍1 

could represent the presence of some social risk factor where we believe that pairs who both 

have or do not have the risk factor are more likely to be linked. Covariate, 𝑋2/𝑍2 could represent 

nationality where there are multiple groups and we believe that pairs with the same nationality 

are more likely to be linked. Covariate, 𝑋3/𝑍3 could represent a age group where we believe that 

the characteristic of the infector matters, so order is important. Finally, 𝑋4/𝑍4 could represent 

geographic location where pairs that live in the same or close areas are more likely to be linked. 

 

Simulation Schemes 

We estimated the relative transmission probabilities using six different scenarios: naive Bayes 

training with true links and training with links derived from SNP distance, three different serial 

interval distributions (correct, wide and narrow), and random assignment. When we train the 

model using SNP distance, case pairs with less than 2 SNPs are considered linked and those with 

more than 12 SNPs are considered unlinked in the training set (11,34). Pairs with between 2 and 

12 SNPs are considered indeterminate and thus are not included in the training set. To represent 

real scenarios when only a fraction of the cases have the discriminating information necessary to 

define probable transmission events, we randomly select a subset of 60% of all cases to make up 

the training set both when training with true links and links derived from SNP distances. 



 

The serial interval comparison was motivated by the Wallinga and Teunis (4) method for 

calculating the reproductive number in which the transmission probabilities are estimated from 

the serial interval distribution. The wide and narrow serial intervals represent the prior and 

posterior distributions used by Didelot et al. (35) which were chosen because they were derived 

from the same TB outbreak in Hamburg that we analyze below. As a negative control, we assign 

the probabilities randomly from a Uniform(0, 1) distribution. Note that because in real datasets, 

we do not know the infection dates, but in simulations we do, when we refer to the “serial 

interval” we are referring to the generation interval in the simulation studies and the serial 

interval in real applications. Additionally all of these serial intervals are shifted by 90 days 

because a serial interval of less than 3 months is not possible for TB, our motivating example. 

 

We assess how well the relative transmission probabilities could classify case pairs as linked and 

unlinked across all 1000 simulated outbreaks, by calculating the area under the receiver 

operating curve (AUC) for each simulation. Additionally to determine how well our method 

performed in identifying the true infector, we evaluated how the relative transmission probability 

of the true infector ranked compared to the probabilities of all possible infectors. We also 

perform a sensitivity analysis to determine what proportion of cases needed to be included in the 

training set to achieve good performance. We simulate 300 outbreaks with sample sizes ranging 

from 50-1000 cases and for each outbreak we perform our method assuming that a random 

subset of 10% to 100% of the cases can be included in the training set. We assess how changing 

the proportion of cases sampled affects the performance of the model performance and the 

estimation of the reproductive number depending on the sample size.  



Table S1. Covariate Simulation Scheme 

 

Variable Frequency Paired Version Linked Pairs 

X1/Z1 a: 50%  b: 50% Z1 = 1 if same 

Z1 = 0 if different 

60% chance of same 

40% chance of different 
 

X2/Z2 a: 50%  b: 30% 

c: 15%  d: 5% 

Z2 = 1 if same 

Z2 = 0 if different 

70% chance of same 

30% chance of different 
 

X3/Z3 a: 70%  b: 30% Z3 = 1 if a-a 

Z3 = 2 if b-b 

Z3 = 3 if a-b 

Z3 = 4 if b-a 

Infector is a: 80% a-a 

                     20% a-b 

Infector is b: 70% b-b 

                      30% b-a 
 

X4/Z4 a: 5%    b: 5% 

c: 5%    d: 20% 

e: 30%  f: 10% 

g: 10%  h: 5% 

i: 5%     j: 5% 

Z4 = 1 if same 

Z4 = 2 if neighbors 

Z4 = 3 if other 

60% chance of same 

35% chance of neighbors 

5% chance of other 

 

 

Table S2. Performance metrics for relative transmission probabilities over 1000 simulations 

 

Scenario 
AUC 

Percent (SD) 

Correct1 

Percent (SD) 

Top 5%2 

Percent (SD) 

Top 10%2 

Percent (SD) 

Top 25%2 

Percent (SD) 

Top 50%2 

Percent (SD) 

Gold Std: Truth 96.9 (0.6) 46.1 (2.6) 76.1 (3.5) 85.1 (2.9) 94.7 (1.6) 98.8 (0.7) 

Gold Std: SNP 

Distance 
94.6 (1.2) 22.1 (2.5) 66.4 (5.0) 79.5 (4.3) 92.7 (2.4) 98.3 (0.9) 

Correct Serial 

Interval 
87.5 (1.9) 3.4 (0.9) 28.5 (4.4) 45.6 (5.5) 74.6 (4.9) 93.5 (2.2) 

Wide Serial 

Interval 
84.8 (2.2) 2.5 (0.7) 21.5 (4.0) 37.1 (5.7) 68.1 (5.9) 91.4 (2.9) 

Narrow Serial 

Interval 
87.3 (1.9) 3.4 (0.9) 28.5 (4.4) 45.6 (5.5) 74.6 (4.9) 93.5 (2.2) 

Random 

Probabilities 
60.4 (1.1) 1.0 (0.4) 5.6 (1.0) 10.5 (1.3) 25.4 (1.8) 50.2 (2.0) 

1Percentage of the time the true infector for each case is assigned the highest probability of all 

possible infectors 
2Percentage of the time the probability the probability of the true infector for each case is in the 

top 5, 10, 25, or 50% of all possible infectors 

 

 

 

 

 

 

 

 



Table S3. Average effective reproductive number for different simulation scenarios 

 

Scenario 𝑅𝑡̅̅ ̅, mean (SD) 

Training: Truth 1.19 (0.09) 
Training: SNP Distance 1.22 (0.11) 
Correct Serial Interval 1.18 (0.09) 
Wide Serial Interval 1.31 (0.15) 
Narrow Serial Interval 1.12 (0.05) 
Random Probabilities 1.53 (0.27) 

 

 

 

Table S4. Average effective reproductive number for Hamburg outbreak by method 

 

Scenario 𝑅𝑡̅̅ ̅, mean (95% CI) 

Gold Std: Confirmed Contact 0.97 (0.74, 1.19) 
Gold Std: SNP Distance 0.85 (0.63, 1.06) 
Narrow Serial Interval 1.07 (0.82, 1.31) 
Medium Serial Interval 0.98 (0.68, 1.23) 
Wide Serial Interval 0.88 (0.64, 1.11) 
Random Probabilities 0.79 (0.55, 1.02) 

 

  



 
 

Figure S1. Distribution of the relative transmission probability – how much more likely is it that 

case 𝑖 was infected by case 𝑗 as opposed to any other sampled case – for linked (black) and 

unlinked (grey) case pairs in one of the 1000 simulated outbreaks. Each panel shows a different 

method of calculating probabilities: our method with a training set of true links, our method with 

a training set of links defined by SNP distance, probabilities derived from the serial interval 

distribution used to simulate the outbreak: gamma(1.05, 2.0), probabilities derived from a serial 

interval distribution that is too wide: gamma(1.3, 3.3) and too narrow: gamma(0.54, 1.9), and 

random probabilities. 

 

 

 



 
 

Figure S2. Network plots of the true transmission network in one of the 1000 simulated 

outbreaks. The nodes represent individual cases and are colored by transmission chain. The 

edges represent true transmission events and are colored based on the estimated relative 

transmission probability; the darker the color the higher the probabilities. A) Edges colored 

based on randomly assigned probabilities. B) Edges colored based on probabilities calculated by 

the correct serial interval: gamma(1.05, 2.0). C) Edges colored based on the probabilities 

calculated using our with a training set of links defined by SNP distance. D) Edges colored based 

on the probabilities calculated using our method with a training set of true links. 

 

 

 

 

 



 
 

Figure S3. Boxplots of the performance metrics when varying the training set proportion in 300 

simulated outbreaks with sample sizes varying from 50-1000. The plots are colored by the type 

of gold standard: SNP distance (red) or true transmission (blue). The metrics shown are the area 

under the receiver operating curve (AUC), the proportion of time the true infector was assigned 

the highest relative transmission probability (Proportion Correct), and the proportion of time the 

probability of the true infector was ranked in the top 5\%, 10\%, 25\%, and 50\% of all possible 

infectors. 

 

 



 
 

Figure S4. Violin plots of the distribution of the average effective reproductive number when 

varying the dataset proportion in 300 simulated outbreaks with sample sizes varying from 50-

1000. The plots are colored by the way of defining links in the training set: SNP distance (red) or 

true transmission (blue). The dashed horizontal line indicates the true value of 1.2 that was used 

to simulate the outbreaks. 

 

 

 

 



 
 

Figure S5. Violin plots representing the effect of changing genome length on the SNP distance 

distribution between case pairs. Pathogen genomes of various lengths from 50 to 4.4 million base 

pairs were simulated 100 times each for an outbreak of 200 cases. The resulting SNP distance 

matrix for all case pairs was computed. The figure shows the relationship between genome 

length on the quartiles of the SNP distance distribution as well as the maximum SNP distance 

and the percent of pairs with less than 2 SNPs and more than 12 SNPs. 
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