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Abstract

Objective: Elevated Lp(a) plasma concentrations are determined mainly genetically by the LPA gene
locus, but up to 70% of the coding sequence is located in the so-called “kringle IV type 2” (KIV-2) copy
number variation. This region is not resolved by common genotyping technologies and large
epidemiological studies on this region are therefore missing. The Arg21Ter variant (R21X, variant
frequency =2%) is a functional variant in this region, but it has never been analyzed in large cohorts
and is it unknown whether it is captured by genome-wide association studies.

Approach and Results: We developed a highly sensitive allele-specific gPCR assay and genotyped
R21X in 10,910 individuals from three populations (GCKD, KORA F3, KORA F4). R21X carriers showed
significantly lower mean Lp(a) concentrations (-11.7 mg/dL [-15.5;-7.82], p=3.39e-32). Of particular
note, virtually all R21X carriers also carried the splice mutation rs41272114 (D’=0.957, R*=0.275), as
confirmed by pulsed-field gel electrophoresis and long-range haplotyping. This proposes that the
R21X mutation arose on the background of the rs41272114 splice variant.

Conclusions: We performed the largest epidemiological study on an LPA KIV-2 variant so far.
Interestingly, R21X is located on the same haplotype as the splice mutation rs41272114, creating
“double-null” LPA alleles that are inactivated by two independent mutations. The effect of the R21X
nonsense mutation can thus not be discerned from the effect of rs41272114 splice site mutation.
This emphasizes the importance of assessing the complex LD structure within LPA even for functional

variants.

Abbreviations

apo(a): apolipoprotein(a)

ast-PCR: allele-specific TagMan PCR
CKD: chronic kidney disease

CNV: copy number variation

eGFR: estimated glomerular filtration rate
GWAS: genome-wide association studies
HMW: high molecular weight isoform
KIV: kringle IV

LD: linkage disequilibrium

LMW: low molecular weight isoform
MAF: minor allele frequency

SNP: single nucleotide polymorphism

WT: wild type
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Introduction

The lipoprotein(a) [Lp(a)] plasma concentration is one of the most prominent genetically
determined factors for cardiovascular diseases'”. Elevated Lp(a) concentrations concern 14-25% of
the general population’ and increase the cardiovascular disease (CVD) risk up to more than
three-fold for very high concentrations above the 99" percentile®. More than 90% of Lp(a) variance is
genetically determined by the LPA gene locus’, which encodes apolipoprotein(a) [apo(a)], the
distinctive structural protein of the Lp(a) particle. The apo(a) protein consists of 10 types of so-called
kringle-IV domains (KIV-1 to -10), one kringle V domain and a protease domain. The KIV-2 domain is
encoded by a hypervariable copy number variation (CNV), which is present in up to =40 copies per
gene allele, resulting in a pronounced size polymorphism of the apo(a) protein'® and theoretically
=1600 possible genotypes in the population. The KIV-2-CNV explains 30-70% of the Lp(a)
concentrations’,

The apo(a) isoform size is inversely correlated with Lp(a) concentrations’. Low molecular weight
(LMW) apo(a) isoforms (<22 KIV domains) are associated with 5-10 fold higher median Lp(a)
concentrations than high molecular weight (HMW) isoforms (>22 KIV domains)* but the Lp(a) levels
of unrelated individuals carrying a same-sized isoform combination can still vary by up to
200-fold™ ™. In contrast, same-sized alleles within families (i.e. alleles that are identical-by-descent)
are associated with a much smaller variation in Lp(a) (typically <2.5-fold™). This indicates that genetic

1213 Genome-wide

variants exist that regulate the Lp(a) concentrations in addition to isoform size
association studies (GWAS) have identified dozens of SNPs distributed over a two megabases
region'*™®, but few bona-fide functional variants have been identified**"*°.

The KIV-2 region encompasses up to 70% of the LPA coding sequence®® and is therefore an
obvious candidate region to search for functional variants affecting Lp(a) concentrations. Very little is
known about the impact of sequence variation in the KIV-2 CNV on Lp(a) concentrations because
commonly used sequencing and genotyping technologies are not able to resolve variation within this
region. Accordingly, it is also unclear whether KIV-2 variants are captured by known GWAS hits via
linkage disequilibrium (LD) or whether they are indeed mostly independent. Some studies suggested
a strong LD structure spanning the whole kringle region’*2, but few details have been reported.

Recently, an ultra-deep next generation sequencing (NGS) approach with a customized
bioinformatic analysis pipeline has allowed cataloging variation within the KIV-2 region*. This
revealed hundreds of variants and provided several new putative regulators of Lp(a) levels. For

example, the G4925A variant® found in 20% of the population is associated with an Lp(a) reduction

of up to =30 mg/dL and explains a considerable fraction of the individuals presenting
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low Lp(a) concentrations despite carrying a LMW isoform. This aspect of the relationship between
Lp(a) concentrations and apo(a) isoform size is poorly understood so far.

The nonsense mutation KIV-2 R21X (g. 61 C>T in *°, 640C>T in 2%) is another likely causal single
nucleotide polymorphism (SNP) in the KIV-2 region. It leads to a truncated protein that is rapidly

.* identified it by a laborious cloning approach and reported a minor allele

degraded”. Parson et a
frequency [MAF] of 1.67% in 405 individuals'®. However, because standard genotyping technologies
like TagMan genotyping assays and SNP microarrays are not specific and sensitive enough to detect a
variant that is present in only one (or a few) of up to 80 nearly identical repeats (i.e. 1.2% mutation
level), the R21X variant was not further explored in large epidemiological studies. Accordingly, R21X

14718 3nd it is unknown

has never been put into the context of the findings from GWAS on Lp(a)
whether any of the LPA SNPs detected in GWAS studies is in LD with R21X.
We developed an allele-specific TagMan PCR assay (ast-PCR) targeting the R21X variant, as well
as the previously described KIV-2 variant G4925A", and assessed the effect of R21X on Lp(a)
concentrations in nearly 11,000 individuals. We then used genome-wide SNP data from the German
Chronic Kidney Disease (GCKD) study to assess the LD of R21X with SNPs outside the KIV-2 region to
link it to available GWAS datasets. Finally, given the fact that the effect of a functional LPA SNP
depends strongly on which gene allele it is located, we determined the allelic location of R21X by

pulsed-field electrophoresis (PFGE) and show the existence of moderately frequent

“double-null” LPA alleles that are inactivated by two independent loss-of-function mutations.
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Materials and Methods

Populations

Our study involved 10,910 individuals from three studies, namely GCKD* (German Chronic
Kidney Disease), KORA (Cooperative Health Research in the region of Augsburg) F3%° and KORA F4°°.
Informed consent was obtained from each participant and the studies were approved by the
respective Institutional Review Boards. Details on the studies are given in Table 1 and in the
Supplemental Methods. In brief, the KORA F3 and F4 studies are follow-up examinations of two non-
overlapping surveys drawn from the general population living in the region of Augsburg, Southern
Germany (KORA S3 and S4). GCKD is an ongoing prospective observational study of 5,217 Caucasian
patients with moderately severe chronic kidney disease at enrollment recruited at nine institutions in
Germany.

DNA specimens from common study populations are not suitable for pulsed-field gel
electrophoresis (PFGE), because it requires megabase-sized DNA. Since the buffy coat samples that
are required for such an agarose-plug DNA preparation are not commonly available for population
studies, we used for the PFGE experiments samples from the CAVASIC study?”*®, from an ongoing
collection of liver tissue specimens for Lp(a) research (IRB Medical University of Innsbruck,
AN2015-0056) and from anonymous blood samples obtained from the blood bank of the University

Hospital of Innsbruck, Austria.

Ast-PCR for R21X typing

We designed an allele-specific triplex TagMan PCR assay (ast-PCR) amplifying the mutant bases
of R21X" and the G4925A", as well as a positive amplification control (design illustrated in
Supplemental Figure 1). The R21X and the G4925A variants were introduced into pSPL3 plasmids
containing one KIV-2 repeat™ using the Agilent Technologies QuickChange Il Site-Directed
Mutagenesis Kit with minor modifications, Supplemental Methods). To provide additional
thermodynamic disadvantage to unspecific pairings »°, various base mismatches were introduced in
the allele-specific primers on positions -2 or -3 (from the 3’ end) and the performance of different
primer designs was tested on plasmid mixes mimicking mutation levels from 100% to 0% mutant
fraction (Supplemental Figure 1l). The most specific primers were taken forward
(Supplemental Figure Il). Fluorescently labelled, locus-specific TagMan probes were added to allow
amplification detection in a high throughput setting. An amplicon in PNPLA3 served as positive
amplification control to detect false-negative reactions due to PCR failure. Technical details are

provided in the Supplemental Methods and in Supplemental Tables | and Il. The assay was run on a
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384-well ThermoFisher QuantStudio 6 qPCR system. The R21X assay was validated both against
ultra-deep NGS data from Coassin and Schonherr et al, 2019%* and against a commercial cast-PCR
assay (ThermoFisher; as used in ) with a sensitivity of 0.2% mutant fraction (determined according
to manufacturer instructions on a NGS-validated sample). For validation, our assay was run on 376
samples from KORA F4, identifying 14 R21X-carriers, which were all confirmed also by the
commercial castPCR assay. The reproducibility was tested on 477 samples run in duplicates.
Additionally, each 384 well gPCR plate (n=34) contained a positive control sample. A slightly modified

ast-PCR protocol was used to genotype the gene alleles separated by PFGE (Supplemental Methods).

Ast-PCR data analysis

Figure 1 exemplifies the assay data analysis rationale. A possible unspecific amplification signal
of the WT variant alleles will occur later in the gPCR amplification than the true specific amplification
of the mutant variant allele [Cr(carriers)<Crnon-carriers)]- This creates two Cr distributions whose widths are
defined by stochastic fluctuation in the amplification of the target (e.g. due to slightly varying input
amount) and, for the mutant, the fraction of KIV-2 repeats affected (Figure 1A). DNA input was 20 ng

in all samples. Previous data™**

indicates that no more than one to three repeats are affected by
R21X, which translates to maximum =1.6 cycles differences due to the mutation level.

To avoid human bias and have a systematic approach for sample assignment beyond pure visual
clustering of the amplification curves, the optimal discrimination threshold between the C;
distributions of carriers and non-carriers was estimated using a bagged clustering algorithm®
implemented in the R function 'classintervals' (package 'classint') and two normal distributions were
fitted to the two C; distributions using the R package 'VGAM"™! (Figure 1B). Details are provided in the
Supplemental Methods. Samples that could not be assigned unambiguously to one of the C;
distributions (i.e. which cannot be unambiguously identified as carriers or non-carriers) were
excluded. The exclusion rate was 0.7% in GCKD (35/4974), 1.6% in KORA F3 (52/3157) and 0.5% in
KORA F4 (15/3063). The custom R function used for analysis is available at

https://github.com/scogi/r21x_analysis.

Lp(a) phenotyping
The Lp(a) concentrations and apo(a) isoforms were determined by ELISA and Western blotting,

respectively, as described earlier*>*

. All analyses were performed in the same laboratory at the
Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria and evaluated by the

same experienced researcher.
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Identification of proxy SNPs

We used the genome-wide SNP data available for the GCKD study to search for a proxy SNP for
R21X that would allow linking R21X to existing results from GWAS. Following the rationale that a SNP
in LD with R21X will present a similar effect on Lp(a) and that the observed effect of R21X on Lp(a)
should have been easily detected by our recent GWAS on Lp(a) (n=13,781)", we created a
contingency table of each of the 66 top hits of the isoform-adjusted model of our recent GWAS meta-
analysis on the Lp(a) concentrations with the R21X'* and analyzed it using the Fisher’s exact test. We
selected the two SNPs with the most significant p-values (rs2489940, rs41272114) and calculated the
LD using CubeX?*.

Pulsed-field gel electrophoresis

1335737 t0 assess on which gene allele R21X is located

We performed LPA PFGE-based genotyping
and to confirm the co-localization of R21X and rs41272114 experimentally. Two different restriction
enzymes were used for LPA PFGE. Kpnl excises a region from KIV-1 to KIV-5>" and allows precise
allele sizing. Conversely, Kpn2l digestion excises a much larger fragment that spans from LPA to
MAP3K4*® (Supplemental Figure I1l) and allows long-range haplotyping of variants by performing the
genotyping directly on the previously separated gene alleles.

The LPA gene alleles of eight R21X carriers and three R21X-negative samples were separated by PFGE
and detected by Southern blotting using a probe against KIV-2 (detailed in *® and *). In brief, DNA
agarose plugs have been prepared as previously described® and digested for 4 hours at 37°C (Kpnl)
or 55°C (Kpn2l). Half plug for each sample was applied on the agarose gel twice, separated on a
Bio-Rad CHEF Mapper system (for technical details see Supplemental Table lll) and the separated
alleles were isolated from the gel as described previously***®. DNA was extracted from the gel slices

using the peqGOLD Gel Extraction Kit (VWR). Genotyping was done using a modified ast-PCR protocol
for R21X (Supplemental methods) and Sanger sequencing for rs41272114 (Supplemental Table V).

Statistical methods

Differences in medians were assessed by Wilcoxon tests. The association between the LPA KIV-2
variant R21X and the Lp(a) levels was assessed by linear regression analysis in each population,
adjusted for age and sex. GCKD analysis was also repeated adjusting additionally for the estimated
glomerular filtration rate (eGFR; estimated according to the CKD-EPI equation®) and urine albumin-
to-creatinine ratio. Since R21X has been previously shown to cause a null LPA allele’® and therefore
completely abolishes the respective isoform in plasma, all remaining Lp(a) is produced by the non-
mutant allele. Therefore, the regression analysis was not adjusted for isoform, as this would imply to
adjust for a major part of the Lp(a) concentration itself. B-estimates were obtained on the original
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scale of Lp(a), while p-value and coefficients of determination were derived after inverse-normal
transformation of the Lp(a) concentrations due to the skewed distribution. All analyses were done in
R software version 3.5.0 (www.r-project.org). R package metafor*® (www.metafor-project.org) was

used for fixed effect meta-analysis.

Results

Assay performance

We established a cost-effective ast-PCR for the detection of carriers of the R21X variant™ and
G4925A" in large epidemiological sample collections. Our ast-PCR is a high throughput-capable assay
with three multiplexed targets: two KIV-2 variants (R21X" and G4925A") and an amplification
control fragment in PNPLA3. In this manuscript we report the results for the R21X variant. The results
of G4925A have already been reported earlier using a different assay approach®.

Our assay showed excellent sensitivity down to 0.5% mutant fraction and no amplification at 0%
(Supplemental Figure Il). The R21X assay also correctly classified six samples from Coassin and
Schonherr et al, 2019*, were the R21X status has been determined by ultra-deep NGS (3 positive
samples with mutation level 2.4-5.1% and 3 negative samples; all measured in triplicates; more
positive validation samples were not available due to the low carrier frequency). The Ct values of
genomic DNA samples ranged from 30.3 to 31.7 for the positive samples and from 37.3 to 39.7 for
the negative samples, providing a clear separation between positive and negative samples. The
validation of the assay against the commercial castPCR (ThermoFisher Scientific) showed no
discordances. Reproducibility was tested, firstly, by typing 477 GCKD samples twice during assay
establishment and, secondly, by typing 5-10% of the samples of each study twice during data
generation (in total Noc samples=879; see Supplemental methods for details). No discordances were
observed (Supplemental Table V). Moreover, each 384 well qPCR plate (n=34) included the same
positive control sample, with consistent results over all plates. Sample call rates of the single studies

ranged from 97.8% to 99.0% (Supplemental Table V).

R21X is associated with reduced lipoprotein(a) concentrations

We determined the carrier status for the R21X in 10,910 samples. Carrier frequency was 1.6% in
GCKD, 1.8% in KORA F3 and 2.1% in KORA F4 resulting in 193 carriers in the combined data set. The
R21X variant was associated with reduced Lp(a) levels in all three populations (Figure 2, Table 2) with
consistent effect estimates (Table 2). A fixed-effect meta-analysis resulted in an overall effect
estimate of -11.7 mg/dL (95% confidence interval (Cl): -15.5 to -7.82; p=1.08e-32). Adjustment in

8
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GCKD for eGFR (and urine albumin-to-creatinine ratio) altered the estimates only marginally (Table 2,
footnote). Positive R21X mutation carrier status explained 1.1% to 1.5% of the inverse-normal Lp(a)

variance (Table 2).

PFGE shows location of R21X on moderately large alleles

We assessed the allelic location of R21X by PFGE in eight individuals. The LPA alleles separated
by PFGE were isolated from the gel and genotyped using our ast-PCR. In all analyzed individuals R21X
was located on HMW alleles in the range 27-32 KIV. This is in line with the observed effect
magnitude. The PFGE genotypes and the gene allele carrying the variant are reported in

Supplemental Table VI.

Linkage disequilibrium with the splice variant rs41272114 creates double-null alleles
Genetic variants located in the KIV-2 region are not represented in GWAS datasets. To
investigate whether any of the lately reported GWAS hits** may pick up the signal of R21X and to
assess the contribution of the R21X nonsense variant to cardiovascular outcomes, we searched
among the 66 top hits of our recent GWAS on Lp(a)** for a proxy SNP for R21X. This identified two
possible proxy SNPs: rs2489940 in PLG (MAF=0.5%, R*= 0.38, D'=0.74) and rs41272114 in LPA KIV-8"
(MAF=2.6%, R’= 0.275, D'=0.957). The linkage disequilibrium to rs41272114 is noteworthy because
rs41272114 is a widely studied'”***? splice donor mutation variant that causes itself LPA null alleles.
The high D’ coefficient indicates that virtually all R21X carriers also carry rs41272114. To
substantiate this implication experimentally, we separated the LPA gene alleles of five individuals
using PFGE with Kpn2l-digested DNA plugs. Kpn2l excises a large genomic region®® around LPA
(Supplemental Figure Ill) and performing SNP genotyping on the separated alleles allows direct
long-range haplotyping®®. In all tested individuals, the LPA allele carrying the R21X mutation carried
also the rs41272114 splice site mutation (i.e. the two variants formed one haplotype). Accordingly,
the association between R21X and Lp(a) vanished, if the linear regression model for R21X on Lp(a) in
GCKD was adjusted for rs41272114 (B=-0.67 (95% Cl: -9.14; 7.81), p=0.504, age, sex and eGFR-
adjusted). Vice versa, rs41272114 was still associated with Lp(a) also when the linear regression was
adjusted for R21X (B=-12.26 (95% Cl: -17.00; -7.55), p=3.18e-29), respectively when linear regression
was performed only in R21X-negative samples (B=-12.26 (95% Cl: -17.06; -7.46), p=3.90e-28). No
difference was found between median Lp(a) of heterozygous individuals with both variants and such

with rs41272114 but not R21X (p=0.47, Figure 3).
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Discussion

The KIV-2 repeat polymorphism in the LPA gene, respectively the apo(a) isoform explains
30-70%" of Lp(a) variance in the population. However, the impact of the KIV-2 repeat to the
individual Lp(a) concentrations varies widely and it has been shown that genetic variants modify the
impact of the isoforms on Lp(a) concentrations®. The interpretation of such variants is complicated
by the different contribution of the two gene alleles to the Lp(a) concentrations and the complex LD
patterns in the LPA gene™*.

The LPA KIV-2 R21X variant is a nonsense mutation located in the KIV-2 region and results in a

132 the R21X variant was the only

truncated protein, which is degraded quickly™. Until recently
functional KIV-2 variant that had been investigated in a relatively large sample set (n=405").
However, no study up to now has investigated the contribution of R21X to the Lp(a) levels in general
or high risk populations nor it is known whether this variant is captured by any of the many GWAS
hits that have been reported for LPA™ ™.

Using a newly developed high-throughput capable PCR assay, we determined the carrier status
for R21X in 10,910 individuals from three independent studies and found that R21X is associated with
a reduction of mean Lp(a) concentrations by 9.9 to 13.0 mg/dL (Table 2). This effect is of moderate
magnitude for a nonsense mutation. Since location on LMW LPA alleles would likely be associated
with a much stronger Lp(a) decrease (it is e.g. =30 mg/dL for G4925A, which is located in the isoform
range 19-25"), the observed effect magnitude suggests that R21X is located on rather large LPA
alleles. To investigate this assumption we separated the LPA gene alleles of eight individuals by PFGE
and typed R21X on the separated gene alleles. As postulated, the R21X mutation was located on
HMW LPA alleles in all investigated samples.

Surprisingly, the best proxy SNP for R21X among all top hits of a genome-wide association meta-
analysis on the Lp(a) concentrations™ was rs41272114 (MAF=2.6%). This SNP is a well-known'***?
splice site mutation in the KIV-8 domain of LPA and results in a null apo(a) allele, too'. The
combination of a low determination coefficient (R’=0.27) but a high Lewontin’s D* (D'=0.957)
indicates that R21X-carrying alleles constitute a subset of the more frequent rs41272114-carrying
alleles, where virtually all R21X carriers carry also rs41272114 (indicated by the high D’), but, vice
versa, not all rs41272114 carry R21X (indicated by the low R?). This suggests that R21X is a more
recent mutation than rs41272114 and indeed arose on the background of an rs41272114-carrying
haplotype. Accordingly, R21X (termed 640C>T the supplementary materials of Coassin and Schénherr
et al, 2019*) is found mostly in Europeans and South-Asians but is absent in Africans®, while

rs41272114 is rare but present also in Africans (MAF = 0.7%)".
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By separating the LPA gene alleles and typing them independently, we have been able to confirm
this statistical inference also experimentally. This demonstrated that R21X-carrying alleles indeed
represent “double-null” LPA alleles that are inactivated by two independent loss-of-function variants.
Since both variants are located on the same haplotype, no significant difference in Lp(a)
concentrations is found between rs41272114-only carriers and double-null allele carriers (Figure 3)
and single causality cannot be assigned. Therefore, despite R21X is a nonsense mutation and would
be clearly functional in an isolated manner (e.g. in-vitro), within its proper genomic context its effect
is masked by rs41272114. The effect of R21X on Lp(a) and cardiovascular outcomes therefore merges
with rs41272114, which has been repeatedly shown to be protective against coronary artery disease

(OR=0.79 [0.66-0.97] in PROCARDIS* and OR=0.891 [0.86-0.92] in UK Biobank+CardiogrammC4D46).

Strengths and limitations of the study

Our high throughput ast-PCR capable of typing two variants within the KIV-2 CNV (R21X and
G4925A) in a single multiplex reaction, can be seen as a major technical strength of this work. Some
commercial high sensitivity assays like castPCR (ThermoFisher Scientific), Agena MALDI-TOF
Ultraseek®?” and droplet digital PCR*, are able to type mutations in the KIV-2, too, but their
exceedingly high costs (several Euro per sample) precludes their application to large epidemiological
studies. In the study at hand, we typed nearly 11,000 individuals, making this study the largest
assessment of a variant located in the LPA KIV-2 region performed so far.

The allelic location of functional LPA mutations is rarely assessed in Lp(a) epidemiology.
However, to fully understand the effect size of an LPA mutation, it plays a major role whether a
mutation is located on a low or a high molecular weight LPA allele. We have experimentally
demonstrated the allelic localization of R21X on moderately large alleles and also experimentally
confirmed the co-localization of two loss-of-function variants on the same gene allele.

Conversely, the relatively low number of samples assessed by PFGE is a limitation of our study.
PFGE requires preparation of agarose-plug embedded DNA. This requires buffy coat, which is not
commonly available in population studies. The low MAF of R21X further complicates the retrieval of a
large number of individuals for PFGE. Therefore, only a limited number of suitable samples were
available in our laboratory and the results of our PFGE experiments might not be fully generalizable.
However, the localization of R21X on medium to large sized alleles is in line with the effect
magnitude observed in the whole dataset. Furthermore, the co-localization of rs41272114 and R21X
on the same haplotype is supported by three independent lines of evidence: (1) the experimental
PFGE data from five individuals, (2) the regression analysis in the whole dataset, where the effect of

R21X, but not of rs41272114, vanishes after reciprocal adjustment, and (3) the R2/D’ values in GCKD.
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Conclusion

We developed a high-throughput capable assay for the KIV-2 variant R21X and found that this
variant is located on high molecular weight apo(a) alleles, lowers Lp(a) by 11.7 mg/dL, and most
surprisingly, that it is in nearly perfect LD with another null mutation (rs41272114). These two
variants create LPA alleles that are inactivated by two independent loss-of-function mutations and
their effects cannot be genetically separated. While previous studies have shown the impact of LD

between SNPs and apo(a) isoforms™>*3

, our study is the first example of a strong LD between two
clearly functional LPA variants. This emphasizes the complexity of LPA genetics and exemplifies the

importance of assessing LD patterns even for seemingly obvious functional variants.
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Table 1 Descriptive statistics.

available under aCC-BY 4.0 International license.

Continuous variables are provided as mean

SD and [25%, 50%, 75%] percentiles. LMW: low

molecular weight apo(a) isoforms. HMW: high molecular weight apo(a) isoforms. F: females. M:

males. eGFR: estimated glomerular filtration rate. Lp(a): lipoprotein(a).

n

Sex (F)

Age (years)

Age (F) (years)

Age (M) (years)

Lp(a) (mg/dL)

Lp(a) in LMW (mg/dL)

Lp(a) in HMW (mg/dL)

eGFR (mL/min/1.73 m?) *

Cholesterol (mg/dL)

HDL-C (mg/dL)

LDL-C (mg/dL)

Triglygerides (mg/dL)

Type 2 diabetes mellitus

GCKD
4,771

1,896 (39.7%)
60.1+11.9
[53,63,70]
59.0+12.7
[51,63,69]
60.9+11.3
[55,64,70]
24.7430.6
[5.0,11.6,33.7]
56.5+40.4
[25.7,53.2,77.9]
14.3+16.3
[3.8,8.59,17.8]
49.4+18.2
[37,46,57]
211.1452.7
[176.5,207.1,239.1]
51.8+18.0
[39.21,48.24,61.15)
118.4+43.6
[89.2,113.8,142.7]
198.2+125.0
[117.6,168.0,238.7]
1,713 (35.9%)

KORA F3

3,099

1,602 (51.7%)
57.4£12.9
[46,57,67]
57.1412.7
[47,57,67]
57.6+13.1
[46,58,68]
22.21+26.2
[5.0,11.1,29.1]
50.6134.2
[18.3,49.4,72.6]
13.6+14.8
[4.02,8.75,16.7]
86.7£17.5
[76.14,89.11,99.2]
218.1+39.9
[191,216,242]
58.77+17.2
[46,56,69]
127.88+32.6
[105,126,148]
164.85+125.1
[88,135,200]
248 (8.1%)

KORA F4

3,040

1,576 (51.8%)
56.1+13.3
[44,56,67]
55.6+13.1
[44,56,67]
56.6+13.4
[45,57,68]
21.7424.6
(5.2,11.7,30.23]
47.8+31.2
[23.7,46.8,66.5]
13.4+14.1
[4.11,8.95,17.3]
87.84+16.9
[77.4,89.3,100.1]
216.039.6
[188,214,240]
55.9+14.4
[45,54,65]
136.07+34.9
[112,134,158]
124.71+88.9
[71.5,104,150]
241 (7.9%)

* Estimated using the CKD-Epi equation *
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Table 2 Linear regression analysis on the association between the R21X variant and the Lp(a) levels.

Lp(a) concentrations are given as mg/dL. The B estimate is given on original scale (mg/dL).

Age and sex adjusted model model

Population carriers n B* 95 Cl lower 95 Cl upper SE * p t R2+
[n] bound * bound *
GCKD £ § 74 4,771 -13.0 -20.0 -6.0 3.6 4.34e-12 0.011
KORA F3 56 3,099 -12.6 -19.5 -5.7 3.5 6.50e-11 0.013
KORA F4 63 3,040 -9.9 -16.0 -3.8 3.1 3.95e-12 0.015
Meta-analysis 193 10,910 -11.7 -15.5 -7.8 1.9 3.39%e-32 =

* on original scale; T on inverse normal transformed scale. ¥ GCKD additionally adjusted for eGFR: beta=-12.4 [-19.58; -5.25], SE= 3.7, p=3.16e-10.

§ GCKD additionally adjusted for eGFR and urine albumin-to-creatinine ratio: beta=-13.12 [-20.22; -6.02], SE= 3.6, p= 1.08e-10
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Figures and figure legends

Figure 1 Analysis strategy

A. Exemplary ast-PCR amplification plot. B. Discrimination of the two C; distributions using a
systematic clustering approach. The orange and pink horizontal bars (below the x-axis) identify the
samples, which cannot be uniquely assigned to one of the two distributions and are therefore
excluded from the analysis. Orange bar: upper 1% of the carrier distribution and lower 1% of the
non-carrier distribution. Red bar: upper 2.5% of the carrier distribution and lower 2.5% of the non-
carrier distribution (more conservative; used in this analysis). Plot generated using the provided R

script.
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Figure 2 Association of the R21X variant with reduced Lp(a) levels.
Lp(a) is lower in R21X variant carriers (i.e. at least one KIV-2 repeat carrying the R21X variant) in each
population. Due to the highly skewed distribution of Lp(a), outliers were omitted for better

representation. The same boxplots including the outliers are provided in Supplemental Figure IV.

A GCKD B KORA F3 C KORA F4
100 4 n=4697 n=74 100 1 n=3043 n=56 100 4 n=2977 n=63
80 80 80
) i iy - ) J
B 60 : L 60 ' L 60 '
o . [)] ! (=)} '
E, : E ; £ !
G i T 40 : T 404 !
5 40 ! = 40 ; = 40 !
- - . — '
20 - 20 1 '
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T T T T T T
Non-carriers  Carriers Non-carriers Carriers Non-carriers Carriers
Mean [SD] 24.9[30.7] 12.0[17.1) 22.4(26.3] 9.7 [15.3] 22.0[24.7] 12.3[19.0]
Median 11.8 4.4 11.4 4.3 11.9 3.8
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Figure 3 Distribution of Lp(a) values in the carriers of the various combinations of R21X carrier
status and rs41272114 genotype.

No significant difference is observed between heterozygous individuals carrying only rs41272114 and
those carrying both R21X and rs41272114 (p=0.47). The minor allele of rs41272114 is the adenine
base. For R21X no genotype can be reported because most of the KIV-2 repeats still carry the wild
type base at any time. Genotype is thus given as positive or negative carrier status. Lp(a) values are

reported in mg/dL.
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