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SUPPLEMENTARY NOTE 1 

Conversion of flow fields into trajectories 

In high-density scenarios where Single Particle Tracking methods reach their limit, dense Optical Flow 

methods present a powerful tool to investigate local bulk motion of biological macromolecules. Here 

we determine flow fields of fluorescently labelled DNA and reconstruct virtual trajectories to extract 

motion at sub-pixel resolution and long-time intervals at the level of the whole nucleus [1]. Optical 

Flow algorithms estimate motion between frames as a field description (Eulerian description) of the 

underlying continuum motion, evaluated at fixed ‘stations’, i.e. the pixel positions in the Cartesian 

coordinate system, which is a powerful approach when the coordinates of single particles cannot be 

defined. In contrast, actual tracking of particles’ coordinates over time is referred to as Lagrangian 

description. A continuum motion consisting of a finite number of particles can be described in both 

ways, according to continuum mechanics[2–4]. Because it is impossible to identify individual emitters 

(or particles) in densely labelled images, we start out with a limited number of virtual particles, which 

are assumed to be seeded on a regular grid which is defined by the pixels. Let  𝑟0 denote these (fixed) 

pixel positions. Let the coordinates of the particle in Cartesian space be  𝜉𝑟0
(𝑡) at any time point 𝑡. 

Consider further that the Eulerian flow field is known only at the positions  𝑟0, but can be evaluated at 

any position by interpolation of the coordinates of interest. Then, the particle’s (Lagrangian) velocity 

�⃗�𝐿(𝜉𝑟0
, 𝑡) at position 𝜉𝑟0

 and time 𝑡 is the same as the Eulerian velocity at 𝜉𝑟0
(𝑡)  

 �⃗�𝐿(𝜉𝑟0
, 𝑡) =

𝜕𝜉𝑟0

𝜕𝑡
 (1) 

Therefore, the trajectory, consisting of the consecutive positions of the particle can be obtained by 

integration of Equation (1) using the fact that Eulerian and Lagrangian velocities are equal when 

evaluated at the same position. In situations where particle detection is impossible (e.g. due to high 

density of emitters), the Eulerian description of continuum motion can be translated to a Lagrangian 

description by considering virtual particles and using the flow field description to extract their 

hypothetical trajectories. We consider virtual particles with initial positions at the center of each 

image pixel, for which flow was estimated by Optical Flow (Supplementary Figure 1a, first flow field 

highlighted). Note that the flow fields describe the motion between frames, whereas particle 

coordinates are described at the imaging time of each frame. The time evolution, i.e. the trajectory of 

each virtual particle is reconstructed as follows: From the particle’s initial position 𝜉𝑟0
(𝑡0) = 𝑟0, the 

flow field dictates the displacement from frame 1 to frame 2 (dark blue trajectory segment in 

Supplementary Figure 1d, e), i.e. 𝜉𝑟0
(𝑡1) = 𝑟0 + �⃗�𝐿(𝑟0, 𝑡0) Δ𝑡, where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 denotes the time 

between consecutive frames. The current particle coordinates at 𝑡1 do not necessarily coincidence 
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with the regular grid on which the flow field is evaluated. We therefore interpolate the flow field at 

time 𝑡1 to the particle coordinates 𝜉𝑟0
(𝑡1) (Supplementary Figure 1b), light blue flow field) and can 

evaluate the particle coordinates at 𝑡2: 𝜉𝑟0
(𝑡2) = 𝜉𝑟0

(𝑡1) + �⃗�𝐿(𝜉𝑟0
(𝑡1), 𝑡1) Δ𝑡, where �⃗�𝐿(𝜉𝑟0

(𝑡1), 𝑡1) 

denotes the interpolated flow field (i.e. displacement vectors) at time 𝑡1 at the particle coordinates. 

This procedure is repeated until all flow fields are processed (Supplementary Figure 1c) and the 

resulting visual particle coordinates are connected to form trajectories (Supplementary Figure 1d, e). 

Note that extrapolation outside the nucleus and in nucleoli where no signal intensity and therefore no 

flow field is given, is not considered. 

Importantly, the concept of virtual particles does not correspond to particles associated with specific 

foci along the genome. These are impossible to detect with the given labelling density. Instead, virtual 

particles move along a trajectory which reflects the local bulk motion of many emitters as computed 

by Optical Flow. Indeed, it is highly likely that a single pixel may contain fluorescence signal from more 

than one chromatin fibre and thus calculated trajectories should not be interpreted in the sense of 

single particle tracking trajectories. Instead, trajectories across multiple pixels in a local 

neighbourhood have to be taken into account in order to interpret quantities derived from these 

trajectories. 
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Supplementary Figure 1: Conversion from flow fields to trajectories. a) Flow fields are evaluated on 
a fixed grid given by the pixels of the input images to Optical Flow. The first flow field of the series is 
highlighted in dark blue. Virtual particles whose initial coordinates coincidence with the center of 
image pixels are displaced by the flow field at 𝑡0. b) The flow field at  𝑡1 is interpolated on the current 
positions of the virtual particles and displaced according to the interpolated flow field. c) The 
procedure is repeated for all flow fields in the series resulting in subsequent positions of virtual 
particles given by the displacement of flow fields. d) Particle positions are reconnected to form 
trajectories. The color of trajectory segments denote the flow field which was used to displace the 
particles from 𝑡𝑖 to 𝑡𝑖+1. e) Quasi-2D representation of virtual particle trajectories over time as shown 
in d). 
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Supplementary Figure 2: Illustration of MSD and Bayesian selection illustration for parameter 
mapping. a) The trajectory of a virtual particle in every pixel inside the nucleus is calculated by using 
previously determined flow fields. For every pixel, the MSD is calculated. Fitting the MSD, taking into 
account its neighbourhood, results in a set of parameters (diffusion coefficient, anomalous exponent, 
drift velocity) for each pixel. b) The MSD curves for one example pixel and its neighbouring pixels. 
Because errors are correlated in MSD calculation, the covariance matrix is calculated for the adjacent 
MSD curves (inset). The Cholesky decomposition of the covariance matrix is used in a generalized least 
squares approach to transform the MSD model and experimental data into a coordinate system, in 
which the errors are no longer correlated and an ordinary least squares fit is appropriate to find a 
solution to the optimization problem. Note that the MSD calculation for large time lags has less 
statistical power than for small time lags due to the lack of pairs to average. Therefore, the covariance 
matrix shows a high variation for large time lags in turn resulting in small weights for large time lags. 
The fitted MSD curve is shown in red. c) Models to describe the empirical MSD for some exemplary 
parameter values.  
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SUPPLEMENTARY NOTE 2 

Comparison of confined and anomalous diffusion 

In order to test the ability of the Bayesian classification routine used in this study to resolve confined 

and anomalous diffusion (DR and DA respectively), we simulate particles undergoing either one of the 

two types of diffusion. Confined diffusion is characterized by a particle diffusing freely within a sphere 

of radius 𝑅𝑐 with diffusion constant 𝐷. The space outside the sphere has the form of an infinite 

potential impossible to overcome and hence resulting in confinement to the volume of the sphere. 

Exemplary simulated trajectories are shown in two dimensions in Supplementary Figure 3a-d (left 

column) for different values of diffusion constant and radius of confinement. Anomalous diffusion is 

characterized by an effective potential exerting a driving force towards the particle’s origin, whose 

source may be to surround obstacles hindering free diffusion. We model the driving potential as a 

harmonic potential with the characteristic dimension 𝐿𝑡𝑟𝑎𝑝. The particle feels a spring-like driving 

force with spring constant ∝ 𝐿𝑡𝑟𝑎𝑝
−2 . Exemplary trajectories for anomalous diffusion are shown in 

Supplementary Figure 3a-d (middle column) for different values of 𝐿𝑡𝑟𝑎𝑝. The potential strength is 

indicated by colour code. The theoretical MSD is given as in equations 1 and 3 of the Methods section 

for anomalous and confined diffusion respectively.  

For confined diffusion, one can approximate the expression for short and long time scales:  

𝑫𝝉 ≪ 𝑹𝒄
𝟐: The exponential can be expanded in a Taylor series yielding 𝑀𝑆𝐷𝐷𝑅(𝜏) ≈

𝑅𝑐
2 (1 − (1 −

4𝐷𝜏

𝑅𝑐
2 + ⋯ )) ≈ 4𝐷𝜏, i.e. free diffusion in first order. Effectively, the particle does not feel 

any confinement for short time lags as the explored volume is much smaller than the confinement 

volume. 

𝑫𝝉 ≫ 𝑹𝒄
𝟐: The exponential argument is small and therefore 𝑀𝑆𝐷𝐷𝑅(𝜏) ≈ 𝑅𝑐

2(1 − 1) = 𝑅𝑐
2. 

The confinement is effectively a hard wall potential, impossible to overcome for the particle. For long 

time lags, the particle therefore explored the whole available volume, but cannot reach any further, 

resulting in a constant MSD (see Supplementary Figure 2c).  

For anomalous diffusion, the particles move freely for short times, but adapt sub-diffusive behaviour 

for longer times as the effect of the external potential becomes dominant. However, a particle 

undergoing anomalous diffusion is not confined in the sense of a hard wall potential and can in 

principle diffuse in all space [12]. This leads to a continuously rising MSD for 𝜏 → ∞. Despite the 

analytical form of the MSD for confined and anomalous diffusion (exponential versus algebraic), the 

behaviour for long time lags is a main characteristic for the distinction of the two types of diffusion.  
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In order to illustrate the theoretical curve shape, exemplary scenarios are shown in Supplementary 

Figure 3a-d, where different levels of mobility and confinement / anomaly and the ability to resolve 

the correct type of motion by means of the MSD (right column) are explored.  For the scenarios a-c) 

the limit 𝐷𝜏 ≪ 𝑅𝑐
2 is not reached within a trajectory length of 150 steps and the shapes of mean MSD 

for confined (green) and anomalous diffusion (red) are similar. Consequently, the exact type of 

diffusion could not be resolved. However, for strong confinement (Supplementary Figure 3d), the 

curves are sufficiently dissimilar and allow extracting the correct MSD model. Experimentally, only a 

finite trajectory length can be recorded and it is questionable when the trajectory length is sufficient 

to observe the long time lag limit when no prior information about the particle environment is known. 

To test whether a reliable distinction can be made for experimentally observed trajectories, an 

example nucleus is analysed twice. First, the Bayesian classifier is given the choice between free, 

directed and confined diffusion (and combinations thereof: D, DR, V, DV, DRV). The model selection is 

shown in Supplementary Figure 3e (left). The majority of trajectories are classified as confined + 

directed diffusion (DRV), whereas only about 25% of trajectories are classified as purely confined 

diffusion. Next, the model for confined diffusion is replaced by anomalous diffusion and the analysis 

is carried out again. First of all, high agreement between the two modes of analysis is seen for 

trajectories classified as purely Brownian and directed as well as a combination thereof. However, the 

fraction of anomalous + directed diffusion (DAV) is small compared to purely anomalous diffusion. In 

particular, about 92% of trajectories classified as DAV were previously classified as DRV. From the 

remaining trajectories not classified DAV, about 72% are classified as purely anomalous diffusion. 

These results suggest that only a subset of trajectories classified as combination of confined and 

directed diffusion is consistent with the combination of anomalous and directed diffusion. The 

majority of trajectories classified as DRV is preferentially described by purely anomalous diffusion. A 

reason might be that in the case where only confined diffusion is allowed to describe experimental 

trajectories, an effective directed transport is needed to account for the continuous rise of the MSD 

even for large time lags. Finally, it remains unclear if confined or anomalous diffusion is present in 

experimental trajectories as long as the plateau in the MSD is not reached. Even though strong 

experimental evidence for confined diffusion of proteins and molecules exists[13] for large 

biomolecules such as chromatin, a confinement may have several forms such as anisotropic or 

temporally varying confinement radii with to date unknown sources. The idealized model of a hard 

wall potential defining the confinement volume may not be appropriate for most biological cases 

(except for membranes) resulting in a mixed state between confined and anomalous diffusion, which 

is hard or even impossible to resolve without high spatiotemporal resolution and long-time 

measurements. The exemplary results and reasoning above suggest that sub-diffusive behaviour 
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observed for chromatin may be best described by anomalous diffusion rather than confined diffusion 

to prevent misclassification and misinterpretation. 

 

Supplementary Figure 3: Comparison of confined and anomalous diffusion. Confined (DR) and 
anomalous diffusion (DA) was simulated in three dimension for 100 particles over 150 frames for 
different degrees of confinement / anomaly. The resulting MSD curves for anomalous and confined 
motion are calculated and were input to the Bayesian model classifier used in this study, where the 
model choice was only left between pure anomalous and confined motion. 10 example trajectories 
are shown as projection to two dimensions for confined motion (left column) and anomalous motion 
(middle column). The confinement radius is indicated by a circle (left column) and for comparison as 
dashed circle (middle column), respectively. The back-driving potential is indicated by color code. 
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Individual and average MSD curves are shown for all trajectories. The following parameter pairs are 
shown: a) moderate diffusion and weak confinement / anomaly, b) slow diffusion and moderate 
confinement / anomaly, c) slow diffusion and weak confinement, d) very slow diffusion and strong 
confinement, but weak anomaly. All numerical values in a.u. e) An example nucleus stained with DNA-
Sir analyzed in two modes: The Bayesian model selection is allowed to choose from free, directed, 
confined diffusion and corresponding combinations (left) or anomalous diffusion (right) as indicated 
by color and summarized as stacked bars. 

 

 

Supplementary Figure 4: General Mixture Model analysis. a) An example nucleus showing the spatial 
distribution of the anomalous exponent across the nucleus (right) and the corresponding histogram 
of the data with its empirical probability. The General Mixture Model analysis aims at estimating the 
parameters of underlying populations within the data, here given as three independent Gaussian 
distributions. Initial estimates are computed by a k-means clustering. The Expectation-Maximization 
(EM) algorithm iteratively refines data labels and population parameters to maximize the marginal 
likelihood of observed data until convergence. b) Calculating the probability of each data point to 
belong to one of the populations given the current parameter estimates of each population. The 
probability sums up to one for each data point and is shown for the three populations on the right 
axis. c) Given a labeling of data into populations, refine the population parameters by weighted 
maximum likelihood estimates. d) Each data point is labeled according to its maximal probability to 
belong to one of the populations, i.e. M = argmaxk𝑃(𝑀𝑘|𝐷) and is mapped back to the two-
dimensional spatial distribution. 
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SUPPLEMENTARY NOTE 3 

Performance comparison of Single Particle Tracking and Optical Flow by simulation 

In order to quantitatively evaluate the performance of Optical Flow (OF) and Single Particle Tracking 

(SPT) methods with respect to trajectory reconstruction, ground truth (GT) data is necessary, which is 

in general not available in experimental data. For this purpose, we simulated typical fluorescence 

microscopy images of particles undergoing realistic motion in three dimensions (Supplementary 

Figure 5). We consider three scenarios: low and high density of emitters as well as a high density 

scenario with local patches of super-high density (Supplementary Figure 5, Supplementary Figure 7). 

After simulation of an image series, the complete series is input to the two trajectory reconstruction 

algorithms. In order to compare the dynamic properties of all considered trajectories, the MSD is 

calculated and the following three quantities are computed: Cosine similarity, relative Euclidian 

distance and the relative error of diffusion constant, which was derived from a regression of the MSD. 

These measures allow for a comparison of the MSD shape, a characteristic of the underlying type of 

motion revealed by the MSD, as well as systematic over- and underestimation of local dynamics. In 

the following, we describe the simulation procedure, evaluation measures which were used to assess 

the accuracy of both methods as well as the results. 

Simulation of microscopy images 

Emitter density The emitter density has a limiting influence on the performance of SPT methods, as 

shown in an extensive comparison study of SPT methods[5]. We consider two density levels: 

0.001/𝑝𝑥3 (low density) and 0.02/𝑝𝑥3 (high density). In order to further mimic high heterogeneity of 

chromatin density, we simulate local regions of even higher density (0.035/𝑝𝑥3), corresponding to 

eu- and heterochromatin domains. The density of heterochromatin was chosen such as to match a 

nucleosome density ratio of 0.58 determined previously[6]. The proportion of heterochromatin 

domains was empirically determined using a volume proportion of eu- and heterochromatin of about 

12.5 % [6]. This enables determining regions of heterochromatin within a fluorescence microscopy 

image as described previously by Wachsmuth et al.[6]. In brief, the image is blurred by a Gaussian 

Filter and the 12.5% of the highest intensity value is extracted indicating high chromatin density within 

these pixels. Supplementary Figure 6 shows an example nucleus with regions of heterochromatin as 

determined by Wachsmuth et al.; the heterochromatin regions are marked in white and individual 

areas are found (Supplementary Figure 6b, c), from which the area of each domain is calculated for all 

nuclei used in this study. The area distribution was found to be well described by an exponential 

distribution with mean 1.9 ± 3.5 𝜇𝑚2 (Supplementary Figure 6d). This value was a guideline for the 

simulation of artificial heterochromatin domains, which were assumed to be circular for simplicity. 
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The number of areas was adjusted such that the total area of heterochromatin domains corresponds 

to about 12.5% of the total area of the simulated volume (as projected to two dimensions). 

A volume of 128 x 128 x 15 pixels is simulated corresponding to approximately 8 x 8 x 1 𝜇𝑚 (pixel size 

~65 𝑛𝑚). Typically, the depth of the focal plane in a confocal microscopy image is about ~500 𝑛𝑚; 

we therefore simulate twice this thickness in order to allow emitters to move in and out of the focal 

plane. The mentioned parameters result in an average number of particles of about 240, 4770 and 

5500 particles respectively for the three scenarios, which are seeded randomly in the simulated 

volume. Particles are not seeded on the image boundary to avoid boundary effects. An initial example 

configuration for the scenario of super-high density patches in shown in Supplementary Figure 5a. 

Particle dynamics We simulate Brownian motion in three dimensions such that particles are allowed 

to randomly move in and out of the imaged volume. A diffusion coefficient of 𝐷 = 5 ⋅ 10−3 𝜇𝑚2/𝑠 

was used, matching previously determined values for the diffusion constant for chromatin[7,8]. A total 

of 20 frames were simulated governing 4 𝑠 of experimental imaging (acquisition time 𝜏 = 200 𝑚𝑠). 

Therefore, particle displacements between subsequent images were drawn from a normal distribution 

with mean zero and variance 𝜎2 = √6𝐷𝜏 ≈ 1.2 𝑝𝑥. It was previously shown[1] that chromatin motion 

shows a high degree of correlated motion, which allows to empirically impose motion correlation to 

the purely random Brownian dynamics. We therefore displace particles within a domain of correlated 

motion collectively, i.e. several emitters along the same displacement vector for each frame 

independently as reported previously[1]. Furthermore, particle appearance and disappearance are 

regulated by random processes[5] due to several factors such as emitter transitions into a dark triplet 

state. Seeding N particles uniformly over the simulation volume, particle disappearance was modeled 

by a Bernoulli process with probability 𝛼 = 0.05 for every particle to disappear at each time step and 

the possibility of reappearance excluded. On the other hand, particles may appear at random locations 

at every time step and the number of appearing particles is drawn from a Poisson distribution with 

mean 𝑁𝛼, such that the number of appearing and disappearing particles balance each other. From all 

generated trajectories, those with a length of 4 or less frames were discarded. 

Imaging process Due to a diffraction limited optical microscopy setup, the imaging of fluorescent 

photons is modelled as the convolution of the light emission field and the point spread function (PSF) 

of a typical confocal microscope. The PSF of an optical system is the image of a point source and the 

pupil function is defined as the Fourier transform thereof. Therefore, the complex-valued amplitude 

point spread function 𝑃𝑆𝐹𝐴 and the pupil function 𝑃 form a Fourier transform pair: 

 𝑃(𝑘𝑥, 𝑘𝑦) = ∬ 𝑃𝑆𝐹𝐴(𝑥, 𝑦) ⋅ e−2𝜋𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦
∞

−∞
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𝑃𝑆𝐹𝐴(𝑥, 𝑦) = ∬ 𝑃(𝑘𝑥, 𝑘𝑦) ⋅ e2𝜋𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 
(2) 

In other words, the PSF can easily be computed by the use of discrete Fourier transforms if the pupil 

function of the optical system is known. The complex pupil function in our case is simply described by 

a disk with a radius, which is defined by the ratio of numerical aperture NA and the wavelength of the 

light 𝜆: 

 
𝑃(𝑘𝑥 , 𝑘𝑦) = 𝑒2𝜋𝑖 ⋅  {1 𝑓𝑜𝑟 𝑘𝑥

2 + 𝑘𝑦
2 ≤

2𝜋𝑁𝐴

𝜆
 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

The treatment above is carried out in scalar diffraction theory and is idealized assuming equal 

excitation and emission wavelength, no aberration and a constant value inside the pupil function disk. 

Furthermore, the point source is assumed to be in focus. Emission outside the focal plane is included 

by adding a defocus to the PSF. This is done by separately expressing 𝑘𝑧(𝑘𝑥, 𝑘𝑦) = √(
𝑛

𝜆
)

2
− 𝑘𝑥

2 − 𝑘𝑦
2 , 

where 𝑛 is the refractive index of the immersion medium and multiplying the integrand in eq. (2) by a 

‘defocus phase function’ exp (2𝜋𝑖𝑘𝑧(𝑘𝑥 , 𝑘𝑦)𝑧) such that the expression for the amplitude point 

spread function in three dimensions reads[9] 

 
𝑃𝑆𝐹𝐴(𝑥, 𝑦, 𝑧) = ∬ 𝑃(𝑘𝑥, 𝑘𝑦) ⋅ e2𝜋𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)e2𝜋𝑖𝑘𝑧(𝑘𝑥,𝑘𝑦)𝑧𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 
 

The observed PSF is the absolute square of the computed amplitude PSF, i.e. 𝑃𝑆𝐹 = |𝑃𝑆𝐹𝐴|2. The 

parameters defining the shape of the PSF are set as follows: emission wavelength 𝜆 = 647 𝑛𝑚, 

numerical aperture 𝑁𝐴 = 1.4, refractive index of immersion medium 𝑛 = 1.3 and pixel size 65 𝑛𝑚. 

The simulated PSF is shown in (Supplementary Figure 5b) for exemplary z-slices, and a convolved 

simulation volume is shown in (Supplementary Figure 5c). 

Next to blurring, the imaging process is subject to unavoidable noise. In practice, two predominant 

sources of noise exist, namely signal-dependent Poisson noise and setup-dependent Gaussian white 

noise due to several factors such as camera gain and thermal noise. The signal-to-noise ratio (SNR) 

determines the presence of noise photons in contrast to signal photons and is defined as the ratio of 

squared signal intensity 𝐼2 and noise variance 𝜎2 on a decimal logarithmic scale: 𝑆𝑁𝑅 =

10 log10(𝐼2/𝜎2 ) . While Poisson noise is dependent on the number of observed photons, the 

Gaussian noise contribution can be varied to match the SNR of about 21 𝑑𝐵, which we typically 

observe in our data. The final image is the projection of the whole convolved simulation volume in 

two dimensions with applied Poisson and Gaussian noise (Supplementary Figure 5d). 
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Performance measures  

 Cosine Similarity The cosine similarity addresses the orientation similarity between two 

multidimensional vectors, or in our case between two MSD curves. Defining the two MSD curves to 

compare as arrays �⃗� and �⃗⃗�, the cosine similarity is defined as  

 
cos 𝜃 =

�⃗� ⋅ �⃗⃗�

||�⃗�|| ||�⃗⃗�||
. 

 

The cosine similarity returns 1 if the two curves have the same shape, regardless of their magnitude 

and values < 1 otherwise. The shape of the MSD curve has an important meaning as it is characteristic 

for the underlying type of motion. For instance, motion is considered Brownian if the MSD follows a 

linear relationship over time lag, whereas a deviation denotes constraint (sub-linear relationship) or 

active transport (super-linear). In case that multiple estimated trajectories are associated to a single 

GT trajectory, the mean MSD curve is compared to GT. 

 Relative Euclidean distance The Euclidean distance between two multidimensional vectors is 

defined as the ratio of the Euclidean distance between the vectors and the norm of the GT to compare 

to. Denoting the GT by �⃗� and the estimated MSD by �⃗⃗�: 

 
𝐸𝐷 =

||�⃗� − �⃗⃗�||

||�⃗�||
 

 

The Euclidean distance is measure of magnitude yielding 0 if the GT and estimated MSD coincide 

perfectly. Otherwise, the relative Euclidean distance returns the norm of the deviation between the 

two MSD curves with respect to the GT. In case that multiple estimated trajectories are associated to 

a single GT trajectory, the mean MSD curve is compared to GT. 

 Estimated relative diffusion coefficient Another obvious measure to assess the accuracy of 

the reconstruction of particle motion is the diffusion coefficient of GT and estimated trajectories. 

Diffusion is a stochastic process, such that in general a single trajectory cannot display the average 

simulated behavior of many particles. Both SPT and OF determine the local motion of particles rather 

than an ensemble average. For this reason, it is appropriate to compare local quantities rather than 

comparing to an average value. We therefore face the problem of fitting a single GT MSD and possibly 

several estimated MSD curves ultimately comparing the diffusion constant derived from the 

regressions. In case that only 1 MSD curve is found to be fit, which is the case for the GT curve and 

most of the estimated SPT trajectories, a weighted nonlinear regression is used, weights being the 

standard deviation of the MSD curves. For more than 1 but less than 5 trajectories, the mean MSD is 

used for fitting. In case that more than 5 trajectories have been found, an appropriate way of fitting 
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is described in (see main text, Methods). We consider only the free diffusion model in order to be able 

to compare the diffusion constant to the weighted non-linear regression. Similar to the relative 

Euclidean distance, we compute the relative error between estimated and simulated MSD curves after 

regression as  

 
σD =

𝐷 − 𝐷∗

𝐷∗
, 

where 𝐷∗ is the GT and 𝐷 is the reconstructed diffusion coefficient. By the regression, further 

inaccuracy is introduced, but a comparison is nevertheless possible and an overall trend is apparent. 

To see how these performance measures, reflect the behaviour of individual trajectories and 

corresponding MSD curves, three example trajectories reflecting different cases of the motion 

reconstruction by OF and SPT compared to the GT trajectory are shown in Supplementary Figure 5e. 

The performance measures defined above are given in Supplementary Table 1 for the three example 

trajectories. The direction of OF and SPT are similar for approximately the first half of the trajectory 

(panel i), whereas the GT trajectory propagates in the opposite direction. For longer time points the 

OF trajectory resembles the one of the GT, whereas the SPT trajectory deviates largely, possibly due 

to a reconnection error. The MSD curve reflects the similarity of GT and OF estimation despite of the 

deviation in direction of the trajectories’ propagation leading to relatively accurate performance 

measures. The reconnection error in SPT leads to a tremendous increase in MSD values especially for 

long time lags yielding a considerably lower cosine similarity and more than 400% error in Euclidean 

distance and estimation of diffusion constant. Disappearance of a GT emitter after 7 frames in shown 

in panel (ii). Both OF and SPT detect trajectories throughout the complete frame series using intensity 

information from surrounding emitters. Motion is accurately estimated by OF in the first 5 time lags 

and largely deviates from the GT MSD until its disappearance. In this case, the shape of the MSD is 

well reflected by the SPT trajectory leading to a considerably higher value in cosine similarity for SPT 

than for OF. However, SPT overestimated the motion leading to large errors in the relative Euclidean 

distance and diffusion coefficient, whereas the resembling of GT and OF in the first few time lags leads 

to a relatively accurate estimate for the diffusion coefficient due to a small standard deviation and 

therefore large weight of the OF MSD curves for small time lags.  An example of a false negative of 

SPT and therefore no dynamic information for the SPT data set is shown in panel (iii). 

 (i) (ii) (iii) 

OF SPT OF SPT OF SPT 

Cosine similarity 0.991 0.898 0.877 0.956 0.997 - 

Rel. Euclidean distance 0.31 4.62 0.88 5.28 0.09 - 

Rel. error in D -0.72 4.57 0.13 5.44 -0.68 - 

Supplementary Table 1: Performance measures for example trajectories shown in Supplementary 
Figure 5e 
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Supplementary Figure 5: Simulation workflow and exemplary evaluation. a) The initial coordinates 
of 6857 emitters in the first frame of the image series for the scenario of density patches. Regions of 
super-high density are marked by cylinders. Simulated density is 0.02 and 0.035/𝑝𝑥3 for regions of 
high and super-high density respectively. Simulated volume is 128x128x15 pixels. b) Simulated point 
spread function in three dimensions, which is used for convolution of the emitters in a). c) Convolved 
z-stack of the first frame and d) 2D projection. e) Example MSD curves with corresponding trajectories. 
The average trajectory reconstructed from OF is shown in black, the single trajectories in light gray. 
The trajectory origin is indicated by a dot. Visually, agreement is found between the time evolution of 
trajectories between GT and OF as well as GT and SPT in parts of the trajectories, whereas in other 
parts, the trajectories deviate and even propagate in opposite directions. However, the MSD curves 
of GT and OF estimation largely overlap indicating that the magnitude of displacement is accurately 
estimated. (i) Similarity of the direction of OF and SPT trajectory for approximately the first half of the 
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trajectory, whereas the GT trajectory propagates in opposite direction. For long time the OF trajectory 
resembles the GT, whereas the SPT trajectory deviates largely, possibly due to a reconnection error. 
The MSD curve reflects the similarity of GT and OF estimation despite of the deviation in direction of 
the trajectories’ propagation. The reconnection error in SPT leads to a tremendous increase in MSD 
values especially for long time lags. (ii) Disappearance of the GT emitter after 7 frames. However, both 
OF and SPT detect trajectories throughout the whole frame series. (iii) A false negative of SPT and 
therefore no dynamic information for the SPT data set. f) SPT detections for low (i) and high (ii) density 
of emitters. SPT is able to reliable detect emitters for low density; however, for high density the 
emitter signals largely overlap such that a detection of single emitters is impossible. However, due to 
correlated motion of emitters it is nevertheless possible to extract valuable information about emitter 
dynamics. 

 

Supplementary Figure 6: Size distribution of heterochromatin regions. a) Raw fluorescence image 
with nucleus boundary indicated by a red line. b) The ~12.5% pixels with highest intensity were found 
in a Gaussian filtered image as described in [6]. c) The independent heterochromatin regions are found 
(labeled in random color for visualization) and their area is calculated. d) The area distribution of 
heterochromatin domains (blue histogram) can be described by an exponential distribution with mean 
(1.9 ± 3.5) 𝜇𝑚2 (red line). 

 

Performance evaluation  

The simulated image series were analyzed using OF and SPT. The results from 10 independent 

simulations are summarized in Figure 2a, b of the main text and in Supplementary Figure 7 for the 

three scenarios. For a low density of emitters (Supplementary Figure 7a), MTT is able to detect and 

reconnect the majority of GT emitters (79 ± 4 % true positives) and yields good performance in all 

three measures considering value and shape of the estimated MSD curves. In particular, estimated 
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diffusion coefficients show a very low error (< 10%). The OF estimation for relatively sparse signals is 

difficult leading to comparably lower performance than SPT (relative error in diffusion constant is 

about 25%). For a high density of emitters (Figure 2a, Supplementary Figure 7b), SPT performance in 

terms of the relative Euclidean distance drops, whereas OF performs better than in the low density 

scenario. However, the relative error in diffusion constant increases for both methods (60% and 40% 

for SPT and OF respectively). Introducing a density heterogeneity, the SPT performance stays 

unaffected, but the relative error in diffusion constant for the OF reconstruction is reduced to about 

25%. OF estimation uses the bulk motion of many particles such that the vast majority of pixels carries 

information and the flow field does not have to be approximated by the smoothness assumption 

underlying OF as in a low density scenario. However, an additional structure in the image such as a 

density heterogeneity leads to considerably more accurate results than with a uniform density due to 

additional structure in the image. 

These results confirm that the SPT method under consideration is especially accurate when 

comparably sparse signals are present. SPT is naturally limited to the detection of single emitters or 

aggregates of emitters [10,11] and therefore lacks accurate information when detection is impossible, 

e.g. due to high overlap of independent emitter signals. The Optical Flow algorithm in this study is 

used in high-density scenarios and additional structures in the image such as a heterogeneous density 

of chromatin enhance the performance considerably. Hi-D therefore constitutes a complementary 

approach to extract dynamic information of biomolecules with dense labeling where SPT cannot be 

applied.  

It has to be stressed that the simulations carried out incorporate two important aspects of the 

approach. Diffusion of emitters in and out of focus as well as appearance and disappearance of 

emitters as well as heterogeneous chromatin structures (i.e. varying chromatin compaction levels) are 

considered in all simulations. Thus, the values provided are likely to reflect errors associated with 

experimental data. 
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Supplementary Figure 7: Comparison of Optical Flow and Single Particle Tracking by simulated 
image series. a) First frame of a time series of 20 frames with low density (0.001/𝑝𝑥3) of emitters 
undergoing Brownian motion in 3 dimensions convolved by a typical point spread function. The time 
series is subject to OF and SPT estimating the trajectories of emitters. From the estimated trajectories, 
the MSD is computed and compared to the ground truth. Three performance measures are used: 
Cosine similarity, relative Euclidian distance and the relative error in the determined diffusion 
constant as determined from fitting. Dashed lines show the optimal value, i.e. perfect agreement 
between estimation and ground truth. Red lines indicate the median value. Data from 10 independent 
simulations; outliers are not shown for simplicity. For low density, SPT is able to detect and reconnect 
emitters over time yielding in more accurate estimates for the MSD compared to OF, which suffers 
from sparse signal.  b) High density (0.02/𝑝𝑥3) of emitters and the same performance measures as in 
a). For high density, OF outperforms SPT in terms of the performance measures. SPT cannot detect 
particles due to the high overlap of emitters. For the few detected particles, dynamics can be 
extracted, yielding however overall lower accuracy as the dense motion reconstruction using OF. c) 
High density as in b) with patches of super-high density (0.035/𝑝𝑥3) encircled for visualization, 
imitating regions of densely packed chromatin. For only a small fraction of the image exhibiting a very 
high density, the superiority of OF in contrast to SPT becomes more evident and even the error in 
diffusion coefficient determination decreases significantly from b) to c) (p < 0.001, data not shown) 
showing additional strength of OF in local high-density scenarios. Statistical significance assessed by a 
two-sample Kolmogorov-Smirnov test (*: p < 0.05, **: p < 0,01, ***: p < 0.001). Parts of this figure are 
reproduced in Figure 2a, b of the main text. 

  

a

b

c
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SUPPLEMENTARY NOTE 4 

Comparison of Hi-D to an orthogonal approach, iMSD 

iMSD is usually applied to a region of interest, over which average parameters for the region of interest 

are extracted. To compare the Hi-D and iMSD approaches, iMSD was applied to successive ROIs 

spanning an entire nucleus with large overlap, such that parameters were computed for each pixel 

separately. The resulting maps of diffusion constants showed that regions of high and low mobility 

were apparent in both methods (Figure 2e, yellow regions marked with red arrows), thus 

demonstrating qualitative agreement between the two conceptually different methods. iMSD could 

not compute parameters for ROIs at the nuclear periphery, at which diffusion is expected to be 

exceptionally low, and in regions of very high mobility (Figure 2e, right, surrounded by yellow-colored 

pixels). Quantitatively, both methods yield diffusion constants in the same order of magnitude (Hi-D 

(1.6 ± 0.8) ⋅ 10−3 𝜇𝑚2/𝑠 , iMSD (2.2 ± 4.5) ⋅ 10−3 𝜇𝑚2/𝑠, mean ± standard deviation). However, 

we noticed a bias towards very small (< 5 ⋅ 10−4 𝜇𝑚2/𝑠), and the presence of a few large (> 5 ⋅

10−3 𝜇𝑚2/𝑠) values, and a considerable spread of the distribution compared to values extracted by 

Hi-D (Figure 2f). Likewise, values of the anomalous exponent extracted by iMSD showed many 

spurious values around 𝛼 ~ 0 and 𝛼 ~ 2, while the distribution of values derived from iMSD is 

reasonable with respect to the magnitude of extracted parameters (0.25 < 𝛼 < 1.5, Figure 2g). We 

conclude that the estimation of dynamic parameters using Hi-D yields parameters which are 

qualitatively and quantitatively similar to an orthogonal approach, iMSD, and is thus an accurate read-

out of chromatin dynamics. By making use of a Bayesian inference to select a suitable interpretive 

model for regression of MSD curves, Hi-D is advantageous to existing methods to yield conclusive and 

spurious-free parameter estimates within the entire nucleus simultaneously. It is to mention that 

iMSD is applied to ROIs spanning  ~ 50 𝜇𝑚2 24 (about 70 x 70 pixels in our data), while Hi-D uses only 

a 3 x 3 pixel neighbourhood to estimate the correct diffusion model and its parameters and thus offers 

greatly enhanced spatial specificity. Finally, we observed a  ~ 35 speed-up in computational time of 

Hi-D compared to iMSD for a whole nucleus (roughly 500 𝜇𝑚2) with single-pixel resolution. 
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Supplementary Figure 8: The effect of varying signal-to-noise ratios on the estimation of dynamic 
parameters with the Hi-D approach. a) Flow magnitude, b) diffusion constants and c) anomalous 
exponent derived from a nucleus corrupted with varying levels of signal-to-noise ratio (SNR). Results 
are consistent up to a lower bound of ~ 20 dB. d) The spatial distribution of diffusion constants of a 
representative nucleus is shown after the fluorescence time series of the nucleus was corrupted with 
varying levels of noise. Features of the diffusion map such as local regions of high mobility (arrows) 
and traces throughout the nucleus with reduced dynamics (line) are marked. For SNR up to ~20 dB, 
these features are well conserved. For even lower SNR values, however, some features disappear 
and/or become faint (black arrows) and originally defined shapes become washed out (black line). 
Only originally large and/or very mobile regions are conserved for SNR values as low as 16 dB (red 
arrow in panels with SNR = 18 dB and SNR = 16 dB). Furthermore, noise-related artifactual features 
arise below 20 dB (purple arrows). 
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Supplementary Figure 9: The effect of varying time intervals between frames on the estimation of 
dynamic parameters with the Hi-D approach. a) Flow magnitude, b) diffusion constants and c) 
anomalous exponent computed from time series which were images with time intervals of 100 ms, 
200 ms and 300 ms between frames, respectively. The right panels show average values and standard 
deviations from the distributions. The three parameters are consistent when images with 200 ms and 
300 ms interval between frames. However, when imaged with 100 ms, distributions deviate: In 
particular, the diffusion constants are over-estimated (about 2-fold) and the distribution of diffusion 
constants considerably broadens. This is likely due to the fact that chromatin dynamics become hardly 
detectable at very short time scales using conventional microscope-setups featuring cameras. As a 

rough estimate, consider an average diffusion constant of about D ≈ 4 ⋅ 10−3 𝜇𝑚2/𝑠 (compare, e.g. 

Figure 4 of the main text). Displacements between frames are estimated to be in the order of √4𝐷𝜏 ≈
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40 𝑛𝑚, considering simply free diffusion in two dimensions, which is about 60 % of the pixel size (pixel 
size 65 nm). Detection of dynamics which whose typical length scale between frames is purely in the 
sub-pixel range of the imaging system is thus difficult to estimate (an exception is camera-based 
fluctuation correlation spectroscopy, which may estimate local dynamics at shorter length scales), 
which explains the overestimation of dynamics for acquisition with 100 ms interval between frames. 

For comparison, a time interval of 200 ms leads to a typical displacement of ≈ 60 𝑛𝑚, which is about 
the dimension of a pixel. An estimation about the expected magnitude of dynamics is thus useful to 
determine acquisition parameters yielding unbiased results. Note that the considerations above are 
rough estimated concerning average values and that dynamics can be detected at the sub-pixel level 
using camera-based imaging systems, if, in average, displacements between frames are about one 
pixel size. This is possible, because Hi-D uses the collective fluorescence information of the whole 
nucleus simultaneously to infer local sub-pixel dynamics. 

 

3 𝜇𝑚

Diffusion coefficienta b

 

Supplementary Figure 10: Chromatin diffusion is reduced at the nuclear periphery compared to the 
nuclear interior. a) A representative map of the diffusion constant of chromatin dynamics within a 
nucleus. b) The diffusion coefficient is measured in dependence of the distance to the nearest 
periphery pixel by a binned Euclidean distance transform (shown is mean value ± standard deviation, 
n = 13 quiescent cells). The trend holds equally true for actively transcribing cells (data not shown). 
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Supplementary Figure 11: Hi-D analysis for a different cell line (MCF-7 cells). a) Fluorescence image 
of a MCF-7 cell nucleus stained by SiR-DNA to which Hi-D was applied. b) Model selection as indicated 
in the color bar. c) Spatial discrimination of high- and low compaction indicating hetero- and 
euchromatin respectively. d) The diffusion coefficient and e) anomalous exponent extracted from Hi-
D. f-g) Mobility groups partitioning DNA dynamics within the nucleus for f) diffusion coefficient and g) 
anomalous exponent, respectively. h) Overlay of diffusive populations, i) anomalous exponent. 
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Supplementary Figure 12: Dynamics of H2A and HP1α in NIH3T3 cells confirm that chromatin 
dynamics is independent from compaction, but suggest that eu- heterochromatin phase-separation 
forms a barrier for chromatin mobility. a) Exemplary NIH3T3 cells, in which euchromatin was 
visualized with mCherry-H2A (left) and heterochromatin is visualized by GFP-HP1α (right). Labeling of 
H2A and HP1α allows to directly assess the presence of heterochromatin. Enhanced HP1α 
fluorescence and therefore heterochromatin was detected (right) by simple thresholding. Scale bar is 
3 µm. b) The flow field for a time series of 50 frames was computed and the flow magnitude is shown 
for eu- and heterochromatin in green and purple, respectively. The distributions coincide indicating 
that compaction does not directly influence chromatin dynamics from frame to frame. c) The diffusion 
constant (left) and anomalous exponent (right) were computed and are shown exemplary for the cell 
in A. Heterochromatin is surrounded by red lines. Scale bar is 3 µm. d) Histograms of the diffusion 
constant (left) and anomalous exponent (right) in eu- and heterochromatin. The distributions are 
qualitatively similar, however, heterochromatin exhibits a narrower range of diffusion constant values 
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than euchromatin. No difference between distributions of the anomalous exponent between eu- and 
heterochromatin can be observed. e) Phase-separation of eu- and heterochromatin, more specifically 
of HP1α as suggested previously (Strom et al, Nature), would give rise to an observable boundary 
across which diffusion is hindered. Inside the phases (eu- and heterochromatin), however, chromatin 
dynamics must not differ necessarily. To prove the existence of such a boundary using Hi-D, the 
diffusion constant (upper panel) and anomalous exponent (lower panel) were drawn at lines 
perpendicular to heterochromatin-defining boundaries (inset, overlay of H2A and HP1α of the 
rectangle indicated in a). A boundary at which the diffusion constant drops about 2.5-fold compared 
to bulk euchromatin is observed and chromatin dynamics is recovered about 1 µm from the boundary 
in the interior of phase-separated heterochromatin droplets. While the diffusion constant is strongly 
reduced, no effect of the boundaries on the anomalous exponent was observed. Scale bar is 1 µm. f) 
A tendency of a mobility or g) anomalous exponent population to be associated with either eu- or 
heterochromatin could not be observed. Statistical significance assessed by a two-sample t-test (*: p 
< 0.05, **: p < 0.01, ***: p < 0.001).  
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