












 

 
Figure 3: Conserved lifetime methylation changes aggregate in functional networks.          
Genes exhibiting conserved age-related methylation behavior were mapped onto a composite           
molecular interaction network which was subsequently clustered to reveal five major modules,            
labeled according to enriched Gene Ontology functions (​Methods​). Colors represent the           
conserved direction of change with age, with red representing genes that increase in             
methylation with age, and blue representing genes that decrease in methylation with age.             
Heatmaps show the conserved methylation patterns of a random subset of genes in each              
module. Columns represent distinct orthologs, while rows represent the average values of all             
species ranked according to their age in human years and divided into 15 age bins (quantiles).                
Values are normalized according to the mean and standard deviation of methylation for each              
ortholog. The fractional species composition of each bin is visualized in the legend. 
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Figure 4: A conserved development clock measuring both age and biological aging.  
(​A​) Schematic of epigenetic clock construction. The model computes the sum of methylation             
values from either dogs or mice, using CpGs from developmental gene modules (conserved             
development clock) or from random samples of the same number of CpG sites (control clock).               
The relative weight of each CpG is trained to predict the chronological age of each input sample                 
using regularized regression (ElasticNet, ​Methods ​). Training performance in dogs (​B​) or mice            
(​C​) is shown. (​D-E​) Spearman correlation between epigenetic and actual ages (x-axis) when             
training clocks in mice (​D​) or ​dogs (​E​), for the test species indicated (y-axis, top dog, bottom                 
mouse). Green and gray points show the performance of the conserved development clock or              
100 random control clocks, respectively (mean ± 95% confidence interval). * denotes p < 0.05 in                
all panels. (​F​) The conserved development clock distinguishes the effects of lifespan-enhancing            
treatments (orange) from control treatments (gray). For each treatment, mouse epigenetic ages            
are measured (y-axis, conserved development clock trained in mice) and plotted against actual             
mouse ages binned in 10 age quantiles (x-axis). Mean ± 95% confidence intervals shown for               
each bin. (​G​) As for panel (F) but training the conserved development clock using data for dogs.                 
For each treatment (orange lifespan-enhancing, gray control), epigenetic ages of each mouse            
are measured and plotted against actual mouse ages binned in 10 age quantiles (x-axis). *               
denotes p < 0.05 in all panels.  
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METHODS 

 
Annotations 

Reference genomes were downloaded from Ensembl for dog (CanFam3.1), mouse (mm10) and            

human (hg19). Ensembl Biomart version 91 was used for gene, 3’UTR and 5’UTR annotations              

(Yates et al. 2016)​. CpG islands, repeat annotations, and chain files were downloaded from the               

UCSC Genome Browser ​(Rosenbloom et al. 2015)​. CpG shores were designated as regions 2              

kilobases (kb) outside each CpG island, and CpG shelves were designated as regions 2kb              

outside of CpG shores. Promoters were designated as regions 2kb upstream and 100 basepairs              

(bp) downstream of the transcription start sites (TSS) based on gene annotations from Ensembl              

(Yates et al. 2016)​. Whole genes were divided into exonic and intronic sequences. Intergenic              

regions were then defined as the remaining regions of the genome after subtracting all other               

annotated regions. Definitions of one-to-one orthologs were downloaded from Ensembl          

Compara ​(Vilella et al. 2009)​ for dogs, humans and mice. 

Public datasets 

The following datasets were obtained from Gene Expression Omnibus (GEO) or Sequence            

Read Archives (SRA)  [number of individuals included in study in brackets]: 

● GSE80672 ​(Petkovich et al. 2017)​: Methylomes from postnatal mice. Blood, Reduced           

Representation Bisulfite Sequencing (RRBS) method.  [133] 

● GSE36054 ​(Alisch et al. 2012)​: Methylomes from human children. Blood, Infinium 450K            

array.  [35] 

● GSE40279 ​(Hannum et al. 2013)​: Methylomes from human adults. Blood, Infinium 450K            

array.  [285] 
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● SRP065319 ​(Thompson et al. 2017)​: Methylomes from dogs and wolves. Blood, RRBS            

method.  [92] 

Canine samples 

Information on each dog sample used, including age, breed, and source, is given in ​Table S1 ​,                

with the age distribution also provided in ​Figure S1A ​. For samples sourced from NHGRI,              

domestic dogs were collected with owners’ signed consents in accordance with standard            

protocols approved by the NHGRI IACUC committee. Samples were collected at canine-centric            

events such as dog shows. Alternatively, owners were supplied with a mail-in kit which included               

instructions, tubes for blood draws and a general information sheet requesting the AKC number              

(when available), pedigree and date of birth. Blood draws were performed by licensed             

veterinarians or veterinary technicians. For samples sourced from UC Davis, blood was            

collected from privately owned dogs through the William R. Pritchard Veterinary Medical            

Teaching Hospital. Owners specified the breed of each dog. Standard collection protocols were             

reviewed and approved by the UC Davis IACUC. DNA was extracted either using the Puregene               

kit (Qiagen) or using the cell lysis protocol described by ​(Bell, Karam, and Rutter 1981)​, followed                

by phenol/chloroform extraction with phase separation in 15 mL phase-lock tubes (5-Prime, Inc.             

Gaithersburg, MD, USA). 

SyBS target selection 

The strategy for syntenic bisulfite sequencing was to base our Illumina Human 450K probe              

locations were extended 50bp with respect to the strand of each probe. The resulting locations               

were mapped to the dog genome using liftOver ​(Rosenbloom et al. 2015) using default              

parameters. After excluding regions that mapped to sex, mitochondrial and unplaced contigs in             

the dog genome, we identified approximately 230,000 probes that were syntenic between            
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human and dogs. Hybridization probes were generated to target these regions using the Roche              

SeqCap-Epi platform. This process produced an 18.8 megabase sequencing library in dogs,            

containing approximately 90,000 CpGs that were also profiled by the Illumina 450K array in              

humans.  

SyBS library preparation and sequencing  

We followed the protocol specified by the Roche SeqCap-Epi platform. Briefly, approximately            

500ng of lambda phage DNA (bisulfite-conversion control) was added to 1ug of dog DNA, then               

sheared to an average of 175bp (Covaris). Sheared DNA was end-repaired, A-tailed and ligated              

to barcoded adapters. Adapter-ligated libraries were subjected to bisulfite treatment (Zymo EZ            

DNA methylation lightning kit) following manufacturer's instructions. Bisulfite-treated libraries         

were cleaned and amplified using 25 cycles of PCR with a uracil-tolerant enzyme (Kapa).              

Libraries were pooled equimolarly into 4-plex or 6-plex hybridization capture reactions to a total              

of 1ug per reaction. Captured product was PCR amplified (10 cycles). Hybridizations were             

pooled before sequencing and split among 10 lanes on an Illumina HiSeq 4000 in 2x150bp               

cycles.  

SyBS data analysis 

Reads obtained from sequencing were demultiplexed and their quality was verified using            

FastQC ​(Andrews and Others 2010)​. Reads were trimmed using TrimGalore ​(Krueger 2015)            

(4bp) then aligned to a bisulfite-converted dog genome (CanFam3.1) using Bismark (v0.14.3)            

(Krueger and Andrews 2011)​, which produced alignments with Bowtie2 (v2.1.0) ​(Langmead et            

al. 2009) with parameters "-score_min L,0,-0.2”. Methylation values for CpG sites were            

determined using MethylDackel (v0.2.1) ​(Ryan 2017)​. Custom Python scripts using BEDtools           

(v2.25.0) ​(Quinlan and Hall 2010) were used to determine on-target reads. Optical PCR             
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duplicates were determined using Picard tools (v1.141) ​(Tools 2015) and removed using            

Samtools (v0.1.18) ​(Li et al. 2009)​. Coverage of syntenic regions was determined using the              

number of unique on-target reads that were orthologous to humans, divided by the expected              

sequencing space. Only CpG sites that were on-target, covered by at least five reads and               

present across 90% of samples were selected for further analysis. Samples missing more than              

30% of CpGs were removed from further analyses resulting in the removal of nine dogs. Missing                

data for selected CpGs were imputed by performing k-nearest neighbors (​k = 10) using              

fancyimpute in Python. To assess the concordance of methylation values obtained using SyBS             

with conventional approaches, we also sequenced 10 of the same dogs using whole-genome             

bisulfite sequencing (libraries prior to enrichment with SyBS probes). Reads were processed            

and aligned with the canine genome as described above. We saw an average Pearson              

correlation of ​r ​= 0.85 among these 10 samples (range 0.75 - 0.97) (​Figure 1C​). We also                 

performed independent replicate hybridizations for 6 samples. We saw an average ​r ​= 0.97              

(range: 0.96 - 0.98) for these technical replicates (​Figure 1D, Figure S1B-F​). We verified that               

lambda phage DNA exhibited complete conversion (>99.5%). We tested the significance of the             

enrichment of our captured sequences and genome region annotation using the LOLA package             

(Sheffield and Bock 2016) in R (version 3.5.1) ​(R Core Team 2018)​. Enrichment tests are               

performed using Fisher’s exact tests, with the possible ‘universe’ defined by restriction digestion             

fragmentation of autosomes in the canine reference genome. 

Public RRBS data processing 

For data generated using Reduced Representation Bisulfite Sequencing (RRBS), methods for           

alignment and CpG selection were identical to those described above. Since RRBS fragments             

are generated using restriction enzymes with specific recognition sites, optical PCR duplicates            

could not be removed and on-target CpGs were not determined. For evolutionary comparative             
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analysis, we included 133 control mice aged between 3 months to 2.5 years ​(Petkovich et al.                

2017)​. To compare the coverage of syntenic regions between SyBS and non-targeted bisulfite             

technology, we used a RRBS study in dogs and wolves ​(Thompson et al. 2017)​ (​Figure 1E​).  

Human methylation array data processing 

Illumina Infinium 450K methylome array data were quantile normalized using Minfi ​(Aryee et al.              

2014) and missing values were imputed using the Impute package ​(Hastie et al. 2011) in R.                

These values were adjusted for cell counts as previously described ​(Gross et al. 2016)​. To               

enable comparisons across different methylation array studies, we implemented beta-mixture          

quantile dilation (BMIQ) ​(Teschendorff et al. 2013; S. Horvath 2013) and used the median of the                

(Hannum et al. 2013) dataset as the gold standard. To mitigate residual batch effects, we               

selected human samples that clustered closely in the first two principal components using             

scikit-learn v0.19.2 ​(Pedregosa et al. 2011) and verified that such filtering had little effect on the                

distribution of ages. We also removed samples for which more than 10% of probes were not                

adequately detected. This procedure resulted in methylome profiles for 320 humans that could             

be compared to the SyBS-generated dog methylomes. 

Determining orthologous CpGs 

Human Illumina 450K methylation array CpGs were extended by 50bp with respect to the strand               

using BEDtools and mapped to the target genome (mouse or dog) using liftOver with              

“-minMatch=0.5”. We verified that the coordinate alignment obtained using 50bp was identical to             

that obtained using the exact coordinate (1bp) at “-minMatch=0.95”. This procedure allowed us             

to determine an exact orthologous region for each human CpG and each dog CpG. When               

multiple dog CpGs were assigned to one human CpG probe region, we took the average               

methylation value of the aligned CpGs in dogs. This procedure resulted in 54,469 dog-human              
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orthologous CpGs for further analysis. To mitigate batch effects specific to sequencing and/or             

array platforms, we normalized the sequencing methylation values using BMIQ and performed            

quantile normalization using the preprocessCore package in R (normalize.quantiles.use.target         

function) ​(Bolstad 2013)​. 

For dog-to-mouse comparisons, CpGs that were separated by 1bp were merged into            

one region using BEDtools. Each region was then extended by 50bp. The resulting region files               

were aligned to the target genome using liftOver “-minMatch=0.5”. Only regions that were             

concordant between the two alignments (​i.e.​, dog to mouse or mouse to dog) were selected for                

further analysis. CpGs that were assigned to the same aligned regions were averaged to              

generate 9,404 bins, consisting of 87,915 CpGs from dogs.  

Computing dog-human pairwise methylome similarity 

Methylation values of orthologous CpGs were normalized by subtracting the mean and dividing             

by the standard deviation over individuals (i.e. z-transformed, separately for each species). The             

resulting z-values represent the tendency to decrease or increase relative to the mean of each               

CpG within a species. Using these values we calculated the pairwise Pearson correlation             

between the methylomes of each dog-human pair. Correlation was computed across all            

orthologous CpG values using the SciPy Python package ​(Jones et al. 2015)​, forming a 95 x                

320 (dog x human) methylome similarity matrix (​Figure 2​). We also created a coarsened              

version of this matrix, in which the pairwise similarities were averaged over two-year age              

windows in both species, forming an 8 x 51 (dog x human) methylome similarity matrix (​MSA​,                 

Figure S2A ​).  

22 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 19, 2019. . https://doi.org/10.1101/829192doi: bioRxiv preprint 

https://paperpile.com/c/MngLRK/oq6Pt
https://paperpile.com/c/MngLRK/gcq1h
https://doi.org/10.1101/829192


 

Given this matrix, we evaluated the significance of association between age and            

methylome similarity using permutations. Specifically, we generated the following two-by-two          

contingency table: 

 Ages more different
D(i, )A j > AD  

Ages more similar
D(i, )A j ≤ AD  

Methylomes more different  
SA(i, )M j ≤ MS  

Count1  Count3  

Methylomes more similar  
SA(i, )M j > MS  

Count2  Count4  

 

where is the methylome similarity matrix, is the age difference computed as SAM      D(i, )A j       

and is the number of occurrences (cells within the ​MS similarity Age bin  |
| dog − Age binhuman |

| ountC           

matrix) for which the table row and column conditions are met. Using these counts, we               

calculated the p-value using the one tailed Fisher’s exact test and compared this p-value to that                

obtained when permuting the membership of dogs and humans in two-year age bins across              

1000 permutations (​Figure S2A​).  

k-nearest neighbors analysis 

To achieve a robust assignment of reciprocal nearest neighbors, we used a strategy inspired by               

Context Likelihood of Relatedness ​(Madar et al. 2010)​. Specifically, we z-normalized the ​MS             

methylome similarity matrix to form , as follows:SZM   

= (i, j)MSZrow  ax( 0,  )m  σi*

MS  − MSi,j i*  

= (i, ) MSZcolumn j ax( 0,  )m  σ j*

MS  − MSi,j j*  

SZ(i, ) ean [MSZ (i, ) , MSZ (i, )]M j = m row j  column j  
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k​-nearest neighbors were assigned to each dog or to each human with respect to values.              SZM   

This process was implemented in Python using scikit-learn ​.  

Fitting the epigenetic age transfer function 

The nearest neighbor analysis was fit using non-linear regression with the SciPy package in              

Python. The model fit was specified using the following formula: 

og Age n(Human age) BD = A * l +   

Here, “Dog age” was represented by the chronological ages of dogs, and “Human age” was the                

average age of the nearest human neighbors with respect to methylome similarity. The             

converse was performed as well, i.e. dog age was represented as the average age of the                

nearest dog neighbors and human age was the chronological age in humans. For the final age                

transfer function, the coefficients (​A​,​B​) were estimated by bootstrapping an equal number of             

both dogs and humans. The standard error was estimated using 1000 bootstraps.  

Mouse validation of the conserved epigenetic progression 

Dog-mouse methylome similarity was calculated identically as for dog-human comparisons. A           

k​-nearest neighbors analysis (as described for dogs and humans above) was repeated using             

the orthologous CpGs for pairwise comparisons involving mice. The mouse methylome data had             

a highly canalized age distribution which was different from that of the dogs or humans in our                 

study. That is, mice had been sampled at discrete ages, we therefore visualized these data               

according to 0.2 year bins (​Figure 2F​).  
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Identification of gene orthologs with conserved methylation trajectories 

We considered 14,652 one-to-one orthologs in dogs, humans and mice that were within 2.5kb of               

orthologous CpGs. Among these, we identified 7,934 orthologous genes for which methylation            

values were available. Methylation values were then logit-transformed; multiple CpGs assigned           

to one gene were represented by the average methylation value. We assigned to each ortholog               

a ‘methylation conservation score’ using the following procedure. First, the age of each dog or               

mouse individual was translated to the equivalent human age using the epigenetic age             

translation functions built using the ​k​-nearest neighbors analysis. We ranked all individuals            

according to their age in human years and divided this ranking into 15 quantile bins.               

Logit-transformed methylation values were averaged within each bin and species. For each            

gene and species we calculated the Spearman correlation between the gene’s methylation            

values and age. Genes were then ranked by within        ign(correlation) (correlation )s *  − log10 p value  

each of the three species. We computed the Euclidean norm of the three ranks and sought                

genes with very low norms (for which methylation was consistently among the most increasing              

with age across species) or with very high norms (for which methylation was consistently among               

the most decreasing with age across species). Significance was determined using a two-sided             

empirical p-value < 0.05, yielding 394 genes. 

Network analysis 

We downloaded the PCNet parsimonious composite human functional interaction network from           

(Huang et al. 2018) and subselected gene orthologs with significantly conserved methylation            

trajectories (see above) resulting in a subnetwork with 355 nodes and 2003 edges. We              

visualized the network using Cytoscape ​(Shannon et al. 2003) (version 3.7) and performed             

community detection using clusterMaker2 ​(Shannon et al. 2003)​. To annotate modules, we            
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performed functional enrichment using a hypergeometric test for each term within the Biological             

Process branch of the human Gene Ontology (GO) ​(Ashburner et al. 2000) and adjusted for               

false-discovery rate using a very strict Benjamini-Hochberg procedure (FDR < 0.001)           

implemented using statsmodel in python. Significant GO terms were clustered according to            

gene-set similarity using Enrichment Map ​(Merico, Isserlin, and Bader 2011)​, and gene modules             

were clustered according to their Jaccard overlap, revealing high-level functional categories           

(​Figure 3 ​). 

Developmental genes analysis 

Genes were ranked according to their methylation conservation score (see above) and            

subdivided into 25 evenly spaced bins, separating genes with significantly conserved decreases            

or increases in methylation for a total of 27 bins. We then obtained PhyloP ​(Siepel, Pollard, and                 

Haussler 2006) sequence conservation scores according to the orthologous CpGs assigned to            

each gene. Finally, we averaged the PhyloP scores in each methylation conservation score bin,              

estimating the 95% confidence interval by bootstrapping (​Figure S4​). We assessed the            

significance of the interaction between methylation conservation score and developmental gene           

status using ANOVA.  

We restricted to orthologous CpGs profiled across dogs, humans and mice (6,906 CpGs)             

that were within 2.5kb of the gene bodies of all orthologous genes (‘all CpGs’). From this set, we                  

identified CpGs near development genes (‘devCpGs’); we also controlled for the number of             

CpGs with 100 randomly-sampled subsets of CpGs that were equal in size from those not near                

developmental genes (‘not devCpGs’). We calculated the methylome similarity (as described           

above) based on these CpG subsets for pairwise comparisons of species (dog and human, dog               

and mouse). For each pairwise comparison (Species 1, Species 2), we identified the 5-nearest              

neighbors in Species 2 for each individual of Species 1, then binned the actual age of Species 1                  
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into five discrete bins and calculated the average neighbor age for each bin with the 95%                

confidence interval estimated by bootstrapping (​Figure S5​). 

Conserved development clock analysis 

We built dog and mouse epigenetic clocks with Elastic net (scikit-learn in Python) using              

methylation features of 439 CpGs associated with developmental gene modules (​Figure 3​). We             

refer to the ages predicted from this model as “epigenetic ages”. Hyperparameters were tuned              

using five-fold cross validation in the dog data. Performance of the final model was assessed by                

Spearman correlation of actual versus epigenetic age (output of the Elastic net model) for 11               

dogs which had not been used for training, and in the control mice described above. For                

comparison, we built 100 control clocks using 100 randomly sampled sets of 439 CpGs that had                

been profiled in dogs and mouse but were not in developmental gene modules. For analysis               

involving lifespan-enhancing intervention mice, we obtained DNA methylation data profiled from           

whole blood from ​(Petkovich et al. 2017)​, processed as described above. We removed GHRKO              

from further analysis, as principal component analysis using the 439 conserved CpGs revealed             

clustering due to treatment. All remaining mice used in this analysis are described in ​Table S3 ​.                

We applied the epigenetic clock, trained in mice or trained in dogs, and evaluated the effect of                 

longevity-enhancing interventions using a log-likelihood ratio test.  
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SUPPLEMENTARY INFORMATION 

Supplementary Information accompanies this article: 

Figures S1-S5 

Table S1: Dog sample description 

Table S2: Genes exhibiting conserved time-dependent behavior 

Table S3: Mice sample description 
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