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Abstract 

The International Mouse Phenotyping Consortium reports the generation of new mouse 

mutant strains for over 5,000 genes from targeted embryonic stem cells on the C57BL/6N 

genetic background. This includes 2,850 null alleles for which no equivalent mutant mouse 

line exists, 2,987 novel conditional-ready alleles, and 4,433 novel reporter alleles. This nearly 

triples the number of genes with reporter alleles and almost doubles the number of 

conditional alleles available to the scientific community. When combined with more than 30 

years of community effort, the total mutant allele mouse resource covers more than half of 

the genome. The extensively validated collection is archived and distributed through public 

repositories, facilitating availability to the worldwide biomedical research community, and 

expanding our understanding of gene function and human disease.  

 

Results and Discussion 

Despite thirty years of mouse targeted mutagenesis, in vivo function of the majority of genes 

in the mouse genome are still unknown. This reflects the observation that a small number of 

genes have been the object of intensive study including the development of multiple mouse 

models, while a significant proportion of the coding genome remains entirely unexplored 1. 

The completion of the sequencing of the mouse genome, coupled with the use of mouse 

embryonic stem (ES) cells for gene targeting to create complex mutant alleles, presented an 

opportunity to functionally analyze all the protein coding genes of a mammalian species 2,3.  

Taking advantage of comprehensive manual annotation of the genome 4, the International 

Knockout Mouse Consortium (IKMC) systematically generated single-gene, reporter-tagged 

null alleles for protein-coding genes by homologous recombination in mouse ES cells 5,6. 
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Subsequently, large-scale mouse production and phenotyping programs deployed these 

unique resources, establishing the feasibility of genome-scale mouse production and 

phenotyping 7-9. Building upon these successes, the International Mouse Phenotyping 

Consortium (IMPC) was established to coordinate a network of programs around the globe, 

assuring uniformity and reproducibility of these efforts, including standardization of 

phenotyping protocols and the use of a single inbred mouse strain background, C57BL/6N, 

with the ultimate goal of generating and phenotyping a single-gene knockout (KO) mouse 

line for every protein-coding gene in the genome. 

 

Production of KO mice began in concert with the expansion of the ES cell library, but rapidly 

accelerated after 2011 with the funding of multiple IMPC programs. To date, more than 

17,500 individual production attempts (microinjection or aggregation) have resulted in the 

germline transmission of KO alleles for 5,061 unique genes (Figure 1A; Supplemental 

Table ST1). These lines have been expanded for phenotyping, providing key insights into 

mammalian biology and disease 10-15; www.mousephenotype.org). The IMPC contribution 

extends the total number of genes with targeted KO alleles produced by the scientific 

community from the 8,391 reported and curated by Mouse Genome Informatics (MGI; 
16)(Figure 1B; Supplemental Table ST2), to 11,241, or more than half of the genome. Much 

of the overlap (2,211 genes) reflects specific community requests for the production of novel 

complex alleles (see below), targeting on an inbred C57BL/6N background, or for mutant 

mouse lines unavailable through public repositories. The growing use of CRISPR/Cas9 

editing to produce null alleles for the IMPC led to the decrease in ES cell-based production 

beginning in 2015. 

 

While the primary goal of the IKMC and IMPC was to generate and phenotype a null allele 

for every protein-coding gene, the mutant alleles included additional functional features. All 

alleles included a lacZ reporter cassette to facilitate analysis of gene transcription in situ 

(Supplemental Figure S1; 5,6). A large proportion of the alleles have conditional potential, 

providing future users with a useful tool for detailed, mechanistic analyses (Supplemental 

Figure S1a). The multifunctional utility of the alleles produced by the IMPC has greatly 

expanded the repertoire of genetic resources available to the scientific community. Of the 

3,674 unique gene, conditional-ready mouse models generated and validated, 2,987 were 

novel alleles for genes without an existing conditional allele (81.3%). These nearly double 

the total number of genes with conditional KO alleles produced by the scientific community  
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Figure 1: Generation and impact of targeted alleles for 5,061 unique mouse genes. (a) Cumulative 
production progress, including all attempts (microinjection or aggregation (black), unique ES cell clones 
injected (red), unique genes attempted (yellow), and unique genes that achieved germline transmission 
(GLT; blue). For GLT, the date reflects the date of microinjection, and only reports the first instance of 
transmission for the small number of duplicate mutations produced. (b) Venn representation of unique gene 
null alleles produced by the IMPC (orange) and by the rest of the scientific community as reported in MGI 
(“Non-IMPC”; blue). (c) Unique gene conditional-ready alleles produced by the IMPC (orange) and by the 
rest of the scientific community (blue). (d) Unique gene reporter alleles produced by the IMPC (orange) and 
by the rest of the scientific community (blue). (e) Cumulative mouse orders of IMPC lines processed by 
production centres and mouse model Repositories from 2012-2018 (blue line). The cumulative number of 
ordering investigators, unique alleles ordered, and unique genes ordered are shown in yellow, grey, and 
orange, respectively. 
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as a whole (2,987 IMPC conditional alleles added to the 3,295 conditional alleles reported in 

MGI as mouse lines; Figure 1C). The impact is even more significant for reporter alleles. 

The IMPC has produced reporter alleles for 5,059 unique genes, of which 4,433 are novel 

(87.6%), complementing the 2,733 produced by the scientific community (Figure 1D). This 

has nearly tripled the total number of genes with reporter alleles available to the community 

as mouse lines. 

 

The generation of mouse lines was underpinned by comprehensive quality control strategies 

for both ES cell karyotype and targeted allele, which ensured efficient production and 

integrity of the targeting event (Supplemental Table ST1 and ST2; Supplemental Figures 

S2 and S3). Further quality control (QC) analysis also revealed that part of the ES cell 

collection contained an additional insertion of a wild-type nonagouti (A) gene on 

chromosome 8, likely introduced with the targeted reversion event in these cell lines 

(subclone JM8A317). However, as the insertion of the wild-type nonagouti gene results in an 

agouti coat color, this allele can be easily segregated from the mutant allele in most cases 

(Supplemental Figure S4). High-throughput allele validation of ES cells was performed 

using either a suite of quantitative and endpoint PCR-based tests or a combination of 

Southern blot and PCR-based analysis, depending on production centre (Supplemental 

Figure S2, S3 and S5 and Supplemental Tables ST3 and ST4 and Methods). Despite these 

efforts, we found that additional quality control (QC) on the mouse lines themselves was 

required to ensure all IMPC lines resulted from the transmission of the correctly targeted 

allele (Supplemental Table ST5; 18). This additional QC at the mouse level identified a 

small but significant proportion of incorrect alleles that transmitted through the germline of 

chimera mice derived from clones that had passed initial and secondary validation QC testing 

in the ES cell. Our experience highlights the importance of careful allele validation before 

and after mouse production.  

 

As a result of this effort, mouse lines with targeted alleles for more than 5,000 genes on a 

C57BL/6N genetic background with extensive and documented genetic validation of the 

targeted locus are now available to the biomedical research community, supporting high 

standards of reproducibility for future investigations. The IMPC resource has shown its 

usefulness through the continued and robust uptake of mutant mouse lines by investigators 

around the world. This includes both KO and conditional alleles with mouse lines distributed 

as live mice and cryopreserved stocks. To date, over 5,000 orders for mutant mice for 3,301 
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unique genes have been processed and shipped to more than 4,000 investigators around the 

world (Figure 1E). To date, more than 1,900 publications acknowledge the use of 

EUCOMM/KOMP alleles (for example 19-30). This demonstrates the utility of these resources, 

the cumulative use of which continues to grow over time, and complements the systematic 

phenotyping efforts of IMPC centres. In the new era of genome editing, this ES cell-derived 

collection remains of unique value as it offers particularly sophisticated and quality-

controlled alleles representing a cornerstone of the collective development of a null allele 

resource for the complete mammalian genome 2. 

 
Data availability 

All data are freely available from the IMPC database hosted at EMBL-EBI via a web portal 

(mousephenotype.org), ftp (ftp://ftp.ebi.ac.uk/pub/databases/impc) and automatic 

programmatic interfaces. An archived version of the database will be maintained after 

cessation of funding (exp. 2021) for an additional 5 years. Information on alleles, together 

with phenotype summaries, are additionally archived with Mouse Genome Informatics at the 

Jackson Laboratory via direct data submissions (J:136110, J:148605, J:157064, J:157065, 

J:188991, J:211773). 
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