1 Distinct transcriptional programs of SOX2 in different types of small cell lung cancers

 $\mathbf{2}$

3 Running title

- 4 Distinct role of SOX2 in lung cancer.
- $\mathbf{5}$

```
6 Authors
```

- 7 Yuki Tenjin^{1, 2}, Kumi Matsuura³, Shinji Kudoh¹, Shingo Usuki⁴, Tatsuya Yamada^{1, 5}, Akira
- 8 Matsuo¹, Younosuke Sato¹, Haruki Saito^{1, 6}, Kosuke Fujino^{1, 5}, Joeji Wakimoto⁷, Takaya
- 9 Ichimura⁸, Hirotsugu Kohrogi⁹, Takuro Sakagami², Hitoshi Niwa³, Takaaki Ito¹

10

11 Affiliations

- 12 Departments of ¹ Pathology and Experimental Medicine, ² Respiratory Medicine, ⁵ Thoracic
- 13 Surgery, and ⁶Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate
- 14 School of Medical Science Kumamoto University, Graduate School of Medical Science, Honjo
- 15 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan.

- 16 ³ Department of Pluripotent Stem Cell Biology, ⁴ Liaison Laboratory Research Promotion
- 17 Center (LILA), Institute of Molecular Embryology and Genetics, Kumamoto University,
- 18 Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan.
- 19 ⁷ Division of Pathology, Minami Kyushu National Hospital, Kagoshima, 899-5293, Japan.
- 20 ⁸ Department of Pathology, Saitama Medical University Faculty of Medicine, Saitama
- 21 350-0495, Japan.
- 22 ⁹ Department of Respiratory Medicine, Omuta Tenryo Hospital, Tenryo 1-100, Omuta,
- 23 Fukuoka 836-8556, Japan.

 $\mathbf{24}$

25 Abstract

26SOX2 is an oncogene in human small cell lung cancer (SCLC), an aggressive 27neuroendocrine (NE) tumor. However, the roles of SOX2 in SCLC remain unclear, and 28strategies to selectively target SOX2 in SCLC cells have not yet been established. We herein 29demonstrated that SOX2 is involved in NE differentiation and tumorigenesis in cooperation 30 with ASCL1, a lineage-specific transcriptional factor, in the classical subtype of SCLC cell 31lines. ASCL1 recruits SOX2, which promotes INSM1 expression. Precursor SCLC lesions 32were established in Trp53 (-/-); CCSPrtTA; tetO Cre; floxed Rb1; floxed Hes1 mice, and the NE 33neoplasms induced were positive for Ascl1, Sox2, and Insm1. In contrast to the ASCL1-SOX2 34signaling axis to control the SCLC phenotype in classical subtype SCLC, SOX2 targeted 35distinct genes, such as those related to the Hippo pathway, in ASCL1-negative, variant 36 subtype SCLC. The present results support the importance of the ASCL1-SOX2 axis as a 37main subtype of SCLC, and suggest the therapeutic potential of targeting the ASCL1-SOX2 38signaling axis and the clinical utility of SOX2 as a biological marker in the classical subtype 39 of SCLC.

40

41 Keywords

42 ASCL1; classical subtype; variant subtype Small cell lung carcinoma; SOX2

44 Introduction

45	Lung cancer is the leading cause of cancer-related mortality worldwide. Small cell
46	lung cancer (SCLC) accounts for approximately 14% of all lung cancers and is genetically
47	considered to be one of the most aggressive malignant neuroendocrine (NE) tumors (Byers <i>et</i>
48	al., 2015). Despite high response rates to first-line treatment, SCLC cases show rapid
49	growth and metastasis and acquire multidrug resistance. The median survival of patients
50	with SCLC is 7 months, and this has not markedly changed in the last few decades (Wang <i>et</i>
51	al., 2017). The development of novel target molecules in therapies for SCLC remains limited.
52	The findings of basic studies on the molecular mechanisms underlying small cell
53	carcinogenesis have yet to be clarified, and advances in novel therapeutic development are
54	expected (Gazdar <i>et al.</i> , 2017).

The World Health Organization (WHO) Classification recognizes SCLC as a relatively homogeneous tumor, with pure SCLC and combined SCLC subtypes (Travis *et al.*, 2015). Approximately 30 years ago, Gazdar *et al.* reported the different forms of the "classic" and "variant" subtypes of SCLC. Classical SCLC cells are characterized by floating cell growth and distinct NE differentiation, and variant SCLC cells by adhesive growth and poor NE differentiation (Gazdar *et al.*, 1985; Carney *et al.*, 1985). Classical cell lines belong to NE

61	high SCLC, which may be associated with the increased expression of Achaete-Scute
62	complex homologue 1 (ASCL1), a member of the basic helix-loop-helix (bHLH) family of
63	transcription factors. On the other hand, the variant cell lines belong to NE low SCLC,
64	which is associated with the activation of NOTCH, Hippo, and RE-1 silencing transcription
65	factor (REST) genes and prominent epithelial-to-mesenchymal (EMT) transition resulting in
66	a mesenchymal phenotype (Lim JS et al., 2017, Zhang et al., 2018). ASCL1 was previously
67	shown to be expressed at a high frequency in SCLC (Ball et al., 1993). Furthermore, the
68	knockdown of ASCL1 induced growth inhibition and apoptosis in SCLC cell lines (Osada et
69	al., 2005, 2008). Insulinoma-associated protein 1 (INSM1) is a crucial regulator of NE
70	differentiation in lung cancer, and is specifically expressed in SCLC, along with ASCL1
71	(Fujino et al., 2015). Borromeo et al. (2016) reported that Ascl1 played a pivotal role in
72	tumorigenesis in mouse models of SCLC, and also suggested that SOX2 and INSM1 were
73	target genes of ASCL1. In human SCLC, SOX2 was recognized as an oncogene because
74	SOX2 amplification was detected in some SCLCs, and $SOX2$ gene suppression inhibited the
75	cell proliferative capacity of SCLC cell lines (Rudin <i>et al.,</i> 2012).

The major aim of the present study is to elucidate the mechanisms by which SOX2 affects the phenotype and heterogeneity of SCLC. We hypothesized that SOX2 may contribute to distinct transcriptional programs and biological characteristics in both the

79	classical and variant subtypes of SCLC. To test this hypothesis, the present study was
80	designed to investigate the following: (1) a comparison of the target genes of SOX2 in human
81	SCLC cell lines by a chromatin immunoprecipitation sequence (ChIP-seq) analysis. (2) the
82	relationship between ASCL1 and SOX2 in SCLC cell lines, surgically-resected tissues, and
83	mouse SCLC precursor lesions, and (3) the functional difference in SOX2 between the
84	classical and variant subtypes of human SCLC cell lines. We herein demonstrated that
85	$\mathrm{SOX2}$ was more strongly expressed in some SCLC than non-SCLC (NSCLC). SOX2
86	regulates distinct transcriptional programs in both the classical and variant subtypes of
87	SCLC, and, in the classical subtype, functions in an ASCL1-dependent manner.
88	
88 89	Results
88 89 90	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes
88 89 90 91	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes of SCLC cell lines
88 89 90 91 92	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes of SCLC cell lines To examine SOX2 expression patterns, we performed a Western blot (WB) analysis of
88 89 90 91 92 93	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes of SCLC cell lines To examine SOX2 expression patterns, we performed a Western blot (WB) analysis of 12 lung cancer cell lines (7 SCLCs, 3 adenocarcinomas (ADCs), and 2 squamous cell
 88 89 90 91 92 93 94 	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes of SCLC cell lines To examine SOX2 expression patterns, we performed a Western blot (WB) analysis of 12 lung cancer cell lines (7 SCLCs, 3 adenocarcinomas (ADCs), and 2 squamous cell carcinomas (SCCs)). The WB analysis revealed that the SOX2 protein was generally
 88 89 90 91 92 93 94 95 	Results SOX2 is overexpressed and targeted distinct genes between classical and variant subtypes of SCLC cell lines To examine SOX2 expression patterns, we performed a Western blot (WB) analysis of 12 lung cancer cell lines (7 SCLCs, 3 adenocarcinomas (ADCs), and 2 squamous cell carcinomas (SCCs)). The WB analysis revealed that the SOX2 protein was generally expressed at markedly higher levels in all SCLC cell lines examined than in the NSCLC cell

97	of the 7 SCLC cell lines simultaneously expressed SOX2, ASCL1, and INSM1 (Fig. 1A).
98	There are two subtypes of SCLC cell lines, classical and variant, which are distinguished by
99	their morphologies or NE properties. The loss of the expression of a master transcriptional
100	factor, such as ASCL1, is often associated with the properties of variant SCLC cell lines
101	(Zhang et al., 2018). In the present study, H69, H889, SBC1, and H1688 belonged to the
102	classical subtype of SCLC cell lines, which were positive for ASCL1 and INSM1. In contrast,
103	H69AR, SBC3, and SBC5 were classified as the variant subtype of SCLC cell lines, which
104	were negative for ASCL1. We then conducted ChIP-seq to analyze SOX2 target genes in the
105	H69, H889, and SBC3 cell lines. We also combined the results of the RNA-seq analysis for
106	these cell lines, which showed the global expression levels of mRNAs. As shown in a Venn
107	plot, we identified 346 SOX2-bound genes (shared in NCI-H69 and NCI-H889) that were
108	specifically occupied in the classical subtypes and expressed at higher levels in the classical
109	subtypes than in the variant subtype (Fig. 1B). Some neuron-related genes, such as <i>INSM1</i> ,
110	SEZ6L, or SV2B, were included as their common target genes. On the other hand, we
111	identified 825 SOX2-bound genes (targeted in SBC3) that were specifically occupied in the
112	variant subtype and expressed at higher levels in the variant subtype than in the classical
113	subtypes. Hippo pathway-related genes, such as YAP1, WWTR1, LATS2, and REST, which
114	were not contained in the classical subtypes, were identified in this category (Fig. 1B). To

115	validate functional differences in SOX2 between the classical and variant subtypes of SCLC,
116	we used the Database for Annotation, Visualization and Integrated Discovery (DAVID)
117	online bioinformatics tool for a GO functional analysis and extracted the top 10 enriched
118	categories in biological processes. Neuron-related categories were more likely to be included
119	in the classical subtype, and cell development- or movement process-related categories in
120	the variant subtype (Fig. 1C). These results suggest that SOX2 regulates distinct
121	transcriptional programs between the classical and variant subtypes of SCLC cell lines.
122	
123	ASCL1 is one of the driver molecules of SOX2 and recruits SOX2 for distinct transcriptional
124	regulation in classical subtypes of SCLC
124 125	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we
124 125 126	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1
124 125 126 127	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1 was established, as previously reported (Ito <i>et al.</i> , 2017; Tenjin <i>et al.</i> , 2019). A549 is a
124 125 126 127 128	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1 was established, as previously reported (Ito <i>et al.</i> , 2017; Tenjin <i>et al.</i> , 2019). A549 is a representative ADC cell line that does not express ASCL1 or other NE markers. A549
124 125 126 127 128 129	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1 was established, as previously reported (Ito <i>et al.</i> , 2017; Tenjin <i>et al.</i> , 2019). A549 is a representative ADC cell line that does not express ASCL1 or other NE markers. A549 expressed SOX2 more weakly than the SCLC cell lines examined (Fig. 1A). We detected the
124 125 126 127 128 129 130	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1 was established, as previously reported (Ito <i>et al.</i> , 2017; Tenjin <i>et al.</i> , 2019). A549 is a representative ADC cell line that does not express ASCL1 or other NE markers. A549 expressed SOX2 more weakly than the SCLC cell lines examined (Fig. 1A). We detected the up-regulated expression of SOX2 following the forced expression of ASCL1 in A549 cells. The
124 125 126 127 128 129 130 131	regulation in classical subtypes of SCLC To investigate the biological effects of ASCL1 on SOX2 in lung cancer cell lines, we performed <i>ASCL1</i> transfection experiments. An A549 cell line that stably expresses ASCL1 was established, as previously reported (Ito <i>et al.</i> , 2017; Tenjin <i>et al.</i> , 2019). A549 is a representative ADC cell line that does not express ASCL1 or other NE markers. A549 expressed SOX2 more weakly than the SCLC cell lines examined (Fig. 1A). We detected the up-regulated expression of SOX2 following the forced expression of ASCL1 in A549 cells. The expression of INSM1 and WNT11 was also induced (Fig. 2A). Immunohistochemical staining

133	with the ASCL1 transgene than in those from A549 mock cells (Fig. 2B). To show changes in
134	transcriptional regulation driven by SOX2 in an ASCL1-dependent manner, we compared
135	the target genes of SOX2 between $ASCL1$ -transfected A549 and A549 mock cells. We
136	combined the results of ChIP- and RNA-seq analyses for these cells and identified 35 genes
137	that had specific SOX2-binding peaks and higher expression levels of mRNAs in
138	ASCL1-transfected A549 cells than in mock cells (Fig. 2C). This result suggested that SOX2
139	drives the distinct transcriptional regulation of SCLC. An integrated genome viewer (IGV)
140	snapshot showed SOX2 binding at the overlap region of the transcription start site (TSS) of
141	INSM1 (Fig. 2D). To confirm that ASCL11 actually affects SOX2 expression in SCLCs, we
142	conducted ASCL1 knockdown experiments using RNA interference (RNAi) in H69, H889,
143	and SBC1 cell lines as representatives of SCLC cells that simultaneously express ASCL1
144	and SOX2. The knockdown of ASCL1 expression in these cells resulted in significant
145	reductions in SOX2 in 2 out of the 3 cell lines, namely, H889 and SBC1 (Fig.2E).
146	Furthermore, to examine SOX2, ASCL1, and INSM1 expression patterns, we IHC stained
147	30 surgically resected SCLC tissues for these proteins as well as 20 surgically resected ADC
148	and 20 surgically resected SCC tissues for SOX2 and ASCL1. IHC revealed that SCLCs and
149	SCCs expressed SOX2 at slightly higher levels than ADCs: approximately 70.0% in SCLCs,
150	55.0% in SCCs, and 35.0% in ADCs. In SCLC tissues, 60% of cases (18 out of 30 cases) were

151	doubly positive for ASCL1 and SOX2 and were also positive for INSM1. Although
152	SOX2-positive, ASCL1-negative cases were detected (3 out of 30 cases), there were no
153	ASCL1-positive, SOX2-negative cases (0 out of 30 cases). INSM1 was strongly expressed in
154	SCLC (25 out of 30 cases) and all ASCL1-positive cases simultaneously expressed INSM1
155	(18 out of 18 cases) (Fig. 2F, Table 1, and Supplementary Fig. S1). Furthermore, based on
156	the results showing that SOX2, ASCL1, and INSM1 were more likely to be co-expressed in
157	SCLC, we surveyed public datasets of gene expression profiling in human SCLC samples
158	and examined their relationships. The RNA-seq dataset using tumor samples from 79 SCLC
159	patients confirmed the coordinated expression of ASCL1 and SOX2 in human SCLC tissue
160	samples (GSE60052: $\rho\text{=}0.327759,$ p=0.003168). In the same manner, we confirmed the
161	coordinated expression of ASCL1 and INSM1 (GSE60052: ρ =0.357944, p=0.001188).
162	Heatmap data focusing on SOX2, ASCL1, and INSM1 was obtained using the dataset
163	reported by Jiang et al. (2016) (Fig. 2G). These results support the positive regulation of
164	SOX2 and INSM1 expression by ASCL1.
105	

The role of Sox2 in the classical subtype of SCLC cell lines and the ASCL1-transfected A549
 cell line

168 To investigate the biological significance of SOX2 in the classical subtype of SCLC cell

169	lines and the <i>ASCL1</i> -transfected A549 cell line, we conducted <i>SOX2</i> knockdown experiments
170	using RNAi on these cells. The knockdown of SOX2 expression resulted in significant
171	reductions in ASCL1 (Supplementary Fig. S2) and INSM1 expression (Fig. 3A) in the H69,
172	H889, and SBC1 cell lines. Furthermore, the expression of WNT11 and CDH1 was reduced
173	in the H69, H889, and SBC1 cell lines after the knockdown of SOX2 (Fig. 3A). This result
174	suggests that SOX2 affected EMT in SCLC. The results of the SOX2 knockdown experiment
175	on ASCL1-transfected A549 cells were also shown. Not only INSM1 and WNT11, but also
176	NOTCH1, MYC, TCF4, RBL1, and TP53 protein levels decreased after the knockdown of
177	SOX2. The suppression of SOX2 also affected the phosphorylation of histone H3 (p-HH3)
178	protein levels (Fig. 3A). Cell counting assays revealed that the knockdown of SOX2
179	suppressed cell growth in the H69, H889, and SBC1 cells lines (Fig. 3B). This result
180	suggests that SOX2 positively affected cell proliferation in the classical subtype of SCLC
181	cells and regulated the expression of key molecules for the SCLC phenotype in the presence
182	of ASCL1.

184 The role of SOX2 in variant subtypes of SCLC cell lines.

To investigate the role of SOX2 in variant subtypes of SCLC cell lines, we conducted *SOX2* knockdown experiments using RNAi on SBC3 and H69AR cell lines. SBC3 and

187	H69AR are representative variant subtypes of the SCLC cell line that lack the expression of
188	ASCL1 and INSM1. These cells have markedly fewer NE properties than the classical
189	subtype of SCLC cell lines. The results obtained showed that the knockdown of $SOX2$ did not
190	significantly reduce tumor cell proliferative capacity in the SBC3 and H69AR cell lines. A
191	quantitative real-time polymerase chain reaction (qRT-PCR) revealed that Hippo-related
192	genes, such as YAP1 or TEAD1, and VIMENTIN mRNA expression levels were significantly
193	reduced after the knockdown of <i>SOX2</i> . On the other hand, the expression of <i>ASCL1</i> , <i>INSM1</i> ,
194	and <i>WNT11</i> was not significantly affected by the knockdown of <i>SOX2</i> in these cells (Fig. 4).
195	These results suggest that SOX2 did not always sufficiently affect tumor proliferative
196	capacity in SCLC and, in the variant subtype, it regulated the expression of downstream
197	target genes that were distinct from those of the classical subtype of SCLC. We obtained
198	similar results in the $SOX2$ knockout experiments using the CRISPR/Cas9 system on the
199	SBC3 and H69AR cell lines (Supplementary Fig. S3).
200	

Ascl1, Sox2, and Insm1 were simultaneously expressed in pulmonary NE tumors in the
 genetically engineered mouse model

203 The ASCL1 highly-expressing subtype of classical SCLC represents the majority of 204 SCLC based on multiple lines of evidence. ASCL1 is normally present in lung NE cells

205	during development, and HES1, one of the Notch signaling targets, suppresses the
206	expression of ASCL1 and NE cell differentiation (Borges et al., 1997; Ito et al., 2000). Most of
207	the classical SCLC cell lines and primary tumor samples were shown to strongly express
208	ASCL1 (Rudin et al., 2019). Close signaling contact with the Notch-Hes1 pathway and
209	ASCL1 expression has been proposed to exist in small cell lung carcinogenesis (George <i>et al.,</i>
210	2015). On the other hand, the $Trp53$ and $Rb1$ double-knockout mouse is fundamentally
211	presented as a gene-engineered SCLC mouse model (Meuwissen <i>et al.,</i> 2003). In the present
212	study, we established a $\mathit{Trp53}$ -knockout and $\mathit{Rb1}$ and $\mathit{Hes1}$ double-conditional knockout
213	mouse model, which aimed to add the effects of the inactivation of the Notch-Hes1 pathway
214	to the fundamental SCLC mouse model. The results obtained revealed that multiple SCLC
215	precursor lesions developed in the broncho-bronchiolar epithelium of the mouse and IHC
216	showed that Ascl1, Sox2, and Insm1 were positively expressed in these lesions (Fig. 5).
217	Therefore, the inactivation of Notch signaling induced precursor lesions of the classical
218	subtype of SCLC under Trp53-Rb1-gene-deficient conditions.

```
220 Discussion
```

SOX2 is an oncogene in human SCLC and its amplification has been detected in some
SCLCs. In the present study, we investigated the different functions of SOX2 and whether

223	ASCL1 was present in SCLC cell lines. SOX2 regulated INSM1 or WNT11 with the
224	cooperation of ASCL1 in the classical subtype of SCLC. On the other hand, SOX2 targeted
225	distinct genes, such as the Hippo pathway, in the variant subtype. These results suggest
226	that SOX2 is not only an oncogene in human SCLC, but may also drive distinct
227	transcriptional regulation in each subtype of SCLC. Therefore, care is needed when
228	considering SOX2 as a potential therapeutic target or biological marker in the diagnosis and
229	treatment of SCLC.
230	We revealed that ASCL1 regulated SOX2 in the classical type of the SCLC cell line.
231	Borromeo et al. (2016) showed that SOX2 was one of the target genes of ASCL1 in their
232	ChIP-seq of SCLC cell lines, which included H889 SCLC cell lines. Osada <i>et al.</i> (2005, 2008)
233	reported roles for ASCL1 in CDH1 expression and NE differentiation. Our results support
234	these findings, and, as a novel insight, ASCL1 and SOX2 cooperatively modulated NE
235	differentiation or EMT in human SCLC. The knockdown of SOX2 expression in the classical
236	subtype of the SCLC cell lines examined resulted in significant reductions in WNT11 and
237	CDH1. In NSCLC, Bartis et al. (2013) reported that Wnt11 is a regulator of cadherin
238	expression and related to the function of cellular adhesion. We previously showed that Ascl1
239	induced the EMT-like phenotype in A549 ADC cells (Ito et al., 2017), and demonstrated that
240	WNT11 regulated CDH1 expression in SCLC cell lines (Tenjin et al., 2019). We also

confirmed SOX2 binding near the site of the *WNT11* gene in the classical subtype of SCLC
cell lines (data not shown). SOX2 may potently modulate NE differentiation and CDH1

243 expression via ASCL1 or WNT11 in SCLC.

244The results obtained on the knockdown of SOX2 in ASCL1-transfected A549 cells are 245of interest. After the overexpression of ASCL1, SOX2 expression was enhanced and INSM1 246and WNT11 were simultaneously expressed in this cell. The knockdown of SOX2 in 247ASCL1-transfected cells caused the suppression of INSM1 and WNT11. These results 248suggest that ASCL1 activates SOX2 and regulates INSM1 and WNT11 expression together 249with SOX2. Furthermore, NOTCH1, TCF4, MYC, Trp53, and RBL1 expression decreased 250after the knockdown of SOX2 in these cells. Notch signaling is an important cell signaling 251system, and the interaction between Notch receptors and their ligands induces several genes, 252such as HES1, CCND1, MYC, and AKT (Rizzo et al., 2008). Intratumoral heterogeneity 253generated by Notch signaling has been shown to promote SCLC (Lim et al., 2014). The 254Notch1-Hes1 pathway is a repressor of NE differentiation through the decreased expression 255of NE-promoting transcription factors, such as ASCL1 and INSM1 (Ito et al., 2000; Ball et 256al., 2004; Hassan et al., 2014; Fujino et al., 2015). Chen et al. (2012) reported that silencing 257of the SOX2 gene reduced the tumorigenic properties of A549 cells with the attenuated 258expression of MYC and NOTCH1 in xenografted tumors in the NOD/SCID mouse. The

259	canonical Wnt pathway induces MYC through TCF4 and other Wnt signal components. In
260	addition, Wnt11 has been reported to activate both canonical and non-canonical Wnt
261	pathways (Stewart et al., 2014; Rapp et al., 2017). Moreover, mouse models carrying
262	conditional alleles for both $Trp53$ and $Rb1$ developed small cell carcinoma in the lung
263	(Meuwissen et al., 2003). The universal bi-allelic inactivation of Trp53 and RB1 was
264	previously reported in human samples (George <i>et al.,</i> 2015). Meder <i>et al.</i> (2016) showed that
265	NOTCH, ASCL1, Trp53, and RB alterations defined an alternative pathway driving NE and
266	small cell carcinomas. Moreover, the ablation of all three retinoblastoma family members,
267	Rb1, Rbl1, and Rbl2, in the mouse lung resulted in the formation of NE tumors (Lázaro <i>et al.,</i>
268	2017). We demonstrated the induction of precursor SCLC lesions that simultaneously
269	expressed Ascl1, Sox2, and Insm1 in Trp53 (-/-); CCSPrtTA; tetOCre; Rb1 (fl/fl); Hes1 (fl/fl)
270	mice. SOX2 has been suggested to play an important role, particularly in an
271	ASCL1-dependent manner, in the SCLC phenotype and tumorigenesis in the interaction
272	with these principle tumor suppressants.

We performed SOX2 knockdown or knockout experiments using RNAi or the CRISPR/Cas9 system in the variant subtype of SCLC, SBC3, and H69AR cells. After the knockdown of *SOX2, YAP1* and *TEAD1* mRNA expression levels decreased in these cells. A previous study reported that YAP1, the main Hippo pathway effector, was frequently lost in 277high-grade NE lung tumors, and showed reciprocal expression against INSM1 (McColl et al., 2782017). Among SCLC, the loss of YAP1 correlated with the expression of NE markers, and a 279survival analysis revealed that YAP1-negative cases were more chemo-sensitive than 280YAP1-positive cases (Ito et al., 2016). The YAP/TAZ subgroup displayed an adherent cell 281morphology (Horie et al., 2016) and lower expression levels of ASCL1. REST was also 282included in the genes of SOX2-bound sites in variant subtypes. REST encodes a 283transcriptional repressor that represses neuronal and NE genes in non-neuronal and 284non-NE tissues and, thus, serves as a negative regulator of neurogenesis, including SCLC 285(Gao et al., 2011; Thiel et al., 2015; Lim et al., 2017). We demonstrated that SOX2 modulated 286the Hippo pathway in the variant subtype of SCLC in the present study. We also showed 287that VIMENTIN mRNA levels decreased after the knockdown of SOX2 in these cells. In the 288classical subtype of SCLC cell lines, CDH1 expression decreased after the knockdown of 289SOX2 by RNAi (Fig. 3A). These results suggest that SOX2 potently modulated EMT in lung 290cancer via the Hippo or Wnt signaling pathway in SCLC. 291Rudin et al. (2012) reported that the knockdown of SOX2 by doxycycline-inducible

shRNA inhibited cell proliferation in SCLC cell lines. In the classical subtype SCLC cell
lines, we demonstrated that SOX2-knockdown using RNAi decreased tumor cell
proliferative capacity. In contrast, the knockdown of SOX2 in SBC3 and H69AR cells did not

295	significantly affect their cell proliferative capacity. This functional discrepancy may be
296	attributed to functional differences in Sox2 between the classical and variant subtypes of
297	SCLC. Furthermore, Rudin <i>et al.</i> (2019) recently proposed a nomenclature to describe SCLC
298	subtypes according to the dominant expression of transcription factors. They divided SCLC
299	into 4 subtypes, which considered the master regulators of SCLC; ASCL1, NEUROD1,
300	POU2F3, or YAP1. In the present study, we revealed that SOX2 cooperated with the key
301	regulatory molecules, such as ASCL1 and YAP1, in SCLC, and showed that SCLC may be
302	divided into 3 groups based on the expression of ASCL1 and SOX2; ASCL1-SOX2 doubly
303	high, ASCL1 low and SOX2 high, and ASCL1-SOX2 doubly low (Fig. 6). In addition to
304	genomic profiling, which has been adopted in clinical practice, several research initiatives to
305	catalog DNA, RNA, and protein profiles among lung SCC and ADC have accelerated the
306	pace of discovery, such as The Cancer Genome Atlas (TCGA). However, similar efforts have
307	not yet been achieved for SCLC due to the lack of adequate tumor tissue (Byers <i>et al.,</i> 2015).
308	This needs to be investigated in a large prospective or cohort study in the future.
309	In summary, the classical subtype of SCLC frequently and strongly expresses both
310	SOX2 and ASCL1. ASCL1-recruited SOX2 plays an important role in driving distinct
311	transcriptional regulation. We demonstrated that SOX2 regulates lineage-specific genes,
312	such as <i>INSM1</i> , in the classical subtype of SCLC. While we revealed the significance of

313	SOX2 for cell growth and the modulation of EMT, we detected a functional discrepancy in
314	SOX2 between the classical and variant subtypes of SCLC. The present results suggest that
315	the ASCL1-SOX2 axis is extremely important as a potential therapeutic target or biological
316	marker in the classical subtype of SCLC. On the other hand, the fundamental role of SOX2
317	in the variant subtype, in which ASCL1 is negative, was shown in the activation of the
318	Hippo signaling pathway. Further studies on SOX2 that focus on highly specific molecules,
319	for example, those that are involved in the recruitment of SOX2 in the variant subtype of
320	SCLC, are needed. The present study promotes our understanding of the significance of
321	SOX2 in SCLC, which will hopefully lead to the development of novel targeted therapies and
322	better prognoses for patients with SCLC.
323	
324	Materials and Methods

325 Cell Lines

Seven SCLC cell lines (H69, H889, SBC1, H69AR, H1688, SBC3, and SBC5), 3 ADC cell lines (A549, H358, and H1975), and 2 SCC cell lines (H2170 and H226) were used in the present study. H69, H889, H69AR, H1688, A549, H358, H1975, H2170, and H226 were purchased from ATCC (Manassas, VA), and SBC1, SBC3, and SBC5 from the Japan Collection of Research Bioresources Cell Bank (Osaka, Japan). All growth media were

331	purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan) and supplied with 1%
332	penicillin/streptomycin (Sigma–Aldrich, Ontario, Canada). A549 cells were grown in DMEM
333	supplemented with 10% FBS (Hyclone, Logan, UT). SBC-3 cells were grown in EMEM with
334	10% FBS. H69, H1688, and H2170 cells were grown in RPMI 1640 medium supplemented
335	with 2 mM L-glutamine, 10 nM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L
336	sodium bicarbonate, and 10% FBS. H69AR cells were grown in similar RPMI 1640 medium,
337	but supplemented with 20% FBS. All cells were incubated at 37 °C in 5% CO_2 and saturated
338	humidity. Cells were maintained as subconfluent cultures before use and harvested with
339	trypsin-EDTA (Invitrogen, Carlsbad, CA).
340	
341	Tianua Samulaa
342	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the
$\frac{342}{343}$	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the lung cancer files of the Department of Pathology and Experimental Medicine of Kumamoto
342 343 344	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the lung cancer files of the Department of Pathology and Experimental Medicine of Kumamoto University and resected at the Department of Thoracic Surgery of Kumamoto University
342 343 344 345	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the lung cancer files of the Department of Pathology and Experimental Medicine of Kumamoto University and resected at the Department of Thoracic Surgery of Kumamoto University from 70 patients for this study. A histological diagnosis of the samples was made according
342 343 344 345 346	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the lung cancer files of the Department of Pathology and Experimental Medicine of Kumamoto University and resected at the Department of Thoracic Surgery of Kumamoto University from 70 patients for this study. A histological diagnosis of the samples was made according to the criteria of the WHO (Travis <i>et al.</i> , 2015). These sections were used for IHC staining.
 342 343 344 345 346 347 	We obtained tissue samples of SCLCs (n=30), ADCs (n=20), and SCCs (n=20) from the lung cancer files of the Department of Pathology and Experimental Medicine of Kumamoto University and resected at the Department of Thoracic Surgery of Kumamoto University from 70 patients for this study. A histological diagnosis of the samples was made according to the criteria of the WHO (Travis <i>et al.</i> , 2015). These sections were used for IHC staining. The present study followed the guidelines of the Ethics Committee of Kumamoto University.

bioRxiv preprint doi: https://doi.org/10.1101/857144; this version posted November 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

349 WB Analysis

350	Cells were prepared for a WB analysis as previously described (Yoshida <i>et al.,</i> 2013). A
351	list of the primary antibodies used is shown in Table 2. Membranes were washed and
352	incubated with the respective secondary antibodies conjugated with peroxidase (Amersham
353	Pharmacia Biotech, Buckinghamshire, UK) for 1 hour, and the immune complex was
354	visualized with the chemiluminescence substrate (Amersham Pharmacia Biotech, UK).
355	
356	ChIP
357	Three SCLC cell lines (H69, H889, and SBC3), A549 ADC cell lines, and an A549 cell
358	line with the stable expression of ASCL1 were used in the present study. Cells were fixed in
359	1% formaldehyde (Thermo-Fisher) in PBS at room temperature for 10 minutes. Crosslinked
360	cells were lysed with LB1 (50 mM HEPES-KOH (pH7.5), 140 mM NaCl, 1 mM EDTA, 10%
361	(w/v) glycerol, 0.5% (w/v) NP-40, 0.25% (w/v) TritonX-100, proteinase inhibitor cocktail
362	(Sigma)) and washed with LB2 (10 mM Tris-HCl (pH 8.0), 200 mM NaCl, 1 mM EDTA, 0.5
363	mM EGTA, proteinase inhibitor cocktail). Chromatin lysates were prepared in RIPA buffer
364	(Thermo 89900; 25 mM Tris-HCl pH7.6, 150 mM NaCl, 0.1% SDS, 1% NP-40, 1% sodium
365	deoxycolate, proteinase inhibitor cocktail), sonication with Covaris S220 (Peak Incident
366	Power, 175 : Acoustic Dutu Factor, 10% : Cycle Per Burst, 200 : Treatment time, 600sec :

367	Cycle, 6). ChIP was performed using chromatin lysates equivalent to 1.0×10 7 cells, and
368	protein A Dyna-beads (Thermo-Fisher) coupled with the antibody against Sox2 (raised by
369	us). After 4 hours of incubation at 4 °C, beads were washed 4 times in a low salt buffer (20
370	mM Tris-HCl (pH 8.0), 0.1% SDS, 1% (w/v) TritonX-100, 2 mM EDTA, 150 mM NaCl), and
371	two times with a high salt buffer (20 mM Tris-HCl (pH 8.0), 0.1% SDS, 1% (w/v) TritonX-100,
372	2 mM EDTA, 500 mM NaCl). Chromatin complexes were eluted from the beads by agitation
373	in elution buffer (10 mM Tris-HCl (pH 8.0), 300 mM NaCl, 5 mM EDTA, 1% SDS) and
374	incubated overnight at 65 °C for reverse-crosslinking. Eluates were treated with RNase A
375	and Proteinase K, and DNA was ethanol precipitated.
376	
377	ChIP -seq data analysis

ChIP-seq libraries were prepared using 20 ng of input DNA, and 1-3 ng of ChIP DNA with KAPA Library Preparation Kit (KAPA Biosystems) and NimbleGen SeqCap Adaptor Kit A or B (Roche) and sequenced by Illumina NextSeq 500 (Illumina) using Nextseq 500/550 High Output v2 Kit (Illumina) to obtain single end 75-nt reads. The resulting reads were trimmed to remove the adapter sequence and low-quality ends using Trim Galore! v0.4.3 (cutadapt v.1.15). The trimmed ChIP-seq reads were mapped to the UCSC hg38 genome assemblies using Bowtie2 v2.3.3 with default parameters. The resulting SAM files

385	were converted to the BAM format using SAMtools v1.5. Peak calling was performed using
386	MACS2 v2.1.1. with input DNA as a control including a q-value cut-off of 0.01 for SOX2
387	ChIP-seq. The distance to the nearest TSS and gene feature of the peaks were obtained from
388	Ensembl human annotation data (GRCh38) using the annotatePeakInBatch of
389	ChIPpeakAnno and biomaRt R packages. Peaks in the gene body were first annotated with
390	the option 'output="overlapping", and the remained peaks were then annotated to the
391	nearest TSSs regardless of the distance between them. Protein binding sites were shown
392	along with genomic loci from RefSeq genes on the genome browser IGV.

394 RNA sequence (RNA-seq)

595 RNA-seq was performed by the Liaison Laboratory Research Promotion Cer	395	RNA-seq wa	as performed	d by the	Liaison	Laboratory	Research	Promotion	Cent
--	-----	------------	--------------	----------	---------	------------	----------	-----------	------

396 (LILA) (Kumamoto University) as follows. Total RNA was isolated using the RNeasy Mini

- 397 Kit (Qiagen, Germany). 2100 Bioanalyzer was used to detect the concentration and purity of
- 398 total RNA. All samples with an RNA integrity number (RIN) >7.5 were used for sequencing.
- 399 Library DNA prepared according the Illumina Truseq protocol using Truseq Standard
- 400 mRNA LT Sample Prep Kits and sequenced by Nextseq 500 (Illumina) was used for analysis,
- 401 and the data were converted to Fastq files. Quality control of the data was performed by
- 402 FastQC. The reads were then trimmed to remove the adapter sequence using Trim Galore!

403	v0.5.0 (Cutadapt v 1.16).	and low-quality r	eads were filtered ou	it using FASTX-toolkit

- 404 v0.0.14. The remaining reads were aligned to the Ensembl GRCh38.93 reference genome
- 405 using STAR ver.2.6.0a. FPKM (fragments per kilobase of exon per million reads mapped)
- 406 values were calculated using Cuffdiff. Significant genes were extracted by cuffdiff (p<0.05).
- 407 A differential expression analysis was performed using the ExAtlas website
- 408 (<u>https://lgsun.irp.nia.nih.gov/exatlas/</u>).
- 409

410 Gene ontology (GO) analysis

411 GO annotation and classification were based on three categories, including biological

412 process, molecular function, and cellular component. The Database for Annotation,

413 Visualization, and Integrated Discovery Bioinformatics Resources 6.7 (DAVID 6.7,

414 http://www.david.niaid.nih.gov) was used for the GO analysis (Huang *et al.,* 2009). The gene

- 415 lists contained significant genes in the RNA-seq analysis and were also targeted by Sox2 in
- 416 our ChIP-seq analysis. To visualize key biological processes, the DAVID online database was
- 417 used. The top 10 categories in each classical and variant subgroup of SCLC were taken as

418 excerpts for Fig. 1C.

419

420 Transfection with siRNA

- 421 We purchased Sox2 siRNA (sc-41120) and Ascl1 siRNA (sc-37692) from Santa Cruz
- 422 Biotechnology (Santa Cruz, USA) and transfected them into cells using an electroporator
- 423 (NEPA21 pulse generator; Nepa Gene, Chiba, Japan) as described in the manufacturer's
- 424 instructions. These were a pool of 3 different siRNA duplexes and sequences for Sox2 were
- 425 as follows. sense; 5'-GAAUGGACCUUGUAUAGAUTT -3', antisense;
- 426 5'-AUCUAUACAAGGUCCAUUCTT -3' (sc-38408A), sense; 5'-
- 427 GGACAGUUGCAAACGUGAATT -3', antisense; 5'-UUCACGUUUGCAACUGUCCTT -3'
- 428 (sc-38408B), and sense; 5'-GAAUCAGUCUGCCGAGAAUTT -3', antisense; 5'-
- 429 AUUCUCGGCAGACUGAUUCTT -3' (sc-41120C). The sequences for Ascl1 were as follows.
- 430 sense; 5'-CCAACAAGAAGAUGAGUAATT-3', antisense;
- 431 5'-UUACUCAUCUUCUUGUUGGTT-3' (sc-37692A), sense; 5'-
- 432 GAAGCGCUCAGAACAGUAUTT-3', antisense; 5'- AUACUGUUCUGAGCGCUUCTT-3'
- 433 (sc-37692B), sense; 5'- GUUCGGGGAUAUAUUAAGATT-3', antisense; 5'-
- 434 UCUUAAUAUAUCCCCGAACTT-3' (sc-37692B). Control siRNA (Cat# sc-36869) was used
- 435 as a control. Cells were harvested 48-72 h post-transfection.
- 436

437 Plasmid construction and transfection

438 To construct pCAG-IRES-puro-FlagHA, we replicated the ASCL1 gene of a human

439	ASCL1 cDNA ORF clone and replaced it with ASCL1. We generated
440	pCAG-IRES-puro-FlagHA -mock from a human ASCL1 cDNA ORF clone by cleaving out
441	ASCL1. Two plasmids were transfected into A549 cells with Lipofectamine 3000 (Invitrogen)
442	as described in the manufacturer's instructions. After 48 h, 1 $\mu g/mL$ of puromycin (Clontech)
443	was added to cells for 2 weeks, with a medium change every 3 days. Stably transfected
444	resistant cell lines were cloned from each transfectant.
445	
446	Cell counting assay
447	A cell counting method was used to evaluate the role of Sox2 in cell proliferation. After
448	48 h of siRNA and control transfection, cells were stained with trypan blue and counted.
449	H69, H889, and SBC1 cells were used and seeded at 2×10^5 cells on 6-well plates. Every 2
450	days, cells were collected and counted, after which they were seeded into new fresh medium
451	and left at 37 °C in 5% CO ₂ . The counting method was continued until day 6. The criteria for
452	cellular integrity included trypan blue exclusion, an intact nucleus, and intact cell
453	membrane. Experiments were repeated three times separately to confirm reproducibility.

455 **IHC and evaluation**

456	Formalin-fixed, paraffin-embedded specimens were cut into 4-µm-thick sections and
457	mounted onto MAS-GP–coated slides (Matsunami Glass Ind., Osaka, Japan). After being
458	deparaffinized and rehydrated, sections were heated using an autoclave in 0.01 mol/L
459	citrate buffer (pH 7.0) for antigen retrieval. Sections were incubated with 0.3% $\mathrm{H_2O_2}$ in
460	absolute methanol for 30 minutes to block endogenous peroxidase activity. Sections were
461	then incubated with skimmed milk for 30 minutes to block non-specific staining. After this
462	blocking step, sections were incubated with the primary antibodies shown in Table 2 at 4°C
463	overnight. This was followed by sequential 1-hour incubations with the secondary antibodies
464	(En Vision+ System-HRP-Labeled Polymer; Dako) and visualization with the Liquid DAB+
465	Substrate Chromogen System (Dako). All slides were counterstained with hematoxylin for
466	30 seconds before being dehydrated and mounted. We evaluated IHC results based on
467	staining intensity and the percentage of positively stained tumor cells. The percentage of
468	positively stained tumor cells was divided into five groups: no staining, <5% tumor cells
469	reactive, 5–25% reactive, 25-50% reactive, and >50% reactive. The staining intensity level
470	was divided into three groups: negative, weak, and strong. We designed a table to allocate
471	IHC scores to each specimen. IHC scores were classified into three groups: negative (0),
472	weak positive (1+), and positive (2+). We defined a 2+ IHC score as significantly positive.

473 Scoring was simultaneously performed by two independent observers who were blinded to

474 patient details.

475

476 **qRT-PCR**

477Total RNA was isolated using an RNeasy Mini Kit (Qiagen, Germany) in accordance 478with the manufacturer's instructions. cDNA was produced using a ReverTra Ace qPCR 479RT-kit (Toyobo, Osaka, Japan), according to the manufacturer's instructions. A list of the 480 primers used is shown in Table 3. cDNA was subjected to quantitative SYBR Green 481real-time PCR by using SYBR Premix Ex Taq II (Takara Bio). A list of the specific primers 482used is shown in Table 3. qRT-PCR was performed with a LightCycler® Nano (Roche 483Diagnostic K.K.) using 40 cycles of a three-stage program with the following conditions: 20 484seconds at 94°C, 40 seconds at 60°C, and 15 seconds at 72°C, as recommended by the 485manufacturer. The products were quantified during the initial exponential phase of 486 amplification above the baseline. Data were obtained from triplicate reactions. The means 487and SDs of the copy numbers were normalized to the value for *glyceraldehyde-3-phosphate* 488dehydrogenase (GAPDH) mRNA. 489

490 SOX2 knockout experiment using SBC3 and H69AR cell lines

491	Genome editing using CRISPR/Cas9 was used for the knockout of the $SOX2$ gene in
492	the SBC3 and H69AR cell lines. We purchased a $SOX2$ knockout vector from GeneCopoeia $^{\rm TM}$
493	(Rockville, USA). These were 3 different human SOX2 sgRNA/Cas9 all-in-one expression
494	clones (NM_003106.2). The sgRNA target sequences of $SOX2$ were as follows:
495	ATGGGCCGCTTGACGCGGTC (HCP217628-CG10-3-10-a), CGCCCGCATGTACAACATGA
496	(HCP217628-CG10-3-10-b), and ATTATAAATACCGGCCCCGG (HCP217628-CG10-3-10-c).
497	CCPCTR01-CG10 (GeneCopoeia TM) was used as a control. The sgRNA target sequence was
498	as follows: GGCTTCGCGCCGTAGTCTTA. Regarding the establishment of $SOX2$ knockout
499	H69AR cells, we obtained pSpCas9(BB)-2A-Puro(px459) from Addgene (Cambridge, MA)
500	(Ran et al., 2013). The sgRNA target sequences of SOX2 were as follows:
501	ATAATAACAATCATCGGCGG, GACCGCGTCAAGCGGCCCAT and
502	ACAGCCCGGACCGCGTCAAG. Cells were harvested 48-72 hr post-transfection. These
503	plasmids were co-transfected with Lipofectamine 3000 (Thermo Fisher Scientific) into cells
504	at subconfluency. After 48 hr, transfected cells were treated with 200 $\mu\text{g/mL}$ hygromycin B
505	(Nacalai Tesque, Kyoto, Japan) or 1 $\mu g/mL$ puromycin (Clontech) for the selection of stably
506	transfected cells.

Tumor xenotransplantation experiment

509	Eight-week-old male Rag2(-/-):Jak3(-/-) mice (a generous gift from Prof. S. Okada;
510	Kumamoto University) were used. Two groups of mice were subcutaneously injected; one
511	group was injected with 2×10^6 stably transfected cells with <i>ASCL1</i> , and the other group
512	was injected with an equal number of the control cell population. After 4 weeks,
513	subcutaneous tumors were removed and fixed. The samples were fixed with 10% formalin
514	and embedded in paraffin. Tissue sets were stained with hematoxylin and eosin and
515	additional sections were used for IHC staining. Regarding tumor xenograft growth, a total of
516	$1.0 imes 10^6$ cells each of the mock-transfected and $SOX2$ knockout SBC3 cell lines and mock
517	cells were subcutaneously injected into the backs of mice. Twenty days after the first
518	injection, tumors were removed and measured. All animal experiments were performed in
519	accordance with the Institutional Animal Care and Use Committee guidelines.
520	
521	In situ precursor SCLC model mouse
522	We established a genetically engineered mouse model for <i>in situ</i> SCLC precursor
523	lesions. These mice are $Trp53$ gene-deficient, have Clara cell secretory protein promoter
524	(CCSP) rt TA, tetO Cre-recombinase, floxed <i>Rb1</i> , and floxed <i>Hes1</i> genes, and were kept
525	under the hypothesis that tumorigenesis of SCLC may occur with the double knockout of the
526	suppressor oncogenes, $p53$ and $Rb1$, and inactivation of the Notch signal pathway (Meder et

527	<i>al.,</i> 2016). <i>P53</i> KO mice (ICR.Cg <i>Trp53</i> <tm1sia>/Rbrc) (Tsukuda T <i>et al.,</i> 1993) were</tm1sia>
528	obtained from the Riken BioResource Center (Tsukuba, Japan), CCSPrtTA; tetOCre mice
529	(Tichelarr <i>et al.,</i> 2002) were a generous gift from Dr. J. Whitsett. Floxed <i>Rb1</i> mice
530	(FVB;129-Rb1 ^{tm2Brn} /Nci; Vooijs <i>et al.</i> , 1999) were obtained from the NCI Mouse Repository
531	(Frederick, MD), and floxed <i>Hes1</i> mice (Imayoshi <i>et al.,</i> 2008) from Dr. R. Kageyama of
532	Kyoto University. Animals were kept under standard laboratory conditions with free access
533	to water and food, and were maintained on a 12-h light/dark cycle under pathogen-free
534	conditions. Doxycycline (Sigma-Aldrich) was dissolved in drinking water at a concentration
535	of 1 g/L, and given to 4-week-old male animals for 6 weeks. After the treatment with
536	doxycycline, animals were sacrificed with an intraperitoneal injection of an overdose of
537	pentobarbital, and lung tissues were fixed in phosphate-buffered fixed 4%
538	paraformaldehyde for 1 week. Fixed lung tissues were embedded in paraffin, and paraffin
539	sections were used for hematoxylin eosin staining and immunostaining for Ascl1, Sox2, and
540	Insm1. The present study was approved by the Animal Care Committee of Kumamoto
541	University (#A2019-038).
542	
543	Statistical analysis

544 Spearman's correlation coefficient (ρ) was calculated for the correlation analysis. Cell

545	counting data were expressed as the means \pm standard deviation of triplicate measurements.
546	Differences in mean values between the groups were analyzed by a two-tailed statistical
547	analysis using the Student's t-test. GraphPad Prism version 7.04 (San Diego, CA) was used
548	for the statistical analysis. p values less than 0.05 were considered to be significant.
549	Dataset availability
550	The dataset produced in this study is available in the following database:
551	• RNA-seq data: Gene Expression Omnibus GSE60052
552	(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60052)
553	
554	References
555	Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H, Cumaraswamy A, Borges M,
556	Nelkin BD (1993) Identification of a human achaete-scute homolog highly expressed
557	in neuroendocrine tumors. Proc Natl Acad Sci U S A 90: 5648-52
558	Ball DW (2004) Achaete-scute homolog-1 and Notch in lung neuroendocrine development
559	and cancer. Cancer Lett 204: 159-69
560	Bartis D, Csongei V, Weich A, Kiss E, Barko S, Kovacs T, Avdicevic M, D'Souza VK, Rapp J,
561	Kvell K, Jakab L, Nyitrai M, Molnar TF, Thickett DR, Laszlo T, Pongracz JE (2013)

562	Down-Regulation of Canonical and Up-Regulation of Non-Canonical Wnt Signalling
563	in the Carcinogenic Process of Squamous Cell Lung Carcinoma. PLos One 8: e57393.7
564	Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW
565	(1997) An achaete-scute homologue essential for neuroendocrine differentiation in the
566	lung. Nature 386: 852-6
567	Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK,Girard L, Minna
568	JD ⁶ , Gazdar AF ⁷ , Cobb MH ⁸ , Johnson JE (2016) ASCL1 and NEUROD1 Reveal
569	Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic
570	Programs. Cell Rep 16: 1259-72
571	Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? (2015) Cancer 121:
572	664-72
573	Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, Zweig MH, Minna
574	JD (1985) Establishment and identification of small cell lung cancer cell lines having
575	classic and variant features. Cancer Res 45: 2913-23
576	Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D, Li N (2012)
577	SOX2 gene regulates the transcriptional network of oncogenes and affects
578	tumorigenesis of human lung cancer cells. PLos ONE 7: e36326

bioRxiv preprint doi: https://doi.org/10.1101/857144; this version posted November 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

579	Fujino K, Motooka Y, Hassan WA, Ali Abdalla MO, Sato Y, Kudoh S, Hasegawa K,
580	Niimori-Kita K, Kobayashi H, Kubota I, Wakimoto J, Suzuki M, Ito T (2015) INSM1 is
581	a crucial regulator of neuroendocrine differentiation in lung cancer. Am J Pathol 185:
582	3164–77
583	Gao Z, Ure K, Ding P, Nashaat M, Yuan L, Ma J, Hammer RE, Hsieh J (2011) The master
584	negative regulator REST/NRSF controls adult neurogenesis by restraining the
585	neurogenic program in quiescent stem cell. J Neurosci 31: 9772-86
586	Gazdar AF, Bunn PA, Minna JD (2017) Small-cell lung cancer: what we know, what we
587	need to know and the path forward. Nat Rev Cancer 17: 765
588	Gazdar AF, Carney DN, Nau MM, Minna JD (1985) Characterization of variant subclasses
589	of cell lines derived from small cell lung cancer having distinctive biochemical,
590	morphological, and growth properties. Cancer Res 45: 2924-30
591	George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta
592	L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D,
593	Torres A, Wang MS, Korbel JO et al (2015) Comprehensive genomic profiles of small
594	cell lung cancer. Nature 524: 47-53.

bioRxiv preprint doi: https://doi.org/10.1101/857144; this version posted November 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

595	Hassan WA, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T (2014) Notch1 controls
596	cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer 86:
597	304-10
598	Horie M, Saito A, Ohshima M, Suzuki HI, Nagase T (2016) YAP and TAZ modulate cell
599	phenotype in a subset of small cell lung cancer. Cancer Sci 107: 1755-1766
600	Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large
601	gene lists using DAVID bioinformatics resources. Nature Protoc 4: 44-57
602	Imayoshi I, Shimogori T, Ohtsuka T, Kageyama R (2008) Hes genes and neurogenin regulate
603	non-neural versus neural fate specification in the dorsal telencephalic midline.
604	Development 135:2531-2541
605	Ito T, Kudoh S, Ichimura T, Fujino K, Hassan WA, Udaka N (2017) Small cell lung cancer, an
606	epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch
607	signaling and expression of achaete-scute complex homologue 1. Hum Cell 30: 1-10
608	Ito T, Matsubara D, Tanaka I, Makiya K, Tanei ZI, Kumagai Y, Shiu SJ, Nakaoka HJ,
609	Ishikawa S, Isagawa T, Morikawa T, Shinozaki-Ushiku A, Goto Y, Nakano T, Tsuchiya
610	T, Tsubochi H, Komura D, Aburatani H, Dobashi Y, Nakajima J (2016) Loss of YAP1
611	defines neuroendocrine differentiation of lung tumors. Cancer Sci 107: 1527-38

612	Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R,
613	Kitamura H (2000) Basic helix-loop-helix factors regulate the neuroendocrine
614	differentiation of fetal mouse pulmonary epithelium. Development 127: 3913–21
615	Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, Conley S, Zhong H, Liu Z, Brohawn P,
616	Shen D, Wu S, Ge X, Jiang Y, Zhao Y, Lou Y, Morehouse C, Zhu W, Sebastian Y,
617	Czapiga M (2016) Genomic landscape survey identifies SRSF1 as a key oncodriver in
618	small cell lung cancer. PLoS Genet 12: e1005895
619	Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D,
620	Jahchan NS, Hamard C, Antoine M, Wislez M, Kong C, Cain J, Liu YW, Kapoun AM,
621	Garcia KC, Hoey T, Murriel CL, Sage J (2017) Intratumoural heterogeneity generated
622	by Notch signaling promotes small-cell lung cancer. Nature 545: 360-364
623	Lázaro S, Pérez-Crespo M, Enguita AB, Hernández P, Martínez-Palacio J, Oteo M, Sage J,
624	Paramio JM, Santos M (2017) Ablating all three retinoblastoma family members in
625	mouse lung leads to neuroendocrine tumor formation. Oncotarget 8: 4373-4386
626	McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M, Kresak A, Chen Y, Yang M, Velcheti V,
627	Fu P, Dowlati A (2017) Reciprocal expression of INSM1 and YAP1 defines subgroups
628	in small cell lung cancer. Oncotarget 8: 73745-73756.
629	Meder L, König K, Ozretić L, Schultheis AM, Ueckeroth F, Ade CP, Albus K, Boehm D,

630	Rommerscheidt-Fuss U, Florin A, Buhl T, Hartmann W, Wolf J, Merkelbach-Bruse S,
631	Eilers M, Perner S, Heukamp LC, Buettner R (2016) NOTCH, ASCL1, p53, and RB
632	alterations define an alternative pathway driving neuroendocrine and small cell
633	carcinomas. Int J Cancer 138: 927-38
634	Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A (2003) Introduction of
635	small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional
636	mouse model. Cancer Cell 4:181-9
637	Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005) ASH1 gene is a specific
638	therapeutic target for lung cancers with neuroendocrine features. Cancer Res 65:
639	10680-5
640	Osada H, Tomida S, Yatabe Y, Tatematsu Y, Takeuchi T, Murakami H, Kondo Y, Sekido Y,
641	Takahashi T (2008) Roles of achaete-scute homologue 1 in DKK1 and E-cadherin
642	repression and neuroendocrine differentiation in lung cancer. Cancer Res 68: 1647-55
643	Ran F, Hsu PD, Wright J, Agarwala V, Scott DA, and Zhang F (2013) Genome engineering
644	using the CRSPR-Cas9 system. Nat Protoc 8: 2281-2308
645	Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE (2017) WNT signaling - lung cancer is no
646	exception. Respir Res 18:167

647	Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L (2008) Rational targeting of Notch
648	signaling in cancer. Oncogene 27: 5124-31
649	Rudin CM, Durinck S, Atawiski F, Poirier JT, Modrusan Z, Shames DS, Bergbower EA,
650	Guan Y, Shin J, Guillory J, Rivers CS, Foo CK, Bhatt D, Stinson J, Gnad F, Haverty
651	PM, Gentleman R, Chaudhuri S, Janakiraman V, Jaiswal BS et al (2012)
652	Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in
653	small-cell lung cancer. Nat Genet 44: 1111-6
654	Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE,
655	Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J,
656	Thomas RK, Vakoc CR, Gazdar AF (2019) Molecular subtypes of small cell lung
657	cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19: 289-297
658	Stewart DJ (2014) Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst
659	106:djt356
660	Tenjin Y, Kudo S, Kubota S, Yamada T, Matsuo A, Sato Y, Ichimura T, Kohrogi H, Sashida G,
661	Sakagami T, Ito T (2019) Ascl1-induced Wnt11 regulates neuroendocrine
662	differentiation, proliferation and E-cadherin expression in small-cell lung cancer and
663	Wnt11 regulates small-cell lung cancer biology. Lab Invest doi:
664	10.1038/s41374-019-0277-y.

665	Thiel G, Ekici M, Rossler OG (2015) RE-1 silencing transcription factor (REST): a regulator
666	of neuronal development and neuronal/endocrine function. Cell Tissue Res 359:
667	99-109
668	Tichelarr J, Lu W, Whitsett J (2002), Conditional expression of fibroblast growth factor-7 in
669	the developing and mature lung. J Biol Chem 275:11858-11864
670	Travis WD, Brambilla E, Burke AP, Marx, A., Nicholson, A. G (2015) WHO classification of
671	tumours of the lung, pleura, thymus and heart, 4th ed. Lyon, France, IARC, 63-68
672	Tsukuda T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tikunnaga T, Takeda N, Suda
673	Y, Abe S (1993) Enhanced proliferative potential in culture of cells from p53-deficient
674	mice. Oncogene 8:3313-3322
675	Vooijs M, Berns A (1999) Developmental defects and tumor predisposition in Rb mutant
676	mice. Oncogene 18: 5293-303.
677	Wael H, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T (2014) Notch1 signaling
678	controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung
679	Cancer 85: 131–40
680	Wang S, Tang J, Sun T, Zheng X, Li J, Sun H, Zhou X, Zhou C, Zhang H, Cheng Z, Ma H,
681	Sun H (2017) Survival changes in patients with small cell lung cancer and disparities
682	between different sexes, socioeconomics statues and ages. Sci Rep 7: 1339

683	Yoshida R, Nagata M, Nakayama H, Niimori-Kita K, Hassan W, Tanaka T, Shinohara M, Ito
684	T (2013) The pathological significance of Notch1 in oral squamous cell carcinoma. Lab
685	Invest 93: 1068-81
686	Zhang W, Girard L, Zhang YA, Haruki T, Papari-Zareei M, Stastny V, Ghayee HK, Pacak K,
687	Oliver TG, Minna JD, Gazdar AF (2018) Small cell lung cancer tumors and preclinical
688	models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res
689	7: 32-49
690	
691	Acknowledgments
692	We thank Ms. Yuko Fukuchi and Ms. Takako Maeda for their technical assistance; the
693	staff of LILA for their technical support; the Institute of Molecular Embryology and Genetics,
694	Kumamoto University for its help with the RNA-seq analysis. This study was partially
695	supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
696	Sports, Science and Technology of Japan 18K19480 and by Aihara Pediatric and Allergy
697	Clinic, Yokohama, Japan. This study was also supported in part by the program of the Joint
698	Usage/Research Center for Developmental Medicine, Institute of Molecular Embryology and
699	Genetics, Kumamoto University.
700	

701 Conflicts of interest

- 702 We have no conflicts of interest to disclose.
- 703

```
704 Figure legends
```

705Fig. 1: (A) WB analysis of SOX2, ASCL1, and INSM1 in lung cancer cell lines, 706 including small cell lung carcinoma (SCLC), adenocarcinoma (ADC), and squamous cell 707 carcinoma (SCC). SOX2 was more strongly expressed in all SCLC cell lines than in the 708 NSCLCs examined. Four out of the 7 SCLC cell lines simultaneously expressed ASCL1 and 709 INSM1. B-ACTIN served as an internal control. (B) ChIP-seq and RNA-seq were conducted 710to analyze putative SOX2 target genes and mRNA expression in the H69, H889, and SBC3 711 cell lines. As shown in a Venn plot, 346 specific SOX2-bound genes, which also significantly 712expressed mRNAs in the classical subtype, were identified (shared in NCI-H69 and 713 NCI-H889). INSM1 was included as a common gene. In a similar manner, 825 specific 714SOX2-bound genes that also significantly expressed mRNAs were identified in the variant 715subtype of the SBC3 cell line. Hippo pathway-related genes and REST were included as 716 common genes. (C) Results of the GO functional analysis. The top 10 enriched categories in 717biological processes in each of the classical and variant subgroups were shown. The distinct 718 functions of SOX2 in each subgroup were suggested.

720	Fig. 2: (A) A WB analysis showed that the transfection of $ASCL1$ in A549 ADC cells
721	increased SOX2, INSM1 and WNT11 expression. β-ACTIN served as an internal control. (B)
722	Tumor tissues by the xenotransplantation of mock A549 cells and $ASCL1$ -transfected A549
723	cells in immunodeficient mice. Using IHC, ASCL1 transfection induced SOX2 protein
724	expression in tumor cell nuclei. Representative images are shown. Scale bar = 200 μ m. (C)
725	Changes in transcriptional regulation driven by SOX2 between $ASCL1$ -transfected A549
726	and A549 mock cells. ChIP- and RNA-seq combined data showed 35 specific SOX2-bound
727	genes in $ASCL1$ -transfected A549. $INSM1$ was newly detected after the transfection of
728	ASCL1. (D) An integrated genome viewer (IGV) snapshot showed SOX2 binding at the
729	overlap region of the transcription starting site and ASCL1 binding near the site of the
730	INSM1 gene in SCLC cell lines. (E) The suppression of SOX2 by RNAi for ASCL1 was
731	confirmed in H889 and SBC1 cells by a WB analysis (F) IHC images of surgically resected
732	SCLC tissues for SOX2, ASCL1, and INSM1. These proteins were strongly expressed in
733	tumor cell nuclei. Representative images are shown. Scale bar = 200 μ m. (G) Expression
734	levels of ASCL1, INSM1, and SOX2 in the RNA-seq dataset of SCLC tissues. The GSE60052
735	(n=79) dataset (Jiang <i>et al.,</i> 2016) was analyzed. NT, non-treated; si, small interfering.
736	

737	Fig. 3: (A) SOX2 affects INSM1, WNT11, and CDH1 expression in SCLC cell lines. The
738	suppression of INSM1, WNT11, and CDH1 was observed in the classical subtype of the
739	SCLC cell lines, H69, H889, and SBC1s with RNAi for <i>SOX2</i> . SOX2 was also involved in the
740	expression of NOTCH1, MYC, TCF4, Trp53, and RBL1 in <i>ASCL1</i> -TF A549 cells. (B) Cell
741	counting assays with SCLC cell lines. The cell growth curve is shown. The suppression of
742	cell proliferation was observed in H69, H889, and SBC1 cells with RNAi against $SOX2$. The
743	analysis was performed in triplicate. Data are shown as the mean ±SD. Asterisks indicate a
744	significant difference. *, p<0.05.
745	
746	Fig. 4: SOX2 knockdown in the variant subtype of SCLC cell lines, SBC3 and H69AR
747	cells, using RNAi. $SOX2$ mRNA expression significantly decreased, whereas tumor
748	proliferative capacity did not after the knockdown of <i>SOX2</i> in SBC3 and H69AR cells. <i>YAP1</i> ,
749	TEAD1, or VIMENTIN mRNA expression decreased in SOX2-knockout SBC3 and H69AR
750	cells. ASCL1, INSM1, and WNT11 mRNA expression did not change in these cell lines. The
751	analysis was performed in triplicate. Data are shown as the mean ±SD. Asterisks indicate a
752	significant difference. *, p<0.05.
753	

754	Fig. 5: A SCLC precursor lesion in the <i>Trp53 (-); CCSPrtTA; tetOCre; Rb1 (fl/fl); Hes1</i>			
755	(fl/fl) mouse treated with doxycycline for 6 weeks. Serial sections stained with hematoxylin			
756	and eosin (HE) and IHC for Ascl1, Sox2, and Insm1. Scale bar = $50 \mu m$.			
757				
758	Fig. 6: Distinct roles for SOX2 in classical and variant subtypes of SCLC were			
759	summarized. ASCL1 and SOX2 cooperatively regulate INSM1 and WNT11 expression and			
760	SOX2 affects not only tumor cell proliferation, but also EMT modulation or NE			
761	differentiation in the classical subtype. On the other hand, SOX2 affects distinct cell			
762	signaling, such as the Hippo pathway, and modulates EMT in the variant subtype. SOX2			
763	affects tumor cell survival slightly more in the classical subtype than in the variant subtype			
764	of SCLC.			
765				
766	Supplementary Fig. S1: IHC images of surgically resected non-SCLC tissues for SOX2,			
767	and ASCL1. SOX2 was expressed in tumor cell nuclei. Representative images are shown.			
768	Scale bar = 200μ m.			
769				
770	Supplementary Fig. S2: SOX2 affects ASCL1 expression in SCLC cell lines. The			
771	suppression of $ASCL1$ was observed in the classical subtype of SCLC cell lines, H69, H889,			

772	and SBC1, with RNAi for $SOX2$ by qRT-PCR. Hippo pathway-related mRNA, $Y\!AP1$ and
773	TEAD1, did not show significant changes after the knockdown of $SOX2$ in these cells. The
774	analysis was performed in triplicate. Data are shown as the mean ±SD. Asterisks indicate a
775	significant difference. *, p<0.05.
776	
777	Supplementary Fig. S3: SOX2 knockout in SBC3 and H69AR cells using the
778	CRISPR/Cas9 system. SOX2 protein expression was completely diminished (A), whereas
779	tumor proliferative capacity was not after the knockout of $SOX2$ in SBC3 and H69AR cells
780	(B). YAP1, TEAD1, or VIMENTIN mRNA expression decreased in SOX2-knockout SBC3 and
781	H69AR cells (C).
782	
783	The paper explained
784	PROBLEM
785	Small cell lung cancer (SCLC) is an aggressive neuroendocrine (NE) malignancy with
786	few therapeutic options. <i>SOX2</i> is an oncogene, the amplification of which has been reported
787	in human SCLC. However, the role of SOX2 remains unclear and strategies to selectively
788	target SCLC cells have not been established.
789	

790 RESULTS

791	A chromatin immunoprecipitation sequencing analysis identified distinct putative
792	target genes of SOX2 between the classical and variant subtypes of SCLC cell lines. ASCL1,
793	a lineage-specific transcriptional factor, is involved in NE differentiation and tumorigenesis,
794	and recruited SOX2 to the lineage-specific gene, <i>INSM1</i> , in the classical subtype of SCLC.
795	SOX2 suppression using RNAi resulted in significant reductions in tumor cell proliferative
796	capacity in the classical subtype. On the other hand, SOX2 binds distinct genes, such as
797	those in the Hippo signaling pathway, and the knockdown of SOX2 was insufficient to
798	inhibit tumor cell growth in the variant subtype of SCLC. SOX2 appears to potently
799	modulate epithelial-to-mesenchymal transition via the Wnt or Hippo signaling pathways
800	and affect tumor cell invasive capacity in each cell in a context-dependent manner.
801	
802	IMPACT
803	The present results provide insights into the functional underpinnings of small cell
804	lung carcinogenesis and promote our understanding of SCLC phenotypic changes. The
805	functional discrepancy in SOX2 between the classical and variant subtypes of SCLC may
806	have an impact on appropriate therapeutic approaches and suggests that the ASCL1-SOX2
807	axis is a promising therapeutic target or biomarker to identify SCLC patients that may

bioRxiv preprint doi: https://doi.org/10.1101/857144; this version posted November 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

808 benefit from a SOX2-directed therapeutic approach in future clinical trials.

(C)

SCLC classical subtype

SOX2 target genes in classical subtypeSOX2 target genes in variant subtype

high expression in classical subtypehigh expression in variant subtype

SCLC variant subtype

(A)

(B)

TIME (HOUR)

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

(B)

SBC3 mock

SBC3 SOX2 KO

 Table 1
 Result of Immunohistochemical Staining of Human Lung cancer

	SCLC			ADC
	SOX2	ASCL1	INSM1	SOX2
score				
0, negative	3/30(10.0%)	9/30(30.0%)	4/30 (13.3%)	6/20(30.02%)
1, weak positive	6/30(20.0%)	3/30 (10.0%)	1/30 (3.3%)	7/20(30.0%)
2, positive	21/30 (70.0%)	18/30 (60.0%)	25/30 (83.3%)	7/20(35.0%)

SCLC tissues highly express SOX2, ASCL1, and INSM1. Immunohistochemical staining for SC specimens that had been surgically resected. Immunohistochemical staining for SOX2 and specimens. SCLC, small cell lung carcinoma; ADC, adenocarcinoma; SCC, squamous cell car

	SCC	
ASCL1	SOX2	ASCL1
17/20(85.0%)	4/20 (20.0%)	16/20(80.0%)
3/20(15.0%)	5/17(25.0%)	4/20 (20.0%)
0/20 (0%)	11/20(55.0%)	0/20 (0%)

DX2, ASCL1, and INSM1 was performed in 30 SCLC ASCL1 was also performed in 20 ADC and 20 SCC cinoma

Table 2	Antibodies used for IHC and WB	analysis
---------	--------------------------------	----------

Primary antibody	Manufacturer (location)	WB	IHC
Sox2 (AB5603)	Millipore (Billerica, MA)	1:1000	1:100
Sox2 (E-4)	Santa Cruz Biotechnology		1:100 0
ASH1 (AB15582)	Millipore (Billerica, MA)		1:100
MASH1 (ab213151)	abcam (Cambridge, UK)		1:100 0
Ascl1 (556604)	BD Biosciences (San Jose, CA)	1:500	
Wnt11 (107-10576)	RayBiotech (Norcross, GA)	1:1000	
Insm1 (C-1)	Santa Cruz Biotechnology	1:5000	
E-cadherin (610181)	BD Biosciences	1:1000	
Notch1 (D1E11)	Cell Signaling	1:1000	
c-Myc (D84C12)	Cell Signaling	1:1000	
TCF4 (D-4)	Santa Cruz Biotechnology	1:1000	
p53 (DO-1)	Santa Cruz Biotechnology	1:1000	
p107 (C-18)	Santa Cruz Biotechnology	1:1000	
p-Histone H3 (Ser10)	Millipore (Billerica, MA)	1:500	
β-actin (A-5441)	Sigma Aldrich (Oakville, ON, Canada)	1:1000	0

Manufacturers, quantities, and working dilutions are indicated. Ascl1, achaete-scute complex homolog-like 1; Wnt11, Wnt family member 11; Insm1, insulinoma-associated protein 1; TCF4, transcription factor 4; IHC, immunohistochemistry; WB, Western blot.

Table 3	List of primers used in PCR	
Target	Sequence	Product size (bp)
5073	F: 5 -AACCCCAAGATGCACAACTC-3'	150
3072	R: 5 -CGGGGCCGGTATTTATAATC-3'	152
	F: 5-CGGCCAACAAGAAGATGAGT-3'	160
ASCLI	R: 5-GCCATGGAGTTCAAGTCGTT-3'	109
	F: 5-CAGTGTGCGGAGAGTCGTT-3'	166
INSIVIT	R: 5-ACCTGTCTGTTTTCGGATGG-3'	100
\ A/NIT11	F: 5-TGACCTCAAGACCCGATACC-3'	180
VVINTI	R: 5-GCTTCCGTTGGATGTCTTGT-3'	109
VAD1	F: 5 -GCAGTTGGGAGCTGTTTCTC -3'	203
	R: 5 -GCCATGTTGTTGTCTGATCG -3'	205
ΤΕΔΟ1	F: 5 -TCAGCTTTTCTCGAGCAGCA-3'	555
ILADI	R: 5 -CACACAGGCCATGCAGAGTA-3'	555
VIMENTI	F: 5 -GAGAACTTTGCCGTTGAAGC -3'	170
	R: 5 -TCCAGCAGCTTCCTGTAGGT -3'	
САРОН	F: 5 -CAGCCTCAAGATCATCAGCA -3'	106
GAPDH	R: 5 -TGTGGTCATGAGTCCTTCCA -3'	100

SOX2, SRY-box 2; ASCL1, achaete-scute complex homolog-like 1; INSM1, insulinomaassociated protein 1; WNT11, Wnt family member 11; YAP1, Yes associated protein 1; TEAD1, TEA domain transcription factor 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; F, forward; R, reverse.