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Abstract:  

Neonatal immune-microbiota co-development is poorly understood, yet appropriate recognition 

of – and response to – pathogens and commensal microbiota is critical to health.  In this 

longitudinal study of 133 pre- and 79 full-term infants from birth through one year of age we 

found that postmenstrual age, or weeks from conception, is the dominant factor influencing T 

cell and mucosal microbiota development.  However, numerous features of the T cell and 

microbiota trajectories remain unexplained by host age, and are better explained by discrete peri- 
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and post-natal events. Most strikingly, we establish that disruption of the normal developmental 

program, as is seen with discordant or atypical T cell and microbiota trajectories, increases the 

risk of illnesses in the first year of life.  Altogether, this study presents compelling evidence that 

newborn health is marked by predictable, coordinated immune and microbiota development, but 

deviation from this pattern places an infant at significant risk for respiratory morbidity. 

Introduction 

Early immunity and microbiota in human infants have profound impacts on health and 

disease, but factors influencing their development are incompletely understood (1-3). Recent 

studies point to there being a developmental program that determines major shifts in bulk 

immune cell population distribution (T cells, B cells, granulocytes, monocytes, etc.), over the 

first 3 months of postnatal life (4).  Likewise, there appears to be an age-related trajectory for gut 

and respiratory microbiota which, when disrupted by peri- and post-natal events, are associated 

with adverse outcomes such as atopy, stunted growth, and respiratory infection (5-9). Two recent 

studies demonstrated that the nasopharyngeal microbiome and virome together predict infant 

respiratory tract infection, but these studies left unresolved the microbiome’s impact and 

dependency on immune development (10, 11).   

The observation that the parallel developmental processes of the immune system and the 

microbiome are likely to be influenced by many of the same extrinsic factors and to have 

mutually formative effects on one another has given rise to the concept of a neonatal window of 

opportunity; a critical period of primary exposures and immune maturation which may have 

lifelong health implications (12) .Whether or not an exposure is differentially “remembered” by 

the immune system based on its timing during development is not known, but is particularly 

relevant when considering the long-lived adaptive immune system. Aberrant or mistimed 
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immune and microbiota trajectories, if found to be associated with disease states, have important 

implications for any infant-targeted interventions proposing to perturb either of these systems. 

To date, there are no published studies addressing how T cells and the mucosal microbiome are 

linked during early human development, and none have explored the degree to which immunity 

and mucosal bacteria interplay impact an infant’s health in the first year of life. The need to 

understand the complex relationship between microbiota, the immune system and infant 

development is urgent, given the accelerating use of microbiome-based therapies in humans (13-

16). In this work, we seek to directly address this critical knowledge gap using a systems biology 

approach modeling structured patterns of progression of T cell populations and the gut and 

respiratory microbiota relative to postmenstrual age.  We identified several interdependencies 

between these systems which could not be explained by host age. By tracking clinical outcomes 

in our longitudinal cohort, we found that morbidity was increased in infants exhibiting atypical 

or discordant acquisition of microbiota and T cell populations, implicating aberrant co-

development of these systems as an early marker for disease.  To our knowledge, this work 

represents the most extensive assessment to date of the relationship between developing T cell 

populations and microbiota in humans, and it is the first to demonstrate a link between the co-

development of these systems and clinical outcomes in infants. 

Results  

Study Design and Demographics 

Neonatal subjects (n=267) born 23-42 weeks gestational age (GA) were recruited within 

7 days of birth at the University of Rochester from 2012-2016, as part of the NIAID-sponsored 

Prematurity, Respiratory, Immune Systems and Microbiomes study (PRISM) (Fig. 1a). In all, 

122 preterm (PT, < 37 0/7 weeks gestation) and 80 full-term (FT, � 37 0/7 weeks gestation) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/736090doi: bioRxiv preprint 

https://doi.org/10.1101/736090
http://creativecommons.org/licenses/by-nc-nd/4.0/


subjects completed the study to 12 months of age corrected for premature birth and were 

categorized as having or not having the primary outcome persistent respiratory disease (PRD) 

using previously published criteria (17).  Cohort demographics are shown in Table 1. Sufficient 

blood to perform T cell phenotyping by flow cytometry at three pre-defined timepoints was 

collected from 55% of subjects at birth, 61% of subjects at NICU discharge, and 38% at 12 

months.  For microbiota profiling, inpatient samples were obtained weekly and outpatient 

samples for PT and FT were obtained monthly, with additional sampling during acute illness.  

After sample processing, 16S rRNA sequencing, quality control, and removing subjects without 

any immunophenotyping data, 149 subjects yielded 1748 usable nasal samples and 143 subjects 

yielded 1899 usable rectal samples. The median subject had 24 samples, with 28 days on average 

between samples. Finally, 109 and 117 subjects had sufficient combined T cell phenotyping and 

microbiota data to be included for immunome-nasal microbiota and immunome-rectal microbiota 

association analyses, respectively (Supplementary Tables 1-2).   

 

Postmenstrual age exerts a greater influence on early T cell and microbiota development than 

does postnatal age.   

We predicted, based on our and other previous studies that T cell and microbiota 

evolution in the first year of life would proceed in an age-dependent manner. Age can be defined 

in several useful ways in newborns, and these definitions have different implications. 

Postmenstrual age (PMA), or weeks from conception, takes into account that T cell maturation 

begins in utero, prior to antigen exposure, and continues postnatally as the infant grows. This is 

important when PT infants, who are born before completion of a gestational program, are 

included in a cohort. Alternatively, models based on postnatal exposures would most aptly 
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incorporate days of life (DOL), or days since birth, as the key factor affecting immune and 

microbiota development. In considering the strengths of a combined PT and FT cohort, we 

therefore tested two competing hypotheses. First, that the microbiome and T cells would be 

shaped primarily by days of life, i.e., postnatal exposures would be the essential driver of T cell 

and microbial maturation. Under this hypothesis, we would expect PT and FT infants to display 

overlapping states at birth that would diverge as PT subjects achieved term equivalent 

postmenstrual age, because they will be considerably older in days of life compared to FT 

newborns at that point. Alternatively, these systems could be more heavily influenced by an 

infant’s physiologic maturity, therefore PMA. If this alternative proved true, PT and FT subjects 

would exhibit distinct profiles at birth, which would converge when PT infants achieved term 

equivalent age.  

We applied unsupervised clustering approaches to reveal fine-grained, biologically 

interpretable categories of T cell populations and microbiota.  The clustering algorithm 

FlowSOM identified 80 discrete populations of T cells using flow cytometry data (18), 50 from a 

T cell phenotyping panel (Tphe) and 30 from an intracellular cytokine panel (ICS).  For the 

microbiome data, DADA2 was used to denoise and resolve the 16S rRNA amplicon sequence 

variants.  We compared the effect of PMA and DOL on microbiota and T cell populations at a 

high level by using multivariate ANOVA to determine the explanatory power of each measure of 

age across all component microbes or T cell populations (Fig. 1B). Compared to DOL, PMA was 

superior in predicting T cell, gut and respiratory microbiota composition (�adj
�   0.18, 0.04,  0.08 

respectively). Based on these results, we focused on PMA, rather than DOL, as the best predictor 

of T cell and microbiota maturation.   
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Anticipating that T cell populations and microbiota composition would show interrelated 

patterns of variation, we again applied multivariate ANOVA to quantify the amount of total 

variance the composition of one system could explain in another.  All pairs of systems exhibited 

significant relationships with one another.  The �adj
�  ranged from 0.05 (nasal microbiota 

explaining gut microbiota) to 0.15 (nasal microbiota explaining T cells).  However, given that all 

systems exhibited strong associations with PMA, we reasoned that much of the observed effects 

would be due to the common influence of PMA progression within subjects rather than direct 

action of one system on the other.  Indeed, adjusting for PMA in these models attenuated the 

variance explained between systems by approximately 50%, though all pairs were still 

significantly interrelated. These results support PMA as a significant driver of T cell and 

microbiota maturation, but further suggests a more complicated model in which these systems, 

albeit to a lesser degree, coordinate independently of host age.  

 

Premature birth transiently alters T cell development 

Based on our finding that PMA (a variable that precedes birth and continues postnatally), 

better explains the temporal progression of T cell populations than DOL, we anticipated that PT 

and FT infants who were born at different PMA would begin with distinct phenotypes at birth 

but then converge as they achieved equivalent PMA. Using uniform manifold approximation and 

projection (UMAP) to visualize a reduced-dimension representation of each sample’s combined 

vector of component T cell population proportions (ICS and Tphe combined), we confirmed that 

PT and FT T cell phenotype and function clustered separately at birth, began to converge at 40 

weeks PMA, and were fully overlapping between GA groups by 12 months (Fig. 2A, 2B).  
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We next investigated the patterns of individual T cell population abundances over time 

from birth through one year. Previous studies focusing on a limited number of T cell subsets 

have suggested a straightforward model in which the fetal T cell developmental program is first 

biased towards tolerance and hyporesponsiveness, but then acquires, following repeat immune 

priming postnatally, conventional memory T cells with polarized cytokine functions (19-22). To 

more comprehensively characterize the T cell populations that follow a PMA-directed program, 

we examined populations that were selected as statistical predictors of PMA using elasticnet 

regression (see “Mistimed Immune and Microbial Development Predict Respiratory Morbidity”). 

Tphe populations were grouped according to the following established naming conventions: 

effector memory (EM, CD45RO+, CCR7-, CD28-), naïve (N, CD45RO-, CCR7+, CD28+),  

central memory (CM, CD45RO+, CCR7+), virtual memory (Vmem, CD8+, CD45ROlo, 

CD122hi), terminal effector (TE, CD45ROlo, CCR7-, CD28-), (23-28). ICS populations were 

first grouped into naïve and memory (CD45RA+ and CD45RA-, respectively), and then named 

based on predominant cytokine profile. Interestingly, T cells associated with the “youngest” 

PMA displayed TE marker combinations, including CD8+ T cells positive for cytotoxic 

granules. Naïve and EM subsets followed TE chronologically, and naïve populations showed 

considerable heterogeneity across PMA. CM populations were generally associated with older 

PMA, and several of the CM populations that arose earlier carried a FOXP3+IL7rαlow T-reg 

cell phenotype (Fig. 2C).  

Based on previous studies showing VM T cells arising during rapid homeostatic 

expansion, we expected to find this population enriched in early PT infants, corresponding to a 

period of highest growth velocity. Counter to this expectation, VM were enriched at later PMA 

in FT-born infants. Functionally, CD4+ T cells progressed from naive TNF-α and IL-2 high, 
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then IL-8 high, then polarized, polyfunctional cells at later PMA.  Naïve, cytokine low and TNF-

α positive CD8+ T cells were present at low PMA, then progressed through IL-4 and IL-8 

positive, then cytotoxic CD45RA+. CD45RA low (memory phenotype) T cells were enriched at 

later PMA.  

Individual T cell subsets with different abundances between PT and FT subjects were 

most prominent at the birth and discharge timepoints. To isolate the impact of premature birth on 

T cell development, we performed a multivariate regression based on GA, PMA and interactions 

thereof, to estimate GA-associated changes in abundance on T cell subsets at 37 weeks PMA. T 

cell subsets again were grouped based on CCR7, CD45RO, CD45RA, and CD122 expression as 

described above. Naïve subsets were distributed across gestational ages, though PT naïve subsets 

were distinct in their lower CD31 expression and IL-8 expression. Memory and effector subsets 

(CD45RA-, CM, EM, TE) were associated with younger GA, with the exception of VM, which 

was associated with FT subjects (Fig. 2D). Even within the FOXP3+ populations, there was 

subtle variation in phenotype between PT and FT, with PT-associated Tregs displaying low 

CCR7 expression. 

Early variation between PT and FT followed by convergence at one year did not 

necessarily imply that T cell development from early PMA to one year would proceed in a linear 

fashion. That is to say, the early PMA effector/memory enrichment may not set the PT T cell 

pool on a linear trajectory across all three sampled timepoints. We therefore sought out cell 

population subsets with distinctly non-linear patterns of abundance from birth to discharge to one 

year. Utilizing the three timepoints typically captured for each subject, we identified 10 T cell 

populations with non-monotone V- or inverted-V trajectories from birth to 12 months in PT 

samples (Fig. 2E, Supplementary Fig. 1). Most frequently, these population abundances followed 
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a V-shaped trajectory that decreased sharply from birth (derived from cord blood), to 37 weeks 

PMA, followed by a slower recovery from 37 weeks to one year. This pattern was seen in several 

memory CD4+ and CD8+ T cell subsets, indicating a transiently activated T cell phenotype in 

PT at birth that resolves under more homeostatic conditions. Two CD4+ ICS populations, which 

were IL-8-positive, had inverted-V trajectories. Together these results reveal a trajectory in 

which pauci-functional memory, effectors and regulatory T cells are enriched during early 

development, and these give way to more “typical” naïve populations, followed by a much later 

gain of fully functional memory T cell subsets. 

 

Inflammatory Exposures Disrupt Typical T Cell Developmental Trajectories  

As described, T cell population abundance was robustly associated with PMA. 

Examining shifts in individual T cell subsets, while informative, may not reveal broader features 

of the immune system that are affected by either time or exposures.  To characterize a more 

global T cell trajectory during infancy, we partitioned Tphe and ICS samples into immune state 

types (ISTs) based on the abundances of their respective T cell populations using Dirichlet 

Multinomial Mixture (DMM) models (Fig 3A-3B).  Briefly, this method assumes that there are a 

relatively small, fixed number of unobserved sample archetypes or typical sample profiles, each 

distinguished by their characteristic composition, and that each observed sample is an instance of 

one of the archetypes.  The model determines the optimal number of archetypes and their typical 

composition based on what best fits the data.  Each IST, therefore, represented an archetypal 

profile of T cell composition in terms of the abundance of the various T cell subpopulations, and 

samples were assigned to the IST which best explains their observed makeup. The seven T cell 

phenotype immune state types (Tphe ISTs) and eight ICS immune state types (ICS ISTs), 
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numbered according to their average order of occurrence, exhibited strong associations with 

PMA (ANOVA, R2 = 0.86 and 0.69, respectively; Fig. 3C-3D). The phenotypic and functional 

trajectory revealed by ISTs is consistent with that found using individual T cell populations. 

With the exception of one 12 month sample in ICS4, ISTs Tphe1-Tphe4 and ICS1-ICS4 were 

only seen in samples drawn at birth and discharge.  

Two Tphe ISTs (Tphe5 and Tphe6) were present in small proportions of samples at all 

timepoints and GA.  Because these state types deviated from the normal IST progression, we 

hypothesized that their occurrence was associated with clinical exposures common to PT and FT, 

as opposed to development alone. In support of this, we noted that Tphe5 was most marked by 

the abundance of Treg subpopulations and atypical early activated (CD31+, CD45RO-, CCR7-, 

CD28-) CD8+, CD4+ CM subpopulations. Consistent with our hypothesis, chorioamnionitis 

and/or exposure to antenatal antibiotics raised the odds of a subject ever entering Tphe5 by 7-

fold (95% CI 1.0-54, p<.05) and 4-fold (95% CI 1.1-13, p<.03), respectively, in a joint logistic 

regression model that adjusted for GA, sex, race, mode of delivery, and premature rupture of 

membranes (Supplementary Fig. 2). Tphe6 was marked by high abundance of CD57+ and 

cytotoxic CD8+ T cells, which are associated with T cell exhaustion and chronic viral infection 

such as CMV, (29, 30). While CMV occurred in less than 7% of Tphe6 negative subjects, 60% 

of subjects ever entering Tphe6 tested positive for CMV at 6 or 12 months (odds ratio 10.2, 

p<.0001).  These results are further evidence that the normal, intrinsic T cell trajectory during 

infancy is largely determined by PMA, and indicate that deviation from the normal is a result of 

perturbation to this trajectory by extrinsic clinical factors.  
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Postmenstrual Age Drives Convergent but Not Identical Microbiota Community Progression In 

Preterms and Full-Terms  

Having characterized the compositional progression of T cell population profiles with 

respect to PMA, we performed a similar assessment of the microbiota.  To summarize and 

examine the data structure broadly, unweighted Unifrac distances between all samples within 

each body site were computed as a measure of β-diversity and were used to perform principal 

coordinate analysis (PCoA).  For both body sites, the first principal coordinate (PC1) 

corresponded to PMA (Supplementary Fig. 3).    Samples lower in PC1 tended to be taken prior 

to 40 weeks PMA, consistent with a unique PT microbiota.  Over time, subjects progressed along 

PC1 and PT and FT subjects converged, exhibiting equal representation on the right side of the 

PC1 axis.  These results establish broad parallels between the development of T cell populations 

and microbiota with respect to PMA. 

To summarize microbiota composition and facilitate subsequent comparative analyses, 

we applied a similar approach as performed on T cell populations using DMM modeling to 

partition samples into characteristic community state types (CSTs) based on their compositional 

profiles. Based on model fit and parsimony, 13 CSTs were defined for both respiratory (nCST) 

and gut microbiota (gCST) and were enumerated (1-13) according to the average PMA at which 

samples assigned to each CST were collected. Both gCST and nCST 1 were predominated by 

Staphylococcus, which was replaced over time with more niche-specific taxa in later CSTs, 

including Enterobacteriales and Clostridiales in the gut and Streptococcus and Corynebacterium 

in the respiratory tract (Fig. 4A-4B). Progression from CST 1 to 13 in the gut and the nose was 

strongly associated with PMA (ANOVA, R2 = 0.57 and 0.61, respectively) (Fig. 4C-4D). Several 

early CSTs with the lowest average PMA were dramatically over-represented by PTs, again 
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suggesting a unique PT microbiota. Overall though, PT and FT subjects tended to converge to a 

shared microbiota and most CSTs were represented by equal proportions of FT and PT infants.  

However, a small number of gCSTs and nCSTs occurring later in the first year of life violated 

this tendency and were overrepresented by either PT or FT subjects.  For example, gCST 9 

contained 78% PT samples vs. 22% FT samples (p<0.05, two-tailed binomial test) and was 

notable for diminished levels of Bifidobacterium relative to gCSTs 8 and 10, which occurred 

over similar PMA intervals but which were over-represented by FT subjects (p<0.01 and p<0.05, 

respectively).   These findings reveal that while the sequence of CST occurrence depends 

primarily on PMA, maturity at birth biases infants towards or against entering certain CSTs, even 

months after birth.  

 

T Cells and Microbiota Interact Sparsely After Controlling for PMA  

The strong relationship between PMA, T cell and microbiota state type trajectories 

suggests that the immune system and microbiota are regulated in tandem with the developing 

infant mucosal ecosystem. We therefore asked if T cell-microbial interactions occur beyond what 

can be explained by host age and whether such interactions might imperil an infant’s health. In 

order to explore this question, we modeled overall CST duration, occurrence ever, and time to 

first occurrence as functions of T cell populations and state types at specific time points.  In the 

duration model the number of days a subject spent in a given CST, adjusting for the total length 

of surveillance, was the response.  For the occurrence ever model the log odds that the CST ever 

occurred in a subject was the response.  Lastly, in the time to first occurrence model the response 

was the DOL of the subject’s initial transition into the CST.  We modeled each as a function of 

one of the immunological parameters (IST or T cell population abundance at a particular time 
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point), and adjusted for GA and mode of delivery.  This approach reduced the longitudinal time 

series down to a sequence of subject-level summaries amenable to typical cross-sectional 

analyses.  We fit models on all pairwise combinations of CSTs and immunological parameters.  

The significant results of these tests, which corresponded to interactions between the immune 

system and microbiota present in our cohort, were visualized as networks (Fig. 5A, 

Supplementary Fig. 4).  Among the models of CST duration, of the potential 6318 possible 

associations between the 26 CSTs and 243 immunological parameters, only 10 Tphe and no ICS 

metaclusters achieved statistical significance after multiple test correction. CST-associated CD4+ 

metaclusters preceded, but CD8+ metaclusters followed, the average onset of their associated 

CST, suggesting a temporal directionality to these relationships.  For the models of CST 

occurrence ever, of the 15 total ISTs, only 3 (Tphe1, Tphe3 and Tphe5) were significantly 

correlated with a single CST (nCST 8). The most striking finding in the network was that entry 

into Tphe5 by the time of hospital discharge (n=25 subject-samples) precluded a subject ever 

entering into nCST 8, which itself was only ever observed after hospital discharge (Fig. 5B).  

In the time to first occurrence model, a greater number of gCSTs , CD8+ T cell 

populations and ICS metaclusters exhibited significant associations than in the duration and 

occurrence ever models (Supplementary Fig. 4B). Infants who were delayed in their entry into 

the Streptococcus-dominant nCST 4 had higher TNFα or IFNγ+ naïve CD8+ T cell frequencies 

at discharge and one year. Higher frequencies of effector CD8+ populations were also found in 

subjects with delayed gCST 9 entry (Bifidobacterium and Bacterioides low). Alternatively, the 

occurrence of gCST 3 was accelerated in subjects exhibiting Tphe2 at discharge (Supplementary 

Fig. 5). gCST 3 was the most diverse and mature gCST prior to discharge, and the earliest gCST 

in which Clostridia are prevalent.  Notably, our previous study shows that the early presence of 
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Clostridia in newborns predicts better growth velocity(6). Overall, the sparsity of these 

associations underscores the predominant role that host age plays in driving the abundance of T 

cell populations and microbiota composition.  However, significant relationships between T cells 

and microbiota do occasionally occur even after accounting for the influence of host age, and the 

sequence of occurrence of associated immune markers and microbial CSTs relative to one 

another imply bidirectional imprinting between these two systems.  

 

An Early Maladaptive Immune State Type Precludes Allociococcus Colonization, Which 

Increases Disease Risk   

Closer examination of the infrequent but significant T cell-microbiota associations 

revealed the involvement of an organism with previously described clinically relevant functions. 

nCST 8, which was common overall but never observed in infants who manifested the Tphe5 

immune state at either the birth or discharge sampling timepoints, was dominated by 

Allociococcus.  Allociococcus was virtually absent in samples collected prior to hospital 

discharge, but appeared soon after, maintaining stable mean abundance through one year. 

Previous reports indicate that in children, Alloiococcus in the respiratory tract is negatively 

associated with respiratory infections, while its presence in the ear is positively associated with 

antibiotic-resistant otitis media (31, 32).  Additionally, Tphe5 is notable for its relationship to 

prenatal inflammatory exposures, being dramatically more prevalent in infants who experienced 

chorioamnionitis or exposure to antenatal antibiotics, as described above.  Because the 

predominance of Alloiococcus is the distinguishing feature of nCST 8, and the occurrence of 

nCST 8 was precluded by the occurrence of Tphe5 in early life, we sought to assess the 

relationship between Alloiococcus abundance in the nose, acute respiratory illness, and early 
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immunophenotype, controlling for multiple confounders.  To identify episodes of respiratory 

illness post-NICU discharge, infants were scored by parents using a self-reported modified 

COAST score when respiratory symptoms arose (33). If a threshold score of 3 was met, an in-

person study visit was initiated, during which symptom scores were reviewed, nasal and rectal 

swabs were obtained, and a physical exam was performed.  

As expected, the Tphe5 immunophenotype at birth or discharge was associated with 

diminished Alloiococcus abundance in the nose across all post-discharge timepoints, yielding a 

7-fold reduction (3-14 fold, 95% CI, p-value < 0.001; Fig. 5C), while controlling for DOL, GA, 

mode of delivery, and repeated sampling of subjects.  Additionally, we found a 1.4-fold 

reduction in the odds of a sample being taken during acute illness for every 10% increase in 

Alloiococcus relative abundance (1.1-1.8 fold, 95% CI, p-value < 0.003), controlling for 

confounders as above.  Considering the joint effects of acute illness and Tphe5 occurrence at 

birth or discharge as predictors in the same model, we found that both were associated with 

reduced Alloiococcus abundance, (log ratios -0.9 ± 0.4 and -1.9 ± 0.8, respectively, 95% CI; p-

values < 0.001; Fig. 5D).  However, despite negative associations between Tphe5 and 

Alloiococcus abundance, and Alloiococcus abundance with illness, Tphe5 was not significant as 

a predictor of illness, either by itself (log odds = 0.5 ± 0.7, 95% CI, p-value = 0.13) or in 

conjunction with Alloiococcus relative abundance (log odds = -0.4 ± 0.7, 95% CI, p-value = 

0.33), controlling for confounders in both cases. Taken together with the immune-CST 

associations described above, these results show that bidirectional T cell-microbiota relationships 

occur infrequently, but when present, can be strongly linked with critical health outcomes. 

Furthermore, the temporal progression from prenatal inflammatory exposure to T cell phenotype 

to microbiota to clinical outcome suggest that the cascade of events leading to disease states in 
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infancy is initiated early and involves a complex but observable interplay between exposure, host 

response and mucosal niche development.   

 

Mistimed Immune and Microbial Development Predict Respiratory Morbidity 

Observing that rare T cell-microbiota interactions occurring independently of PMA 

impacted respiratory morbidity led us to hypothesize that mistimings in development of T cells 

or microbiota increased the risk of PRD. To test this hypothesis, we developed a quantitative 

model of the “normal” relationship between PMA and T cell and microbiota composition. We 

trained two sparse regression models that used the T cell populations and OTU abundance 

vectors to predict log2-transformed PMA at sample collection. Holding out a subject’s 

longitudinal record, the cross-validated models strongly predicted PMA using either T cell 

populations (R2=0.77) or bacterial taxa (R2=0.65) (Fig. 6A).   For each subject, the fitted 

intercepts of these models, which here represent the predicted PMA at 37 weeks actual PMA, 

indicate the subject’s microbiota and T cell maturity relative to “normal” at 37 weeks PMA (see 

“Immunological and microbial developmental indices” for details).  The fitted slopes of the 

models indicate a subject’s rate of microbiota and T cell maturation over the first year, again 

relative to normal.  These four fitted parameters define a developmental index (DI) for each 

subject, which was used to assess mistiming with respect to age, or asynchrony between age, T 

cell and microbiota development. 

We used random forest classification models to compare the predictive power of the DI 

alone to that of a set of known clinical risk factors for PRD.  The clinical features were race, 

maternal education, sex, GA, birthweight, season at birth and oxygen supplementation integrated 

over the first 14 days of life (34). The four DI features were the z-scores of the microbiota and T 
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cell slopes and intercepts. In cross-validation, the clinical features predicted PRD with area under 

the curve (AUC) of 0.69 (0.59-0.79 95% CI). The features contributing most to the outcome 

were increased oxygen exposure, lower birthweight and younger GA (Supplementary Fig. 6). 

Notably, when compared to clinical predictors, the developmental index had statistically 

equivalent skill in predicting PRD (Fig. 6B, AUC 0.64, 0.54-0.74 95% CI).  Combining the 

clinical features and the developmental variables did not improve the AUC of the predictive 

model, further evidencing that T cell and microbial development may have durable effects on 

health outcomes that are equal in their impact to traditional clinical characteristics. Of the four 

components generating the DI, the microbiome intercept and immune slope had the largest 

variable importance scores. In exploring the functional relationship between PRD and these 

factors, we observed that an immature microbiota at term equivalent PMA increased the risk of 

PRD by over 2-fold, and this effect was magnified in subjects with accelerated T cell maturation 

(Fig. 6C).  These results indicate that the timing of T cell and microbiome maturation relative to 

an infant’s age that plays an integral role in promoting or interfering with respiratory health.   

Discussion 

Birth marks the commencement of a dynamic interplay between innate developmental 

programming, colonization and assembly of the microbiome, and differentiation and maturation 

of the adaptive immune system which influences health from infancy through adulthood.  In 

healthy infants, this process balances the accommodation of commensal microbiota, appropriate 

immune response to pathogens, and functional maturation of the organs at the mucosal interface 

between human host and environment.  Previous studies have generally applied a cross-sectional 

approach to summarizing microbiota and immune systems in infant, which neglects the rapidly 

changing infant mucosa as a factor in pathophysiology or homeostasis. By developing new, 
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longitudinal models of microbiota composition and T cell populations, we were able to establish 

conceptually and analytically tractable representations of these systems, and to interrogate their 

maturation and co-development, revealing several key findings.  First, T cells and microbiota 

exhibit structured patterns of progression synchronized by postmenstrual age, with pronounced 

differences between pre- and full-term infants in very early life and a tendency towards 

convergence over the first year of life.  Furthermore, within the framework of development 

driven by PMA, interactions occur between T cell population profiles and microbiota community 

structure.  Finally, early atypical or asynchronous immune and microbiota development is a 

precipitating event in the cascade of disease in infants.  To our knowledge, this is the first study 

to successfully model the influence of this triad of T cell, microbiota, and host development on 

clinical outcomes in a cohort of both preterm and full-term human infants.  

In recent years the concept of a “neonatal window of opportunity” of exposure-mediated 

immune priming has emerged as a potential causal factor underlying chronic immune-mediated 

diseases (12).  This window of opportunity represents a promising target for clinical intervention 

and disease prevention.  Frequent or severe respiratory infections can result in chronic 

respiratory insufficiency, and are the leading cause of outpatient visits and hospitalizations in 

children  (35-37). Premature infants, who begin life with diminished respiratory function, have 

up to a 50% risk for recurrent cough and rehospitalization in the first year, most frequently 

associated with viral infections.  Moreover, chronic respiratory morbidity is associated with 

dysregulated or poorly targeted immune system activation – particularly T cell activation – 

brought on by viral or bacterial exposures during infancy (38-40), and understanding the earliest 

immune- and microbial-related events is essential to interrupting a pathologic program. We 

therefore focused on respiratory morbidity as a useful and highly relevant outcome to study the 
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relationship between microbiota, T cell and host development in our birth cohort. By defining 

developmental indices based on microbiota and T cell populations, we establish that maturity at 

term and rate of maturation over the first year are indicators of respiratory disease outcome at 

one year (PRD).  Specifically, precocious immune development in conjunction with an immature 

microbiome at term corresponds to substantially elevated risk of PRD, while either one of these 

factors by themselves has an attenuated effect.  This indicates that mistimed or discordant 

maturation between the microbiome and immune system is a correlate of respiratory morbidity. 

Previous reports have used age, microbiota, or immune variables as independent factors in 

predicting respiratory outcome (2, 5, 25, 37). These studies do not address the possibility that a 

newborn’s immune system is not simply deficient, but rather under normal developmental 

conditions, is uniquely balanced to provide protection against novel pathogens while minimizing 

immunopathology. Exposures that accelerate or delay the normal maturation of T cells and 

microbiota during infancy, such as in utero infection promoting the early occurrence of Tphe5, 

may disrupt this age-specific balance that has served human evolution so well. 

The ability to predict a subject’s PMA based on their T cell phenotype is strong evidence 

that developmental state is a key driving factor in immune maturation, which is further 

reinforced by convergence of PT and FT phenotypes over time. Characterizing a T cell trajectory 

during infancy revealed greater heterogeneity than has been appreciated, especially between PT 

and FT subjects and even within their predominantly naïve T cell pool. As an example, early PT 

and FT ISTs were both enriched for naïve T cell subpopulations characterized by high CCR7 and 

CD28 and low CD45RO expression.  Unique subpopulations within the naïve T cell pool, 

however, were distributed across the GA and PMA spectrum.  For example, PT and FT naïve T 

cells showed differential abundance of CD31, IL-7rα and CXCR5, implicating age-dependent 
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cell survival and provision of B-cell help. Our results were also aligned with previous studies 

demonstrating that PT infants have higher proportions of CD45RO+ T cells in their cord blood 

(41, 42). CD45RO+ CD4+ and CD8+ T cells associated with a younger PMA fell within an 

effector, and potentially short-lived, phenotype, which emerging evidence from animal studies 

also supports. Many of the PT-enriched CD4+ CD45RO+ subpopulations also were of a Treg 

phenotype. This result is consistent with prior studies showing that activated fetal naive T cells 

have a propensity towards Treg differentiation, though co-enrichment for a Treg memory 

phenotype in early gestation has not previously been shown (43, 44).  

Trajectories of individual T cell populations can be informative, but measured together in 

state types enables more nuanced biological interpretations. Appearance of effector CD4+ and 

CD8+ T cells at early PMA and PT in Tphe1 and Tphe3, for example, can be seen in 

inflammatory states, but Tphe1 and Tphe3 effector expansion is also accompanied by expansion 

of Tregs, which can counter T cell-mediated inflammation. Whether or not Tregs derived in 

earlier gestation harbor full suppressor function was not addressed in our study, but prior studies 

have proposed that immune suppression by Tregs contributes to a PT susceptibility to infection 

(45). The co-expansion of effectors and Tregs in the same IST suggests a state of dysregulation 

rather than immune suppression, and interestingly, the CCR7-FOXP3+ CD4+ subpopulation 

associated with Tphe1 arise in inflammatory states and contribute to immune dysregulation in 

CCR7 null mice (46). In contrast, the higher abundance of virtual memory CD8+ T cells but 

lower CD45RO+ T cells in FT-associated IST’s suggests T cells may acquire a memory 

phenotype through homeostatic expansion rather than inflammatory stimuli (47-49).   

By applying longitudinal models, we gain further insight into the transient nature of many 

activated T cell populations. For example, we found a direct correlation between GA and IL-8+ 
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T cells at birth, but an indirect correlation with PMA postnatally. This finding, which is 

consistent with our previous research, is notable in that the recent study by Olin et al. shows 

enhanced plasma IL-8 in PT when compared to FT (4, 50). Our unique focus on T cells 

specifically, rather than secreted mediators in plasma, sheds light on a non-linear T cell-specific 

functional trajectory during pre- and postnatal development that may be distinct from the innate 

compartment of the immune system . Indeed, an apparent deviation from a typical longitudinal 

trajectory, as was seen in Tphe5 and Tphe6, was partially attributed to the presence of select 

exposures (antenatal antibiotics and CMV, respectively) that more durably shape an individual’s 

immune trajectory independent of development. 

 Together, the microbiome of the airway and gastrointestinal tract, and their interaction 

with one another and with the host, constitute the gut-lung axis, a system increasingly implicated 

in immune development and health outcomes such as respiratory morbidity (51, 52).   Notably, 

while the relationship between immune development and the gut microbiome has featured 

prominently in the literature, we identified more frequent and stronger associations between T 

cell populations and nasal microbiota when controlling for age.  This may be in part due to the 

central role that intestinal mucosa plays in coordinating the gut microbiome and immune cells 

(53); while the niche matures, PMA is likely to be an overwhelming factor shaping microbiota 

and immunity. The respiratory niche is arguably the more relevant site for studying respiratory 

outcomes. In support of this assertion is a recent study showing that nasal colonization by 

Veillonella and Prevotella in infancy alters the nasal immune secretome, which predicts asthma 

outcome at 6 years (54). Our data did not reveal a correlation between Veillonella or Prevotella-

dominant CSTs and PRD, but Veillonella is lowly abundant in the protective nCST8.  
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One of the outstanding questions from this and other studies linking microbiota to 

outcome, is whether or not there are modifiable events that precede either harmful or protective 

microbiota colonization. Using a longitudinal, systems-based approach, our results can offer 

some insight. Alloiococcus is a common post-discharge colonizer, but in our cohort, antenatal 

exposure to inflammation or antibiotics was associated with early Tphe5 expression (at birth or 

discharge), which then precluded subsequent Alloiococcus-dominant nCST8 in the nose. The 

additional observation that Alloiococcus is substantially diminished during acute respiratory 

illness reveals a previously undescribed sequence initiated by perinatal exposures, impacting T 

cell development at birth, then post-discharge airway colonization, and ultimately susceptibility 

to respiratory infection throughout the first year of life. While these antenatal exposures are not 

readily modified, there may be some benefit to targeting probiotic treatments in 

chorioamnionitis-exposed mothers and neonates. In fact, probiotics have been successful in 

several studies in the prevention of illnesses including reductions in pediatric upper respiratory 

tract infections (55-57). On the other hand, a more conservative, informed approach to immune- 

or microbiota-based therapy in infants is also called for by a recent report showing that probiotic 

treatment in healthy newborns had only a transient effect on stool microbiota, and was associated 

with an increased risk of enteric and respiratory infections.  Evidence from our study also 

indicates that an infant’s health is influenced by timely, synchronous development of microbiota, 

T cells and the infant, which underscores the need to tread cautiously when considering 

interventions that may disrupt this normal balance.  

Our results show that substantial changes in the immune system occur between NICU 

discharge and 12 months, but without the benefit of intensive interim sampling, it is difficult to 

comprehensively account for all factors occurring between timepoints that may shape an 
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individual’s immune trajectory. However, the detailed characterization of relationships between 

T cell populations and microbiota, and the demonstrated associations between the development 

of these systems and infant health, represent novel insights into the clinical relevance of 

microbiome-immune co-development and will inform causal models and mechanistic hypotheses 

that can be used to develop novel interventions and guide treatment decisions by furthering 

understanding of the gut-lung axis and the neonatal window of opportunity.  
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Materials and Methods 

Study Design  

All study procedures were approved by the University of Rochester Medical Center 

(URMC) Internal Review Board (IRB) (Protocol # RPRC00045470 & 37933) and all subjects’ 

caregivers provided informed consent. The infants included in the study were enrolled within 7 

days of life for the University of Rochester Respiratory Pathogens Research Center PRISM and 

were cared for in the URMC Golisano Children’s Hospital. Clinical data including nutrition, 

respiratory support, respiratory symptoms, medications, comorbidities, were entered into 

REDCap (58, 59), then integrated with laboratory results using the URMC Bio Lab Informatics 

Server, a web-based data management system using the open source LabKey Server (60). Blood 

was collected at birth, time of NICU discharge or 36-42 weeks PMA (whichever occurred first), 

and at 12 months of life. We collected 2729 gut (842 from NICU and 1887 post-discharge), and 

2210 nasal (619 from NICU and 1591 post-discharge) usable microbiota samples longitudinally 

from 139 pre-term and 98 full-term infants and worked with the most extensive subset of these 

possible depending on the analysis in question (Supplementary Table 2).  From the PRISM study 

cohort, fecal (rectal) and nasal material was collected from pre-term infants (23 to 37 weeks 

gestational age at birth (GA)) weekly from the first week of life until hospital discharge, and then 

monthly through one year of gestationally corrected age. Rectal and nasal samples were collected 

from full-term infants at enrollment and monthly through one year.  Additionally, rectal and 

nasal samples were collected from all infants whenever they exhibited symptoms of acute 

respiratory illness after discharge from the hospital.  Symptoms of acute respiratory illness 

prompting sample collection were summarized by the primary caregiver using a symptom 
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COAST (Childhood Origins of Asthma) score sheet (35). Parents were instructed to notify the 

study team if the infant had symptom score of three or greater. Among subjects who completed 

study procedures through 12 months, 52 PT subjects (43%) and 17 FT subjects (21%) met the 

criteria for PRD.  All blood samples generating usable data were included in all analyses.  

Sufficient blood to perform T cell phenotyping by flow cytometry at three pre-defined timepoints 

was collected from 55% of subjects at birth, 61% of subjects at NICU discharge, and 38% at 12 

months.  For training the PMA predictions models (described below), all microbiota samples 

were used.  For all other analyses, microbiota samples from subjects that did not have any usable 

data from blood were excluded. Two staining panels, covering i) intracellular cytokine 

production (ICS) and ii) T cell surface phenotyping (Tphe) were designed (Supplementary Table 

3). Complete immunophenotyping for all three timepoints was performed on 25% of subjects, 

and 63% of subjects had complete immunophenotyping for at least one timepoint. 

Flow Cytometry Methods 

Sample collection, isolation, storage, thawing, stimulation and staining for flow 

cytometry was performed as detailed previously (61). In short, cord blood and peripheral blood 

mononuclear cells were isolated via Ficoll centrifugation, cryopreserved and stored in liquid 

nitrogen, and rapidly thawed and washed with pre-warmed RPMI-1640 (10% FBS and 1x L-

glutamine); thawing was done in ‘subject-balanced’ batches (equal mix of pre and full-term 

subjects, each with three time points) and an aliquot of each freshly thawed sample was plated 

and stained with a T-cell phenotyping (‘Tphe’) panel with the remainder of the sample rested 

overnight in an incubator, plated and stimulated with Staphylococcus aureus, Enterotoxin Type 

B (SEB), and stained with a T-cell functional panel (‘ICS’). Panel compositions are as shown in 

Supplementary Table 3. 
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Samples were acquired on a BD LSRII (core facility instrument QC-ed daily with BD 

CS&T beads); PMT voltages normalized per run to pre-determined/optimized ‘Peak-6’ 

(Spherotech) median fluorescence values. R-based packages and scripts were used for all post-

acquisition processing and analysis. Reading of raw .fcs files, compensation, transformation, and 

subsetting/writing of .fcs files was performed using flowCore  (62). To minimize inter-run 

variation associated with the Tphe panel, the flowStats (63)  warpSet function was used to 

normalize arcsinh transformed channel data using a healthy donor adult PBMC control as 

reference. For analysis with the clustering algorithm FlowSOM, an iterative approach was used 

for both panels to first cluster on live, intact, lymphoid-sized CD4+ and CD8+ T-cell subsets (in 

the case of the ICS panel, including activated, CD69+ subsets); those subsets were then re-

clustered to capture rare populations and optimally resolve phenotypic heterogeneity and 

associated function.  Over-clustering followed by expert-guided merging was favored when 

defining the final number of T cell populations.  FlowSOM clustering results used in 

downstream analysis were represented as proportion of the respective T-cell subset, per sample. 

All scripts, including Tphe arcsinh cofactors, warpSet and FlowSOM parameters, and final 

clustering counts are available in Supplementary R-Code. 

Microbiota Identification  

Microbiota sample collection and storage techniques, genomic DNA extraction and 

background control methods were as previously published (64). Raw data from the Illumina 

MiSeq was first converted into FASTQ format 2�×�312 paired-end sequence files using the 

bcl2fastq program (v1.8.4) provided by Illumina.  Format conversion was performed without de-

multiplexing, and the EAMMS algorithm was disabled. All other settings were default.  Samples 

were multiplexed using a configuration described previously (65). The extract_barcodes.py 
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script from QIIME (v1.9.1) (66) was used to split read and barcode sequences into separate files 

suitable for import into QIIME 2 (v2018.11) (67) which was used to perform all subsequent read 

processing and characterization of sample composition.  Reads were demultiplexed requiring 

exact barcode matches, and 16S primers were removed allowing 20% mismatches and requiring 

a matching window of at least 18 bases.  Cleaning, joining, and denoising were performed using 

DADA2 (68): reads were truncated (forward reads to 260 bps and reverse reads to 240 bps for 

rectal V3-V4 samples and forward reads to 275 bps and reverse reads to 260 bps for nasal V1-V3 

samples), error profiles were learned with a sample of one million reads per sequencing run, and 

a maximum expected error of two was allowed.  Taxonomic classification was performed with 

naïve Bayesian classifiers trained on target-region specific subsets of the August, 2013 release of 

GreenGenes (69).  Sequence variants that failed to classify to the phylum level or deeper were 

discarded.  Sequencing variants observed fewer than ten times total, or in only one sample, were 

discarded.  Rectal samples with fewer than 2250 reads and nasal samples with fewer than 1200 

reads were discarded.  Phylogenetic trees were constructed for each body site using MAFFT (70) 

for sequence alignment and FastTree (71) for tree construction.  For the purposes of β-diversity 

analysis, rectal and nasal samples were rarefied to depths of 2250 and 1200 reads, respectively, 

and the Unweighted Unifrac (72) metric was applied. 

Statistical analyses   

Multivariate ANOVA.  We used a sequence of multivariate ANOVA (MANOVA) models 

to estimate the amount of variance one set of variables could explain in another.  We modeled T 

cell population relative abundances, gut, and nasal species-level relative abundances pairwise 

each as predictor and response matrices.  DOL and PMA served only as predictors.  Each pair of 

variables types was joined, with missing samples deleted casewise.  T cell populations and 
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microbiome taxa with a variance of less than .0001 were removed in each comparison. The 

remaining variables were renormalized to sum to one, and transformed using the isometric log 

ratio, then modeled using a multivariate linear model with a matrix response.  �adj
�  was calculated 

as 1 � MSEfull/MSEreduced where the mean squared error (MSE) was the total sum of squared 

residuals in the response matrix, divided by the residual degrees of freedom, thus approximately 

unbiased for the residual variance.  The PMA-adjusted model used PMA, and the set variables of 

interest as a predictor in the full model, retaining only PMA in the reduced model. Wilks’ 

lambda was used to test for association between response and predictor variables. 

T cell PMA- and GA- associated trajectories. For each T cell subpopulation, a linear 

regression was fit of GA and PMA on the arcsin-sqrt transformed relative abundance of that 

population using a continuous and piecewise linear model with a single knot at 37 weeks PMA 

and interaction with GA (Fig. 2D-2E and Supplementary Fig. 1).  In symbols, we fit the model 

asin
��� � ��1��
� � ��1��
� � GA� � GA� � ��1��
� � GA� � ��1��
� � �1|Subject!, 

where y is the relative abundance of T cell population (relative to other populations that 

share same CD4 vs CD8 status and Tphe vs ICS), � " PMA � 37, GA� " GA � 37 are the PMA 

and GA of a sample, shifted so that term-equivalent samples and gestational ages are zero, and 

(1|Subject) is a random intercept for each subject.  The intercept of this model represents the 

abundance in subjects of 37 weeks GA at birth, and the remaining terms are identified by 

interpolation and extrapolation of the time points actually sampled in an individual. Figure 2D 

plots the GA� term and its 95% CI for T cell populations with significant (Bonferroni-adjusted 

p<.05, 80 tests) GA� effects.  Non-monotone populations were determined by testing three 

contrasts i) the ��1��
� terms, ii) the ��1��
� terms, and iii) the difference between them for 

joint statistical significance (Bonferroni-adjusted p<.05, 80 tests). 
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CST and IST Assembly. Microbial community state types (CSTs) were defined for each 

body site by fitting Dirichlet multinomial mixture (DMM) models (73) using the R package 

DirichletMultinomial (v1.22.0) (74, 75), R version 3.5.0. Sample composition was represented 

using normalized counts of the most specific operational taxonomic units (OTUs) present in at 

least 5% of the samples from a given body site. Normalization was performed on a per sample 

basis by taking the relative abundance of each OTU and multiplying by 2250 for rectal samples 

and 1200 for nasal samples. Resulting non-integer counts were rounded down. For each body 

site, the DMM model was fit with one through twenty Dirichlet components and the optimal 

number of components was selected by minimizing the Laplace approximation of the negative-

log model evidence.  In this model, CSTs are synonymous with Dirichlet components, and each 

sample was assigned to the CST from which it had the highest posterior probability of be 

derived.  This procedure was repeated with the immunological data in order to define immune 

state types (ISTs), using relative abundances of FlowSOM defined T cell populations in the place 

of OTUs.  Relative abundances were computed within assays (TPHE and ICS) and major 

populations (CD4 and CD8) separately, and converted to counts by multiplying by 50,000 and 

rounding down.  CD4 and CD8 counts were combined to fit the DMM for each assay. 

Microbiota-T cell Associations. Associations between microbiome development and the 

immune system were modeled using microbiome CST occurrence patterns as outcome variables 

and iterating through the relative abundances of each FlowSOM T cell population or observed 

IST at each time point as predictors.  In symbols, we used the model  

CST ~ immune_parameter + MOD + GA + (sampling_intensity). 

For each CST, each of these immunological parameters (T cell population relative 

abundances and IST, hereafter referred to as the immunological variables of interest [VOIs]) at 
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each of the three time points when the immune system was sampled (birth, discharge, and one 

year) was assessed independently. 

CST occurrence patterns were related to immunological VOIs by testing three types of 

associations between every CST-VOI combination at the level of individual subjects, while 

controlling for mode of delivery (MOD), gestational age at birth (GA) and, in model (i) only (see 

below), the number of microbiome samples (sampling_intensity) that were collected from an 

individual.  These models differed in the aspect of CST occurrence that was modeled as the 

outcome.   Model (i) tests associations between the VOI and whether or not a CST occurs at all 

in an individual; (ii) tests associations between the VOI and how persistent a CST is in an 

individual; and (iii) tests associations between the VOI and the days to first occurrence of a CST 

in an individual.  Model (i) was tested using logistic regression with VOI, MOD, GA and the 

number of microbiome observations from a given individual as the sampling intensity.  The 

outcome indicated whether or not a given CST was ever observed in the individual.  We tested 

the VOI association by dropping that term and calculating a likelihood ratio test. Model (ii) was 

tested using a quasi-Poisson regression model with MOD, GA, and the VOI as covariates, and 

total number of days the subject was assigned to any CST as an offset.  The number of days a 

subject was assigned to a given CST was the outcome and was calculated by summing the 

interval lengths between CST change points.  Intervals were calculated from midpoint to 

midpoint on the sampled days of life.  At birth, subjects were placed in the first observed CST if 

the first sample occurred within 14 days of life, otherwise the first interval was excluded.  

Subjects were assumed to remain in their final observed CST for an interval equal to half the 

interval length between the penultimate and ultimate sample.  Significance of the VOI was 

assessed as in model (i).  Model (iii) was tested using interval censored, accelerated log logistic 
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failure time models (R package icenReg v2.0.9) (76) with MOD, GA, and the VOI as covariates 

and the interval preceding the first observation of a given CST  as the outcome.  For gCST 1 and 

nCST 1, which on average were the earliest CSTs, we modeled the interval preceding the first 

observation of a CST other than NAS 1 or REC 1.  For each CST, only subjects that were ever 

observed in that CST at some point were included.  Significance was assessed based on Wald 

test p-values of the terms in the fitted full models.  

For models (i)-(iii), subjects with fewer than one sample taken per 30 NICU-days or 

fewer than six samples post discharge were excluded.  We filtered immune VOI with fewer than 

ten observations, and CSTs present in fewer than 10% of the remaining observations.  Numerical 

covariates were converted into z-scores, except GA which we modeled as �GA � 37!/37.  

Within each model (i)-(iii), multiple testing across all CSTs and VOIs was corrected for using 

the Benjamini-Hochberg method at 10% FDR. 

Tphe5, Alloiococcus abundance, and acute illness associations.  Using only post-

discharge nasal samples, the abundance of Alloiococcus represented as read counts was modeled 

as a function of day of life, GA, MOD, and the occurrence of Tphe5 at birth or discharge using a 

generalized estimating equation fit with the geeglm function in R (77).  Subject was used as the 

clustering variable, an exchangeable working correlation structure was specified, total reads per 

sample was used as an offset, and the family was Poisson with a log link function.  This model 

was repeated with the addition of acute illness as a covariate.  The probability of a sample 

coming from an illness or healthy surveillance visit was modeled using mixed effects logistic 

regression fit with the glmer function (78), using Alloiococcus relative abundance, DOL, GA, 

and MOD as covariates, with Subject as a random effect.  This model was repeated with the 

addition of Tphe5 at birth or discharge as a covariate. 
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Prediction of PMA. Two separate elastic net regression models (79) were trained to 

predict (80) the log2-transformed PMA with a) T cell immunological features and b) microbial 

abundance.  In (a) the four feature sets were CD4 ICS, CD8 ICS, CD4 Tphe and CD8 Tphe 

populations, while in (b) the two feature sets consisted of nasal and rectal species-level relative 

abundances from samples collected prior to DOL 450, filtered to remove taxa present in fewer 

than 3% of samples.   A total of 433 samples from 185 subjects and 80 features were included in 

(a).  Model (b) was trained on 3032 samples from 237 subjects and 218 features.  Some samples 

had incomplete feature sets, e.g., if only the ICS panel was run then both the CD4 and CD8 Tphe 

sets were missing, or if only the nasal microbiome was sampled and the rectal abundances were 

missing.  We treated this as a missing data problem, and imputed the values with their mean 

values among non-missing cases.  Imputation was chained onto the elasticnet model (occurred 

only using the training data, in each fold) for the purposes of tuning and validation. Within each 

feature set, we used the relative proportions, transformed into z-scores. 

Cross validation for tuning and prediction. We tuned the model and estimated its 

performance using cross-validation by holding out a subject’s entire longitudinal record.  We 

tuned the elastic net alpha in [0, 1] and lambda in [.001, .5] parameters by randomly selecting 50 

combinations of (alpha, lambda) and evaluating the test mean-square error (MSE) via 5-fold 

cross-validation.   After finding a minimizing pair of (alpha, lambda), the model was refit with 

10-fold cross-validation.  For each subject i, this provides two sequences of fitted values, 

representing the log2-transformed PMA prediction.  For instance, for the microbiome, we have 

&��' " (��
)���, + " 1,… , -� , 

where )��  represent microbial feature vectors, -�  indexes the number of longitudinal 

samples for subject i, and (��  represent the elastic net model trained excluding subject i.  For the 
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T cell immunome, the analogous model is fit. The back-transformed values 2����  were used to 

calculate each model’s ��.  

Immunological and microbial developmental indices. The longitudinal sequence of cross-

validated fitted values &��'  were compared to the true PMA for each subject using a linear mixed 

model.  We fit the model  

&/ � log2�37! � log2�PMA/37! � �1 � log2�PMA/37!|Subject! 

thus &��' " 3� � 4��PMA�� � 5��   and calculated the best linear unbiased predictor of each 

subject’s 37-week intercept 3� , slope 4� and their conditional standard errors se(3�), se(4�).  

These are transformed into a quantity similar to a z-score by subtracting the median of 3� , 4�  over 

subjects i, and dividing by its conditional standard error se(3�) or se(4�). 

Prediction of PRD. We used random forest classification models to predict PRD using two 

feature sets: clinical and developmental index.  The clinical features were race, maternal 

education, the baby’s sex, gestational age, weight and season at birth, and oxygen 

supplementation integrated over the first 14 days of life.   The developmental index features were 

the z-scores of the microbiome and T-immune slopes and intercepts. The random forest 

hyperparameters mtry, ntree and nodesize were tuned separately for each feature set with random 

search using 5-fold cross-validation.  After the optimal parameters were found for each feature 

set, a second round of 20-fold cross validation was used to evaluate the area under the ROC 

curve (AUC).  The fitted values from the random forest regression were calculated using the 

function generatePartialDependenceData. 
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