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Abstract:  

Dopamine neurons drive learning by coding reward prediction errors (RPEs), which are formalized 

as subtractions of predicted values from reward values. Subtractions accommodate point estimate 10 

predictions of value, such as the average value. However, point estimate predictions fail to capture 

many features of choice and learning behaviors. For instance, reaction times and learning rates 

consistently reflect higher moments of probability distributions. Here, we demonstrate that 

dopamine RPE responses code probability distributions. We presented monkeys with rewards that 

were drawn from the tails of normal and uniform reward size distributions to generate rare and 15 

common RPEs, respectively. Behavioral choices and pupil diameter measurements indicated that 

monkeys learned faster and registered greater arousal from rare RPEs, compared to common RPEs 

of identical magnitudes. Dopamine neuron recordings indicated that rare rewards amplified RPE 

responses. These results demonstrate that dopamine responses reflect probability distributions and 

suggest a neural mechanism for the amplified learning and enhanced arousal associated with rare 20 

events. 
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Main Text:  

Making accurate predictions is evolutionarily adaptive. Accurate predictions enable 

individuals to be in the right place at the right time, choose the best options, and efficiently scale 

the vigor of responses. Dopamine neurons are crucial for building accurate reward predictions. 

Phasic dopamine responses code for reward prediction errors: the differences between the values 5 

of received and predicted rewards (1-8). These signals cause predictions to be modified through 

associative and extinction learning (9, 10).  Likewise, phasic dopamine neuron stimulation during 

reward delivery increase both the dopamine responses to reward predicting cues and the choices 

for those same cues (11). Although it is well understood how predicted reward values affect 

dopamine responses, these predictions are simply point estimates – normally the average value – 10 

of probability distributions. It is unknown how the form of probability distributions affects 

dopamine learning signals. 

Probability distributions affect behavioral measures of learning and decision making. 

Learning the expected value takes longer when rewards are sampled from broader distributions, 

compared to when they are drawn from narrower distributions (12). Likewise, even with well 15 

learned values, decision makers take a longer time to choose between options when the value 

difference between rewards is smaller, compared to when the difference is larger (13, 14). These 

behavioral measures of learning and decision making demonstrate that the probability distributions 

over reward values, and not simply the point estimates of values, influence learning and decision 

making. Prior electrophysiological recordings have demonstrated that dopamine signals adapt to 20 

the range between two outcomes (15), but it is not known whether these same dopamine signals 

reflect probability distributions over reward values. 
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Here, we asked whether the shapes of probability distributions were reflected in dopamine 

reward prediction error responses. We created two discrete reward size distributions that reflected, 

roughly, the shapes of normal and uniform distributions. We trained monkeys to predict rewards 

drawn from these distributions. Crucially, the normal distribution resulted in rare prediction errors 

following rewards drawn from the tails of that distribution, whereas the same rewards, with 5 

identical prediction errors, were drawn with greater frequency from the uniform distribution. We 

found that monkeys learned to choose the better option within fewer trials when rewards were 

drawn from normal distributions, compared to when rewards were drawn from uniform 

distributions. Moreover, we found that pupil diameter was correlated with rare prediction errors, 

but uncorrelated with common prediction errors of the same magnitude, suggesting greater 10 

vigilance to rare outcomes. Using single neuron recording, we show that dopamine responses 

reflect the shape of predicted reward distribution. Specifically, rare prediction errors evoked 

significantly larger responses than common prediction errors with identical magnitudes. Together, 

these results demonstrate a complementary but distinct mechanism from TD-like reward prediction 

error responses for learning based on probability distributions. 15 

 

Results 

Reward size distributions  

We used non-informative images (fractal pictures) to predict rewards drawn from 

differently shaped distributions. Distribution shapes were defined according to relative reward 20 

frequency. One fractal image predicted an equal probability of receiving a small, medium, or large 

volume of juice reward. We define this as the uniform reward size distribution (Fig. 1A left). A 

second fractal image predicted that the small and the large reward would be given 2 out of 15 
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times, and the medium sized reward would be given the remaining 11 out of 15 times (normal 

reward size distribution, Fig. 1A right). Importantly, both reward size distributions were 

symmetrical and were comprised of the same three reward magnitudes. Therefore, the uniform and 

normal distributions had identical Pascalian expected values. However, rewards drawn from the 

tails of the normal distribution were rare, compared to the frequency of identical rewards drawn 5 

from the tails of the uniform distribution. Anticipatory licking reflected the expected value of both 

the distributions, as well as the expected value of safe cues (Figure 1B, p = 0.019, Linear 

Regression). Thus, the animals learned that the cues predicted rewards. 

 Dopamine neurons code prediction errors in the subjective values of rewards (16), 

according to the following equation:  10 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒.        Eq.1 

 

To investigate whether dopamine responses were sensitive to probability distributions, we sought 

to compare dopamine responses when the conventional prediction errors, defined according to Eq. 15 

1, were identical. Therefore, we created reward distributions with the same expected values and 

then measured the distribution of the subjective values. We measured the subjective values of six 

reward distributions – three normal reward distributions with center locations of 0.3, 0.4, and 0.5 

ml and three uniform distributions with center locations of 0.3, 0.4, and 0.5 ml. Monkeys made 

choices between cues that predicted a distribution and safe values (Fig. 1C, Methods). We plotted 20 

the probability of choosing the safe option as a function of the safe option volume and generated 

psychometric functions (Figure 1D). We used the certainty equivalents (CEs) – defined as the safe 

volume at the point of subjective equivalence between the two options (Fig. 1D, vertical dashed. 
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Line) – as a measure of the distribution subjective value. Analysis of variance (ANOVA) on the 

CEs for the normal and uniform distribution cues indicated a significant effect of EV on CE (F = 

71.81, p < 0.001, ANOVA). Crucially, we found no significant effect of the distribution type on 

the CEs (F = 3.57, p = 0.07, ANOVA). To increase our power to detect small differences in 

subjective value, we combined the CE data from all three EVs, yet still found no significant 5 

difference between the subjective values of the normal and uniform distributions (p = 0.20, two-

sample t-test). Therefore, within the limited range of reward sizes we used, the data indicate that 

the normal and uniform reward size distributions had similar subjective values. These results 

indicated that the prediction errors generated from the distributions could be readily compared and 

ensured that disparities between prediction error responses were not driven by differences in the 10 

predicted subjective values. 

 

 

 

 15 
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Figure 1. Reward size distributions. A. Fractal images 

predicted that one of three juice reward sizes would be drawn 

from a uniform (left) or normal (right) reward size distribution. 

The uniform distribution predicted that each size would be 

drawn with equal relative frequency (R.F.) (1/3 for small, 5 

medium, and large sized rewards). The normal distribution 

predicted that the small and large reward volumes would be 

drawn 2/15 times, and the medium reward volume would be 

drawn the remaining 11/15 times. B. Anticipatory licking 

indicated that the monkeys learned the predicted reward 10 

values. Black dots indicate the normalized licking duration 

data for predicted reward volume, and the grey dotted line 

indicates the linear fit to the data. Error bars indicate SEM 

across session. C. The choice task used to measure subjective value. Animals made saccade-

directed choices between a distribution predicting cue and a safe alternative option. The safe 15 

alternative option was a value bar with a minimum and maximum of 0 and 0.8 ml at the bottom 

and top, respectively. The intersection between the horizontal bar and the scale indicated the 

volume of juice that would be received if monkeys selected the safe cue. D. Probability of choosing 

the safe cue as a function of the value of the safe option, when the distribution predicting cue had 

an expected value (EV) of 0.4ml. Dots show average choice probability for 9 safe value options 20 

for monkey B (left), and Monkey S (right). Solid lines are a logistic fit to the data. Red indicates 

data from normal distribution blocks, grey indicates data from uniform distribution blocks. The 

dashed horizontal lines indicate subjective equivalence, and the CE for each distribution type is 

indicated with the dashed vertical lines. 

 25 

Distribution shape affects learning  

We next investigated how probability distributions affected learning (Fig. 2A). Each 

learning block consisted of 15-25 trials and used two, never-before-seen cues (Supplementary 

Methods). Both cues predicted either normal or uniform distributions and had two different 
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expected values (EVs). The animals had to learn the relative EVs to maximize reward. We 

analyzed behavioral choice data from two animals across 16 sessions, each of which included a 

mixture of normal and uniform blocks (Supplementary Methods). As expected, the probability of 

choosing the higher value option on the first trial of each block was not significantly different from 

chance (Fig. 2B, left). Comparison between the first and fifteenth trial of each block revealed that 5 

the animals learned to choose the higher value option on 87% and 85% of trials, in the normal and 

uniform blocks, respectively (Fig. 2B, p < 0.001, paired t-test for both distributions). There was 

no significant difference in the average performance between the fifteenth trials of normal and 

uniform blocks (Fig. 2B, right, p = 0.7, t-test). Together, these results demonstrate that the animals 

learned which option had a higher EV.  10 

 We hypothesized that the animals would learn faster from reward sizes sampled from the 

normal distribution compared to the uniform distribution. We used a reinforcement learning (RL) 

model to quantify the learned values (Supplementary Methods). Our model, fit to the behavioral 

choices, performed well at predicting the true values of the two choice options (Fig 2C).  To 

differentiate active learning from stable, asymptotic-like behavior, we fit a logarithmic function to 15 

the estimated prediction errors (Fig. 2D). When the change in the log-fitted values went below a 

robust threshold, we considered the values to be learned (Supplementary Methods). Using this 

approach, we determined the block-wise number of trials needed to learn. We found that, on 

average, animals needed 4 additional trials to learn in the uniform blocks, compared to the normal 

blocks (Fig. 2E, p < 0.001, Mann-Whitney U test). These data demonstrate that the monkeys 20 

learned faster from normal reward distributions, compared to uniform reward distribution. Thus, 

rare prediction errors have greater behavioral relevance than common prediction errors of the same 

magnitude. 
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Figure 2. Faster learning from normal reward 

distributions. A. Animals made choices between two never-

before-seen fractal images with different expected values 

(EVs), but the same distribution type (normal or uniform). B. 

Box and whisker plots show the probability of choosing the 5 

higher-valued option on trials 1 and 15, separated by normal 

(red) and uniform (grey) blocks. Triangles represent the 

averages. n.s. = not significantly different. C. Actual (blue) and 

estimated (orange) value differences for two choice options. 

The primary y-axis shows the EV differences between the two 10 

choice options, and the x-axis shows trial number. The block-

wise changes in the true value difference are reflected by the 

model. The black tick marks correspond to correct and 

incorrect choices, defined by the relative expected values, and indicated by the secondary y-axis. 

D. Fitted prediction errors as a function of trial within normal (red) and uniform (grey) blocks. 15 

Dashed line indicated the threshold for designating that block values have been learned. Dots 

indicate the transition from the learning to the stable phase. E. Box and whisker plot showing the 

number of trials in the learning phase for normal and uniform distributions. The plot follows the 

same format as panel B. 

 20 

To investigate autonomic responses to prediction errors, we analyzed the pupil responses 

during the choice task (Fig 3A). We used deconvolution to separate the effects of distinct trial 

events on pupil responses (Supplementary Methods). The deconvolution analysis indicated that 

the correlation between pupil responses and RPE was higher during the learning phase of normal 

blocks, compared to the learning phase of uniform blocks (Fig. 3B. p = 0.014, Wilcoxon rank-sum 25 

test). There were no significant differences in the correlation during the stable phases of normal 

and uniform blocks (Fig. 3B, p = 0.78, Wilcoxon rank-sum test). Thus, pupil responses indicated 

greater arousal to rare prediction errors during learning.  
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Figure 3. Pupil diameter was correlated with reward 

prediction error during learning normal distributions. A. 

Averaged normalized pupil diameter response (light grey) to 

different epochs during behavior. B. Box and whisker plots 5 

showing the correlation between pupil diameter and RPE, in 

the learning and stable phases of normal (red) and uniform (grey) blocks. The plot follows the 

same format as Figure 2B. 

 

Dopamine responses to rare rewards  10 

After showing that probability distributions were reflected in learning behavior and 

autonomic responses, we investigated the neural correlates of probability distributions. To do so, 

we recorded extracellular dopamine neuron action potentials in a passive viewing task wherein 

monkeys viewed distribution-predicting cues and received rewards (Supplementary Methods). 

Dopamine neurons were similarly activated by both distribution predicting cues, as would be 15 

expected from responses to cues that had similar values (Fig. 4A). At the time of reward delivery, 

dopamine neurons are activated or suppressed by rewards that are better or worse than predicted, 

respectively. Therefore, we expected dopamine neurons to be activated by delivery of 0.6 ml and 

suppressed by delivery of 0.2 ml.  Surprisingly, dopamine activations to delivery of 0.6 ml were 

larger in normal distribution trials, compared to dopamine activations following delivery of the 20 

same volume reward in uniform distribution trials (Fig 4B, solid lines). Similarly, dopamine 

responses were more strongly suppressed by delivery of 0.2 ml reward during normal distribution 

trials, compared to response suppressions to the same reward during uniform distribution trials 

(Fig. 4B, dashed lines). As the reward predicting cues had the same subjective values, this response 

amplification occurred despite the fact that the conventional reward prediction errors were 25 
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identical (Eq. 1). Moreover, because the amplification was bi-directional – both activations and 

suppressions were amplified in single neurons – this effect could not be attributed to differences 

in predicted subjective values. Thus, the effects we observed were robust to errors in the 

measurement of subjective value.   

We sought to quantify the response amplification (Fig. 4B) across neurons. The dynamic 5 

ranges of dopamine responses are larger in the positive domain, compared to the negative domain. 

Therefore, we transformed the responses across the positive and negative domains onto a linear 

scale (Supplementary Methods). We then used linear regression to measure the response slopes of 

each neuron to positive and negative RPEs generated during normal and uniform distribution trials. 

We plotted the response slopes for each neuron in both conditions (Fig. 4C). A majority of neurons 10 

had a steeper slope for rare RPEs generated during normal distribution trials, compared to common 

RPEs generated during uniform distribution trials (Fig. 4C inset, p = 0.001, n = 60 neurons, one-

sample t-test). To ensure that the amplification effect was bi-directional and not driven solely by 

positive responses, we separately analyzed the positive and negative prediction error responses for 

the 39 neurons above the unity line in Figure 4C. Across this subpopulation, both activations and 15 

suppressions were significantly amplified (Fig. 4D, negative and positive prediction error 

responses p < 0.01 and 0.001, respectively, Wilcoxon rank-sum test). There were no significant 

differences in the positive or negative responses in the subpopulation below the unity line (p > 

0.05, n = 21, Wilcoxon rank-sum test).  Population peri-stimulus time histograms (PSTHs) for the 

amplified subpopulation show differences in both the positive and negative response domains (Fig. 20 

5E). Thus, phasic dopamine responses are amplified by rare RPEs. These data demonstrate that 

RPE responses are sensitive to predicted probability distributions.  
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Figure 4. Amplified 

dopamine reward 

prediction error 

responses to rare 5 

rewards. A. Population 

PSTHs of conditioned 

stimuli (CS) responses to 

the normal and uniform 

distribution predicting 10 

cues. There was no 

significant difference 

between the population 

responses (p > 0.6 for 

both the early and late response components, indicated on the x-axis by the light and dark grey 15 

bars, respectively). B. Single neuron reward responses from both monkeys. Top: PSTHs show 

impulse rate as a function of time, aligned to the time of reward (black vertical bar). Light grey 

bars along with x-axis indicates the response window used for analysis. Bottom: Raster plots, 

separated by normal and uniform distributions and by reward sizes 0.2 and 0.6 ml. Every line 

represents the time of an action potential, and every row represents a trial. C. Reward response 20 

slopes for every neuron in normal and uniform distribution trials. Each dot represents one neuron 

(n = 60 neurons), and the two circled neurons are the example neurons in B.  Inset shows the data 

as a function of the difference from the unity line (diagonal). D. Change in normalized impulse 

rate from baseline in normal and uniform distribution trials, for negative RPE responses (left), and 

positive RPE responses (right). Error bars are  standard error of the mean (SEM) across 39 25 

neurons above the unity line. E. Population PSTH for neurons that showed amplified responses to 

the same rewards in the normal and uniform distribution trials. In panels A, B, D, and E, red and 

grey colors indicate normal and uniform distributions, respectively. In A, B, and E, solid PSTHs 

represent positive prediction error responses, and dashed PSTHs represent negative prediction 

error responses.  30 
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The passive viewing task used to collect the neural data (Fig. 4) offers the greatest level of 

control, because during each trial only one reward-predictive cue is shown to the animals and no 

choices are required. To validate that the neuronal sensitivity to probability distributions was also 

present during complex behaviors, we recorded an additional 8 and 12 neurons from monkey B 

and S, respectively, while the animals learned the predicted values and made choices (Fig. 1C). 5 

We used the trial-wise RPE’s derived from the model to categorize each response as a positive or 

negative prediction error response (Supplementary Methods). We found that positive and negative 

RPEs elicited amplified neural responses in normal distribution trials, compared to uniform 

distributions trials (Fig. 5A). The amplification effect was significant in the population (Fig. 5B, 

negative RPE: p = 0.019; positive RPE: p = 0.001, n = 20 neurons, Wilcoxon rank-sum test). These 10 

findings confirm that dopamine responses are sensitive to probability distributions during complex 

behaviors and demonstrate that amplified dopamine responses can be used to guide active learning 

and decision making.  

Figure 5. Amplification in dopamine neurons persistent in 

learning conditions. A. Single neuron PSTHs aligned to 15 

reward (black vertical line) show amplified responses to 

positive and negative RPEs in normal distribution trials, 

compared to uniform distribution trials. Solid PSTHs indicate positive prediction error responses, 

and dashed PSTHs are negative prediction error responses. The light grey bar along the x-axis 

indicates the response window used for analysis.  B. Change in normalized impulse rate from 20 

baseline in normal and uniform conditions, for negative RPE responses (left), and positive RPE 

responses (right). Error bars are  SEM across neurons. In both panels, red and grey colors indicate 

normal and uniform distributions, respectively. 
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Discussion 

Here we show that dopamine-dependent learning behavior and dopamine reward prediction 

error responses reflect probability distributions.  Rare prediction errors – compared to commonly 

occurring prediction errors of the same magnitude – evoke faster learning, increased autonomic 

arousal, and amplified neural learning signals. Together, these data reveal a novel computational 5 

paradigm for phasic dopamine responses that is distinct from, but complementary to, conventional 

reward prediction errors. Rare events are often highly significant (17). Our data show decision 

makers exhibit greater vigilance towards rare rewards and learn more from rare reward prediction 

errors. Amplified dopamine prediction error responses provide a mechanistic account for these 

behavioral effects.  10 

More than 20 years ago, single unit recordings demonstrated the importance of 

unpredictability for dopamine neuron responses (2). Since then, the successful application of TD 

learning theory to dopamine signals has largely subsumed the role of unpredictability, and recast 

it within the framework of value-based prediction errors (18, 19). In most experimental paradigms, 

reward unpredictability is captured by frequentist probability of rewards and, therefore, 15 

unpredictability is factored directly into expected value (5, 7, 20-22). The resulting Pascalian 

expected values are learned by TD models (23) and reflected in dopamine responses (5, 20, 22). 

Here, we dissociated unpredictability from expected value by pseudorandomly drawing rewards 

from symmetric probability distributions with equal values. Monkeys learned faster from the more 

unpredictable rewards drawn from the tails of normal distributions. Likewise, dopamine responses 20 

were amplified by greater unpredictability, even when the conventional prediction error described 

in Eq. 1 was identical. These data reinforce the importance of unpredictability for dopamine 

responses and learning. 
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The amplified dopamine responses to rare rewards suggest that reinforcement learning 

approaches that acquire only the average value of past outcomes are insufficient to describe the 

phasic activity of dopamine neurons. In fact, dopamine responses distinguish between predicted 

reward distributions, even when the average expected values and average subjective values of 

those distributions are identical. Consequently, monkeys and their dopamine neurons appear to 5 

learn probability distributions, and this information is used to boost their performance and gain 

more reward. Therefore, these data suggest that an updated RL algorithm that learns higher 

moments of probability distributions, such as Kalman TD (24), will provide the proper conceptual 

framework to explain information processing in dopamine responses.  

Distribution learning is critical to Bayesian inference and, indeed, the results that we show 10 

here are consistent with a signal that could guide Bayesian inference to optimize choices and 

maximize rewards. However, further experimentation is required to understand whether dopamine 

signals actually support Bayesian inference. Distribution learning is also emerging as an important 

approach in machine learning and artificial intelligence (AI) (25). Biological learning signals have 

inspired deep reinforcement learning algorithms with performance that exceeds expert human 15 

performance on Atari games, chess, and Go (26, 27). The distribution-sensitive neural signals that 

we observed here could offer further guidance to computational learning; emphasizing the impact 

of rare events drawn from tails of reward distribution could restrict the necessary search space. 

Dopamine reward prediction error signals participate in Hebbian learning (28, 29), and 

these signals are likely responsible for updating action values stored in the striatum (30). The 20 

amplified dopamine responses coupled with the faster learning dynamics observed here, suggest 

that the magnitude of dopamine release affected cellular learning mechanisms in the striatum. 

Moreover, amplified dopamine responses have the ability to modulate dopamine concentrations in 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/851709doi: bioRxiv preprint 

https://doi.org/10.1101/851709


 

15 

 

the prefrontal cortex (PFC). The level of PFC dopamine is tightly linked to neuronal signaling and 

working memory performance (31).  Therefore, amplification of dopamine could explain the 

exaggerated salience of real – and possibly imagined – rare events, and postulates a neural 

mechanism to explain aberrant learning observed in mental health disorders, such as 

schizophrenia.   5 

 

Conclusion: 

Dopamine neurons code reward prediction errors (RPEs), which are classically defined as 

the differences between received and predicted rewards. However, our data show that predicted 

probability distributions, rather than just the predicted average values, affects dopamine responses. 10 

Specifically, rare rewards drawn from normal distributions amplified dopamine responses, 

compared to the same rewards drawn more frequently from uniform distributions. Crucially, the 

classically defined RPEs had identical magnitudes, following rare and common rewards. From a 

behavioral perspective, rare prediction errors often signal underlying changes in the environment 

and therefore demand greater vigilance. From a theoretical perspective, this result demonstrates 15 

that biologically inspired reinforcement learning algorithms should account for full probability 

distributions, rather than just point estimates.  

 

 

 20 
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