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Abstract 1 

 2 

Background: For over 16 years, we have selectively bred rats to show either high or 3 

low levels of exploratory activity within a novel environment. These “bred High Responder” 4 

(bHR) and “bred Low Responder” (bLR) rats serve as a model for temperamental extremes, 5 

exhibiting large differences in many internalizing and externalizing behaviors relevant to mood 6 

and substance abuse disorders.  7 

Methods: Our study elucidated persistent differences in gene expression related to 8 

bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical 9 

for emotional regulation. We meta-analyzed eight transcriptional profiling datasets (microarray, 10 

RNA-Seq) spanning 43 generations of selective breeding (adult: n=46, P7: n=22, P14: n=49, 11 

P21: n=21; all male). We cross-referenced these results with exome sequencing performed on 12 

our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral 13 

phenotype. 14 

Results: Genetic and transcriptional profiling results converged to implicate two genes 15 

with previous associations with metabolism and mood: Thyrotropin releasing hormone receptor 16 

and Uncoupling protein 2. Our results also highlighted bHR/bLR functional differences in the 17 

hippocampus, including a network essential for neurodevelopmental programming, proliferation, 18 

and differentiation, containing hub genes Bone morphogenetic protein 4 and Marker of 19 

proliferation ki-67. Finally, we observed differential expression related to microglial activation, 20 

which is important for synaptic pruning, including two genes within implicated chromosomal 21 

regions: Complement C1q A chain and Milk fat globule-EGF factor 8.  22 

Conclusion: These candidate genes and functional pathways have the capability to 23 

direct bHR/bLR rats along divergent developmental trajectories and promote a widely different 24 

reactivity to the environment. 25 

 26 
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Introduction 32 

 33 

The strong pattern of comorbidity amongst psychiatric disorders is believed to be 34 

generated by a spectrum of latent liability (1), arising from a complex interplay of genetic risk 35 

and environmental factors, such as stress and childhood adversity (1–3). At one end of this 36 

spectrum are internalizing disorders, which are associated with neuroticism, anxiety, and 37 

depression. At the other end of the spectrum are externalizing disorders, which are associated 38 

with risk-taking and novelty-seeking, as seen in mania, substance abuse, and impulse-control 39 

disorders (1).  40 

We model the genetic contributions underlying both extremes of this spectrum by 41 

selectively breeding rats that react differently to a novel environment. “Bred High Responder” 42 

(bHR) rats are highly exploratory with a disinhibited, novelty-seeking temperament, including 43 

hyperactivity, aggression, and drug-seeking. “Bred Low Responder” (bLR) rats are highly-44 

inhibited, exhibiting reduced locomotor activity and anxious and depressive-like behavior (4–13). 45 

These behavioral propensities are robust and stable, beginning early in development (14,15) 46 

similar to temperament in humans (16).  47 

This highly-differentiated phenotype makes bHR/bLR rats ideal for observing the 48 

developmental programming and adult manifestation of neurological factors underlying 49 

internalizing and externalizing tendencies (8,11,17). This study focused on the hippocampus, a 50 

region important for emotional regulation, behavioral inhibition (18–20), and reactivity to the 51 

environment (18), including stress-related glucocorticoid release (21,22). In the bHR/bLR model, 52 

we previously observed differences in hippocampal glucocorticoid receptor and growth factor 53 

expression, histone methylation, cell proliferation, survival, and overall volume (5,9,14,23,24). 54 

Our current study characterized hippocampal gene expression in bHR/bLR rats across 55 

development and adulthood using a meta-analysis of eight transcriptional profiling datasets 56 

spanning 43 generations of selective breeding. Concurrently, we discovered chromosomal 57 
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regions containing bHR/bLR segregating variants that are likely to contribute to exploratory 58 

locomotor phenotype (25). By comparing across these studies, we identified differentially-59 

expressed (DE) genes situated within implicated chromosomal regions and hippocampal 60 

functional pathways essential for mood and development (Fig 1). These genes are promising 61 

candidates for mediating the influence of selective breeding on behavioral phenotype. 62 

 63 

[Figure 1] 64 

 65 

 66 

Methods 67 

 68 

 Full methods for the individual experiments and analyses are provided in the 69 

supplement. The associated datasets have been released on GEO (Table 1) or FigShare 70 

(https://doi.org/10.1101/774034). Analysis code (R Studio v.1.0.153, R v.3.2.2) is available at 71 

https://github.com/isabellie4/PhenotypeProject and 72 

https://github.com/hagenaue/bHRbLR_MetaAnalysisProject. 73 

 74 

[Table 1] 75 

 76 

The bHR/bLR Rat Colony 77 

All experiments were approved by the local University Committee on the Use and Care 78 

of Animals, in accordance with the National Institutes of Health Guide for the Care and Use of 79 

Laboratory Animals. 80 

 81 

Selective Breeding: We began selectively-breeding bHR/bLR rats in the Molecular 82 

Behavioral Neuroscience Institute (MBNI) at the University of Michigan in 2003 (protocol: (11)). 83 
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Later, a second colony was begun at the University of Alabama-Birmingham using generation 84 

F30 bHR/bLR rats from MBNI. Our meta-analyses use datasets derived from male bHR/bLR 85 

rats spanning generations F4-F43. We refer to these datasets according to their respective 86 

institution, transcriptional profiling platform, and generation (Table 1). MBNI_RNASeq_F37 also 87 

included a bHRxbLR cross (“Intermediate Responder” (bIR) rats)). 88 

 89 

Behavioral Testing: For each generation, locomotor response to a novel environment 90 

was assessed between P50–75 (11). For MBNI_RNASeq_F37, we measured anxiety-like 91 

behavior in adulthood (bHR/bLR: P160-P167; bIR: P65-75) using the percent time spent in the 92 

open arms of an Elevated Plus Maze (EPM; 5 min test, protocol: (26)). For 93 

MBNI_RNASeq_F43, we measured social interaction in adulthood (P92, protocol: (4)) after 15 94 

min exposure to the anxiogenic open arms of the EPM (protocol: (27)). 95 

 96 

Hippocampal Gene Expression Analyses 97 

 98 

Broad Overview of the Datasets: Our meta-analyses included eight datasets from 99 

bHR/bLR rats aged P7, P14, P21, and adult (Table 1). The rats were housed in standard 100 

conditions with minimal intervention besides behavioral testing or saline injections, and 101 

sacrificed by rapid decapitation without anesthesia. The whole hippocampus was dissected, 102 

except in Alabama_Nimblegen_F34, where dorsal hippocampal tissue punches were performed 103 

on sliced frozen tissue (28). The extracted RNA was profiled using microarray (earlier 104 

generations: F4, F6, F15, F34) or RNA-Seq (later generations: F29, F37, F43).  105 

 106 

Broad Overview of the Data Preprocessing: The pre-processing steps for each study 107 

varied according to platform, but included common steps, including re-annotation, normalization 108 

to reduce technical variation, and quality control. Microarray data were typically summarized into 109 
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log2-transformed expression sets using Robust Multi-Array Average (RMA: (29)). Gene-level 110 

RNA-Seq read count summaries were converted to log(2) fragments per million (FPM). When 111 

applicable, transcript data were averaged by gene symbol to obtain a single expression value 112 

per sample per gene.  113 

 114 

Meta-Analyses: Within each dataset, we calculated the effect size (Cohen’s d and 115 

variance of d) of bHR/bLR phenotype on the expression data for each gene within each age 116 

group. This output was aligned across datasets using official gene symbol. The meta-analysis 117 

for each age group was performed using rma.mv() (package metafor (30)) and corrected for 118 

false discovery rate (FDR; Benjamini-Hochberg method in multtest: (31)). Including generation 119 

as a co-variate provided little additional insight (generation: all genes FDR>0.3). 120 

 121 

Overlap with Previously-Identified Genetic Variants: Our exome sequencing study 122 

identified bHR/bLR segregating variants (single-nucleotide polymorphisms, or SNPs), and used 123 

a sampling of those variants to pinpoint quantitative trait loci (QTLs) for exploratory locomotion 124 

using an bHRxbLR F2 intercross (25). In our current study, we identified all DE genes nearby 125 

(+/- 1 MB) the segregating variants and QTL peaks (LOD>3) and determined overlap with 126 

additional QTLs relevant to bHR/bLR behavioral phenotype from Rat Genome Database ((32), 127 

accessed 08/08/2019, keywords: “Anxiety”, “Stress”, and “Despair”). 128 

 129 

Positional Gene Enrichment Analysis: To explore which genes might be either co-130 

regulated or in linkage disequilibrium with a causal genetic variant, we evaluated the clustering 131 

of top bHR/bLR DE genes within chromosomal regions using Positional Gene Enrichment 132 

analysis (PGE, http://silico.biotoul.fr/pge/, (33)) and the top results from the P14 and adult meta-133 

analyses (nominal p<0.01, removing duplicated EntrezIDs). 134 

 135 
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Gene Set Enrichment Analysis (GSEA) & Protein-Protein Interaction (PPI) 136 

Networks: To elucidate overall functional trends within the largest sets of results (P14 and 137 

Adult) we used GSEA ((34,35); package fgsea (36)) and gene set matrix files (.gmt) containing 138 

standard gene ontology for rats (go2msig.org; (37)), or customized hippocampal-specific gene 139 

sets (Table S1) including previously-identified co-expression modules (38,39) and expression 140 

specific to hippocampal neuronal subtypes or subregions (Hipposeq: (40)). We further explored 141 

top DE genes (adult meta-analysis FDR<0.10) and implicated hippocampal gene sets using 142 

predicted PPI networks (string-db.org (41)).  143 

 144 

Cell Type Data Deconvolution: To interrogate the relative cell type composition of our 145 

samples, we used the BrainInABlender method (42). Data for genes previously identified as 146 

having cell type specific expression was extracted, normalized, and averaged to produce a “cell 147 

type index”. For this analysis, we excluded the small MBNI_RNASeq_F29 dataset (n=2/group). 148 

We then performed a meta-analysis of the effects of bHR/bLR phenotype on these cell type 149 

indices using aforementioned methods. 150 

qPCR Validation: Hippocampal tissue from 6 bHR and 6 bLR males was collected at 151 

ages P14 (generation F55) and P90 (generation F51; Fig S1). Following cDNA synthesis, Bone 152 

morphogenetic protein 4 (Bmp4) was quantified using qPCR and custom-designed primers, 153 

using the Livak method (43) and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as 154 

reference. Group differences in -ΔCq at each age were assessed using Welch’s two-sample t-155 

test (44).  156 

 157 

Results 158 

 159 
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Selective Breeding Amplifies the Propensity for Internalizing vs. Externalizing Behavior 160 

 The divergence of bHR/bLR exploratory activity in response to selective breeding 161 

happened rapidly (Fig 2A), implying oligogenic inheritance (25). This divergence was 162 

accompanied by a general amplification of internalizing and externalizing tendencies 163 

(11,14,45,46). For example, in the behavioral data accompanying our transcriptional profiling 164 

datasets, bLRs showed more anxiety-like behavior than bHRs (Fig 2B), and spent less time 165 

interacting socially following a stressful challenge (Fig 2C). Therefore, we expected that 166 

examining gene expression across bHR/bLR generations would reveal a convergence of effects 167 

within implicated chromosomal regions and pathways essential to affective behavior and 168 

reactivity to the environment.  169 

 170 

[FIGURE 2] 171 

 172 

Selective Breeding for Exploratory Locomotion Alters Hippocampal Gene Expression  173 

Between generations F4-43, we conducted eight exploratory studies transcriptionally 174 

profiling the hippocampus of bHR/bLR rats at four ages (P7, P14, P21, and adult). These small 175 

studies individually produced few reliable results (Figs S2-S3). Nevertheless, a formal meta-176 

analysis revealed multiple genes with consistent DE across generations (Fig 3, Table S2). 177 

These results can be explored interactively at 178 

https://mbni.org/dashboard/huzefak/hrlrMetaAnalysis/. 179 

 180 

[FIGURE 3] 181 

 182 

Adulthood: The effect of bHR/bLR phenotype on gene expression was significant for 74 183 

genes (FDR<0.05, out of 16,269; Fig 3). In general, the estimated effect sizes (β’s) tended to be 184 

more extreme for genes exclusively represented in RNA-Seq data from later generations (Fig 185 
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S4), but due to smaller sample size, these effects were not overrepresented in the top results. 186 

To rule out bias due to platform, we ran a meta-analysis using only recent RNA-Seq data 187 

(F37/F43) and confirmed that similar DE genes and pathways were identified (Fig S5). In the 188 

following discussion we emphasize candidate genes for which there is evidence that expression 189 

diverged during the earliest generations. 190 

 191 

Development:  The developmental meta-analyses were more dependent on data from 192 

earlier generations and produced less robust results. However, the top genes had consistent 193 

effects across age groups. Within the P7 meta-analysis, only one gene (out of 3,257), Neurocan 194 

(Ncan), was differentially expressed, with higher expression in bLRs than bHRs since an early 195 

generation (Fig 4B-C), in a manner that nominally persisted at P14 (Fig 4D). Within the P14 196 

and P21 meta-analysis, none of the effects survived multiple comparison correction (for 15,682 197 

and 3,257 genes, respectively). However, the top gene at P14, Bmp4, was consistently 198 

expressed at higher levels in bLRs than bHRs within both the P14 (Fig 5A) and adult datasets 199 

since the F4 generation (Fig 5B). We confirmed DE at these ages using qPCR (Fig 5C, Fig 200 

S1).  201 

 202 

[FIGURE 4, FIGURE 5] 203 

 204 

 205 

Many bHR/bLR Differentially Expressed Genes Are Located Within Implicated 206 

Chromosomal Regions  207 

 Our exome sequencing study identified bHR/bLR segregating genetic variants, and then 208 

used a sampling of those variants to identify chromosomal regions that are likely to contribute to 209 

exploratory locomotor phenotype (QTL peaks). These implicated chromosomal regions 210 

overlapped extensively with QTLs relevant to internalizing/externalizing behavior (32), including 211 
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anxiety (47–52), stress response (53–55), and behavioral despair (56). In our current study, 212 

68% of the genes DE in adulthood (FDR<0.05) were within +/-1 MB of a bHR/bLR segregating 213 

variant, and 21% were within +/-100 kB of a highly segregating variant (Bonferonni-corrected 214 

a=5.00E-05), a 4.7x enrichment compared to non-DE genes (Fig 6A, Fischer’s exact test: 215 

p=3.50E-06). DE genes were also 4.5x more likely to be located within a QTL for exploratory 216 

locomotion (LOD>4; Fig 6B). This overlap included two genes previously associated with 217 

internalizing and externalizing behaviors (Thyrotropin Releasing Hormone Receptor (Trhr), 218 

Uncoupling Protein 2 (Ucp2), Fig 6C, (57–62)). These results fit our expectation that the 219 

influence of bHR/bLR segregating genetic variants on exploratory locomotion is at least partially 220 

mediated by effects on gene expression within the hippocampus.   221 

 222 

[FIGURE 6] 223 

 224 

Positional Gene Enrichment Analysis Specifies Narrower Chromosomal Regions 225 

Contributing to bHR/bLR Phenotype 226 

 Positional Gene Enrichment (PGE) identified 132 chromosomal regions with a significant 227 

enrichment (FDR<0.05) of DE genes within the P14 and adult meta-analyses. We focused on 228 

the top regions (FDR<0.001; Figure 6D). We confirmed that most of these top loci (10/13) could 229 

be identified using recent RNA-Seq data (F37/F43), ruling out bias towards regions 230 

overrepresented on older microarray platforms. These 13 top loci were narrow chromosomal 231 

regions (measured in KB), but overlapped a strikingly high percentage of QTLs relevant to 232 

bHR/bLR phenotype. This overlap included three QTLs for exploratory activity (25), 233 

encompassing two DE genes associated with internalizing and externalizing behavior (Ucp2, 234 

Trhr; Fig 7&8), as well as 13% of the QTLs for anxiety (6/45, (47–50)), 21% of the QTLs for 235 

stress-related responses (8/38, (53–55,63–65)), and 23% of the QTLs for behavioral despair 236 

(3/13, (56)) in the Rat Genome Database (32). Therefore, these enriched loci could contain 237 
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genetic variants contributing to internalizing/externalizing aspects of the bHR/bLR behavioral 238 

phenotype beyond exploratory locomotion.   239 

 240 

[ FIGURE 7, FIGURE 8] 241 

 242 

bHR/bLR Differential Expression is Enriched within Hippocampal Functional Pathways 243 

 244 

 bHR/bLR Phenotype is Associated with Proliferation and Differentiation: Eight 245 

functional ontology gene sets (out of 2,761) showed an enrichment of DE within the P14 meta-246 

analysis (FDR<0.05), all of which were upregulated in bLRs (Fig 9A, Table S3, Fig S6) and 247 

predominantly related to neurogenesis, differentiation, and brain development. Within the adult 248 

meta-analysis, 2 of the 4 top gene sets enriched with DE (FDR<0.1, out of 2,761 total) were 249 

similarly related to proliferation and development, but upregulated in bHRs. This pattern was 250 

confirmed using recent RNA-Seq data (F37/F43, Table S3), ruling out bias towards gene 251 

families overrepresented on microarray platforms.  252 

A PPI network constructed using the top genes from the adult meta-analysis (FDR<0.10: 253 

192 genes) had a dominant subnetwork highlighting many of these same genes (Fig 9B), 254 

including hubs Bmp4 (discussed above) and the canonical marker of proliferation Mki67 (Fig 255 

9C-E). Literature review confirmed the PPI interactions within this subnetwork and their role in 256 

proliferation and differentiation in the brain (66–78).  257 

 258 

[FIGURE 9] 259 

 260 

 bHR/bLR Phenotype is Associated with the Dentate Gyrus (DG): Similarly, when 261 

performing GSEA using 69 gene sets custom-designed to reflect hippocampal-specific cell 262 

types and networks (Table S1), we observed an enrichment of DE related to the DG (Fig 8E, 263 
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Fig S7, Table S3), the location of neural proliferation within the hippocampus. At P14, bLRs 264 

showed an upregulation of genes with enriched expression in the DG as compared to the Cornu 265 

Ammonis (CA) regions (40) (FDR<0.05). In adulthood, bHRs showed an upregulation of genes 266 

with enriched expression in the ventral compared to the dorsal DG (40) (FDR<0.05), including 267 

Trhr (FDR<0.05, discussed above).  268 

 269 

 bHR/bLR Phenotype is Associated with Hippocampal Co-expression Networks 270 

Related to Synaptic Signaling: Co-expression modules can capture regionally-important cell 271 

types and functions that remain undocumented in traditional ontology databases (79). We 272 

observed an enrichment of bHR/bLR effects within six previously identified hippocampal co-273 

expression modules within the P14 meta-analysis (FDR<0.05) and five within the adult meta-274 

analysis (FDR<0.05, Fig 8E, Fig S7, Table S3). Two of these modules included genes within 275 

implicated chromosomal regions. 276 

 The first was a large co-expression module (695 genes) previously identified in the 277 

mouse hippocampus ((39), “lightcyan”) which showed elevated expression in bLRs relative to 278 

bHRs at P14 (FDR<0.05) and adulthood (FDR<0.10). One of the top DE genes in this module, 279 

ETS Variant 4 (Etv4, FDR<0.05, bHR>bLR), is a transcription factor required for proper 280 

hippocampal dendrite development (80) located within an implicated chromosomal region (Fig 281 

S8). A PPI network constructed using the DE genes in this module (n=74, adult p<0.05), was 282 

enriched with genes related to cell projections, neurons, synapses, and cation binding 283 

(FDR<0.05). 284 

 The second was a small co-expression module (39 genes) previously identified in the 285 

mouse hippocampus ((39), sienna3), which showed elevated expression in bHRs in adulthood 286 

(FDR<0.05). The top gene in this module was Trhr (discussed above). A PPI network 287 

constructed using all 39 genes in this module centered on Trhr and its ligand, thyrotropin 288 

releasing hormone (Trh; Fig 8G), and included many reward-related signaling molecules, 289 
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including CART prepropeptide (Cartpt (81)), Oxytocin/Neurophysin I Prepropeptide (Oxt (82)), 290 

and Dopamine Receptor D1a (Drd1a (83,84)).  291 

 292 

bHR/bLR Phenotype is Associated with Microglial and Endothelial-Specific Gene 293 

Expression: Our results suggested that bHR/bLR rats might have differences in hippocampal 294 

cell type composition. A cell type deconvolution analysis focused on well-characterized non-295 

neuronal cell type categories revealed that bLRs had greater microglial-specific expression than 296 

bHRs at P14 and adulthood (Fig 10A,C-D). At P14, bLRs also showed greater endothelial-297 

specific expression (Fig 10B). These effects could reflect differences in cell type composition or 298 

activation state. Notably, two of the top DE genes that were located within implicated 299 

chromosomal regions are regulators of microglial state: Milk fat globule-EGF factor 8 (Mfge8, 300 

Fig 10E-H) promotes alternative (M2) activation (85), and Complement component C1q A Chain 301 

(C1qa, Fig 10I-L) promotes classical activation (86). To interrogate less well-characterized 302 

hippocampal cell types, we compared our meta-analysis results to the new mousebrain.org 303 

database (87), and found that the top DE genes (FDR<0.10) were highly expressed in a variety 304 

of cell types, including neuronal subcategories (Fig S9), mirroring the diversity of hippocampal 305 

functions implicated in bHR/bLR phenotype. 306 

 307 

[FIGURE 10] 308 

 309 

Discussion 310 

 311 

By selectively-breeding rats for over 16 years, we have produced a robust, genetic 312 

model of the co-occurrence of common internalizing and externalizing behaviors. Such large 313 

differences in behavior would be expected to be accompanied by similarly strong differences in 314 

gene expression in affective circuitry. By performing a formal meta-analysis across small, 315 
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exploratory datasets, we provide insight into bHR/bLR differences in hippocampal gene 316 

expression across development and adulthood. Further, by cross-referencing these results with 317 

our concurrent genetic study (25), we pinpoint strong candidates for mediating the influence of 318 

selective breeding on hippocampal function and internalizing/externalizing behavior.  319 

 320 

Transcriptional profiling converges with genetic results to identify two strong candidates 321 

for contributing to bHR/bLR behavioral phenotype: Trhr and Ucp2 322 

Our exome sequencing study offered a first glimpse of the genetic factors contributing to 323 

our selectively-bred phenotypes (25). However, the implicated chromosomal regions 324 

encompass several hundred genes, making their specific effects on gene expression and 325 

function difficult to predict. By cross-referencing these findings with our DE results, we 326 

discovered two strong candidates: Trhr and Ucp2. These candidates are located near bHR/bLR 327 

fully-segregating genetic variants (25) within narrow chromosomal regions highly enriched for 328 

DE genes, and overlap QTLs for exploratory activity (25), anxiety (47–49), and stress response 329 

(53,54). Trhr was also the top gene within a bHR-upregulated gene set associated with the 330 

ventral DG (40), a region important for proliferation and emotional regulation (18), and was a 331 

hub in a bHR-upregulated hippocampal network containing reward-related signaling molecules. 332 

Trhr and Ucp2 are both important for energy metabolism and extensively linked to 333 

internalizing and externalizing behavior (88–90). Knocking out Ucp2 produces a bLR-like 334 

phenotype: higher anxiety-like behavior, lower locomotor activity, and reduced stress resilience 335 

(57,58,60,61). Trhr is an important component of the hypothalamic-pituitary-thyroid (HPT) axis 336 

and regulates anxiety and depressive-like behavior (59,62,91). In our exome-sequencing study, 337 

the variants associated with Trhr and Ucp2 explained a moderate portion of exploratory 338 

locomotor behavior (<10%, approximately 200 locomotor counts, (25)) – a magnitude akin to the 339 

bHR/bLR difference in locomotor score present in the F1 generation. Altogether, this evidence 340 

suggests that bHR/bLR segregating genetic variants are driving DE of Ucp2 and Trhr in a 341 
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manner that could meaningfully contribute to bHR/bLR differences in hippocampal function and 342 

internalizing/externalizing behavior.   343 

 344 

The top genes identified in the developmental meta-analyses suggest that bHR/bLR 345 

differences in hippocampal structure arise early in development: Ncan and Bmp4  346 

 The different propensity of bHR/bLR rats towards externalizing or internalizing behavior 347 

is evident at a young age (14,15), paralleling hippocampal development (14). Our meta-348 

analyses encompassed three postnatal ages (P7, P14, and P21) to provide insight into this 349 

neurodevelopmental trajectory. These meta-analyses depended on data from earlier 350 

generations and older transcriptional profiling platforms yet identified two strong candidates with 351 

clear associations with internalizing/externalizing behavior and hippocampal development.  352 

The top P7 result was Ncan, exhibiting a strikingly large effect size (bHR<bLR) as early 353 

as generation F6. Ncan is located adjacent to a bHR/bLR segregating variant (25), overlapping 354 

a QTL for despair-related behavior (56). As part of the extracellular matrix, Ncan is upregulated 355 

during early brain development (92,93) and modulates cell adhesion, migration, and growth 356 

factor binding (94). Ncan has been linked to Bipolar Disorder (92), and knocking-out Ncan 357 

enhances locomotor activity, risk-taking, hedonia, and amphetamine hypersensitivity (93). 358 

Therefore, lower levels of Ncan in early development in bHRs could promote externalizing 359 

behavior as well as divergent hippocampal development.  360 

The top P14 result was Bmp4, which was elevated in bLRs since the earliest 361 

generations in a manner that appeared to persist into adulthood. As a regulator of development, 362 

Bmp4 is initially important for neural induction (95,96), but later suppresses neurogenesis (97–363 

101) and promotes other cell fates (78,95,102). Bmp4 was an important driver in bHR/bLR-364 

enriched gene sets related to proliferation and differentiation at P14 and a hub in a related PPI 365 

network constructed from top adult DE genes. In the hippocampus, Bmp signaling promotes 366 
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dorsal cell type identity and is essential for DG formation (103), matching our results indicating 367 

bLR-enrichment of gene expression related to the DG at P14 and adulthood.  368 

Moreover, blocking Bmp signaling can produce a bHR-like phenotype, reducing anxiety, 369 

fear conditioning, and depressive-like behavior (98,103). Therefore, Bmp4 is a strong candidate 370 

for driving long-term structural differences in the hippocampus capable of producing stable 371 

differences in temperament. However, Bmp4 was not located near a bHR/bLR segregating 372 

variant in our exome sequencing study (25), implying that impactful variation may be located in 373 

a nearby non-coding region or within a gene upstream in Bmp4’s signaling pathway. 374 

 375 

Functional analyses implicate hippocampal proliferation and differentiation in bHR/bLR 376 

phenotype 377 

One of the most prominent themes in our results were functions related to cell 378 

proliferation and differentiation. Indeed, we found that Mki67 itself contained two bHR/bLR 379 

segregating genetic variants, and was more highly expressed in bLRs in adulthood (FDR<0.05), 380 

matching the upregulation in bLRs observed histologically in development (14) and maybe 381 

adulthood (9,104). These findings confirm that the relationship between internalizing behavior 382 

and cell proliferation in our model is unlikely to be as simple as a general stunting of growth-383 

related processes, as suggested by the neurotrophic model of stress-related mood disorders 384 

(105). 385 

Many of our top DE genes were also important regulators of cell fate. Bmp4, SRY-box 9 386 

(Sox9), SRY-box 2 (Sox2), Hes Family BHLH Transcription Factor 5 (Hes5), CD24 Molecule 387 

(Cd24), and TEK Receptor Tyrosine Kinase (Tek) regulate functions such as the developmental 388 

progression of neural differentiation, gliogenesis, and endothelial proliferation (66,74,75,77,106–389 

108). Their role in adulthood includes growth and plasticity in response to neural activity and 390 

injury (69,109–111). Therefore, these results could explain previous morphological findings 391 

indicating that cell differentiation progressed differently in the adult hippocampus in bHRs and 392 
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bLRs under conditions of mild stress (9). Together, these findings raise the interesting possibility 393 

that DE within neurodevelopmental programming pathways could provide a general mechanism 394 

by which environmental stimuli, such as stress or drugs, produces divergent changes in 395 

hippocampal structure in bHR/bLR animals. 396 

 397 

Functional analyses implicate microglial activation in bHR/bLR phenotype 398 

Microglial-specific gene expression was upregulated at both P14 and adulthood in bLRs, 399 

suggesting either an increased proportion of microglia cells or microglial activation. Several top 400 

candidate genes were important regulators of microglial function. bLRs had greater expression 401 

of C1qa than bHRs since the earliest generations. The C1q genes promote classical microglial 402 

activation (86) and are implicated in phagocytosis-driven synaptic pruning (86,112,113). In 403 

contrast, Mfge8 was more expressed in bHRs. Mfge8 is associated with reduced pro-404 

inflammatory factors (114) as well as alternative (M2) microglial activation (85), playing an 405 

important role in phagocytosis (85,115,116). Ucp2, discussed previously, has anti-inflammatory 406 

function (57,58,60,117,118) and was more highly expressed in bHRs than bLRs. Both Mfge8 407 

and Ucp2 contain bHR/bLR segregating genetic variants within probable QTLs for exploratory 408 

activity (25), suggesting that genetic variation could contribute to their DE in the hippocampus.  409 

 Together, these results seem to fit pro-inflammatory theories of internalizing disorders 410 

(119). However, we found little evidence of bHR/bLR differences in the expression of traditional 411 

inflammatory markers. Therefore, it seems more likely that bHR/bLR differences in microglial 412 

activation genes are tied to non-immune roles for microglia within the brain, including the 413 

regulation of neurogenesis, cell survival (120), and synaptic pruning (113,121) in response to 414 

neuronal activity (113). Therefore, microglial phagocytosis could be serving as a multi-faceted 415 

tool to tailor plasticity either during development, or in response to environmental stimuli like 416 

stress or drugs of abuse.  417 

 418 
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Conclusion and Future Directions 419 

By comparing exome sequencing findings to hippocampal differential expression 420 

patterns during development and adulthood across many generations of selective breeding in 421 

our bHR/bLR colony, we implicate a diverse and compelling array of genes whose effects may 422 

converge to promote internalizing and externalizing behavior. Due to a dependence of our 423 

results on older platforms and exclusively male rats, we cannot claim to have identified all 424 

relevant candidates, nor have we highlighted all promising results in our text. However, we 425 

implicate two functional pathways with the capability to guide bHRs and bLRs along a divergent 426 

developmental trajectory and set the stage for a widely different reactivity to the environment. 427 

These findings will inspire new avenues of research (122–124), including cell type specific 428 

morphological analyses and the manipulation of candidate pathways to assess relevance to 429 

behavioral and neurological phenotype in our model. 430 

 431 
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Tables and Table Legends 

 

 

Table 1. An overview of the eight transcriptional profiling studies included in our current 

meta-analyses of differential gene expression in the bHR and bLR hippocampus at four 

developmental time points: P7, P14, P21, and adulthood.  Citations: (28,125) 
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Figure 1. An overview of the experimental and analytical workflow used to identify top 

candidate genes for mediating the effects of selective breeding on bHR/bLR phenotype. 

Left: Many generations of selective breeding based on exploratory locomotor behavior drove 

segregation of genetic variants that contribute to internalizing and externalizing behavior within 

our bHR and bLR rats. The effect of these variants on behavior is mediated by alterations in 

gene expression and cellular function, which produce local changes in cell type balance and 

structure within brain regions responsible for affective behavior, such as the hippocampus. 

Right: Our concurrent genetic study used exome sequencing to identify genetic variants that 

segregated bHR/bLR rats in our colony, and then used a sampling of those variants to locate 

regions of the genome (quantitative trait loci – QTLs) that might contribute to exploratory 

locomotor activity (25). Our current study used meta-analyses of hippocampal transcriptional 

profiling studies to identify bHR/bLR differentially-expressed (DE) genes, pathways, cell types, 

and networks in development and adulthood. In our results, we emphasize DE genes that were 

1) consistently DE across multiple developmental stages, 2) central to DE pathways, cell types, 

and networks, 3) located near genetic variants that segregated bHR/bLR rats in our colony 

and/or within QTLs for exploratory locomotion. These genes are the top candidates for 

mediating the effects of selective breeding on bHR/bLR phenotype. 
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Figure 2. Selectively-bred high responder (bHR) and low responder (bLR) rats model an 

extreme propensity for internalizing vs. externalizing behavior. A) Over the course of 56 

generations of selective breeding (F1-F56), the bHR rats (green) have developed increasingly 

elevated exploratory activity in a novel field (y-axis: average total locomotor score), whereas the 

bLR rats (red) have become less exploratory. These trends plateaued after F42, when our 

breeding strategy changed to deaccelerate divergence. Arrows indicate the generations during 

which hippocampal transcriptomic profiling datasets were collected, along with a name 

indicating the respective laboratory, platform, and generation for each dataset. B) bLR rats have 

MBNI_AffymetrixRae230_F4 MBNI_IlluminaRatRef12v1_F15 Alabama_NimbleGen_F34
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been highly anxious since the initiation of our breeding colony. The example above is from the 

behavioral data accompanying the MBNI_RNASeq_F37 transcriptomic dataset showing bLRs 

spending a smaller percentage of time in the anxiogenic open arms of the elevated plus maze 

than bHR rats (effect of phenotype: F(2,15)=6.72, p=8.25E-03, boxes=first quartile, median, and 

third quartile, whiskers = range). C) bLR rats are more reactive to stressors. This example is 

from the behavioral data accompanying the MBNI_RNASeq_F43 transcriptomic dataset 

showing bLR rats spending a smaller percentage of time interacting socially following exposure 

to a single mild stressor (F(1,8)=5.86, p=0.0418).  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/774034doi: bioRxiv preprint 

https://doi.org/10.1101/774034
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head: bHR/bLR Hippocampal Gene Expression Meta-Analysis  

 41 

 

Figure 3. The top DE genes within the bHR/bLR hippocampal gene expression meta-

analyses. P-value=nominal p-value, FDR=false detection rate, Estimate=estimated effect size 

(i.e., the difference in expression between bHR and bLR rats in units of standard deviation, 

Rank Gene	Symbol P-value FDR Estimate
#	of	

Datasets Rank Gene	Symbol P-value FDR Estimate
#	of	

Datasets
1 Tmem144 3.04E-08 4.95E-04 -3.57 3 38 Trappc6a 6.16E-05 2.61E-02 -2.06 3
2 Asb15 4.05E-07 2.32E-03 2.82 3 39 Cav1 6.47E-05 2.61E-02 1.37 5
3 Kif15 4.27E-07 2.32E-03 -2.21 4 40 Robo3 6.54E-05 2.61E-02 -2.00 3
4 Pkhd1l1 6.13E-07 2.49E-03 -3.17 3 41 C1qa 6.57E-05 2.61E-02 -1.40 5
5 Car9 7.87E-07 2.56E-03 2.78 3 42 Tubg1 6.88E-05 2.65E-02 -1.40 5
6 Klhl34 1.04E-06 2.81E-03 -2.39 4 43 Zfp952 7.17E-05 2.65E-02 2.12 2
7 Mvb12b 2.03E-06 4.32E-03 -2.95 2 44 Slc9a3r1 7.31E-05 2.65E-02 1.32 5
8 Amer2 2.12E-06 4.32E-03 2.10 3 45 Egfem1 7.45E-05 2.65E-02 -2.11 2
9 Rpl17 2.86E-06 5.17E-03 -2.16 4 46 Epb41l4a 7.49E-05 2.65E-02 -2.10 2
10 Nudt4 4.27E-06 6.51E-03 -1.58 5 47 Trmt10a 8.18E-05 2.83E-02 -1.75 3
11 Pkib 4.40E-06 6.51E-03 1.70 5 48 Oard1 8.81E-05 2.98E-02 1.65 3
12 Fxyd7 5.22E-06 6.62E-03 -1.74 4 49 Selenop 1.00E-04 3.33E-02 2.21 2
13 Scube2 5.29E-06 6.62E-03 -2.68 2 50 Ezr 1.17E-04 3.72E-02 1.27 5
14 Ddx20 5.77E-06 6.62E-03 -1.93 4 51 Acox3 1.17E-04 3.72E-02 1.26 5
15 R3hdm4 6.10E-06 6.62E-03 -2.03 3 52 Ints8 1.21E-04 3.74E-02 2.11 2
16 Hmgn5b 7.33E-06 6.94E-03 2.60 2 53 Pld4 1.22E-04 3.74E-02 -1.45 4
17 Slc39a12 7.35E-06 6.94E-03 2.62 3 54 Ucp2 1.27E-04 3.83E-02 1.29 5
18 Acss2 7.68E-06 6.94E-03 -1.87 4 55 Rbm3 1.29E-04 3.83E-02 -1.52 4
19 Rhpn2 8.16E-06 6.98E-03 2.33 3 56 Ankdd1b 1.37E-04 3.93E-02 -2.00 2
20 Exosc7 9.65E-06 7.85E-03 1.80 4 57 Aar2 1.38E-04 3.93E-02 2.02 2
21 Rnls 1.04E-05 8.06E-03 1.92 3 58 Fn3k 1.42E-04 3.97E-02 -1.47 4
22 Slc19a3 1.50E-05 1.11E-02 -2.36 3 59 Slc27a1 1.45E-04 4.01E-02 1.24 5
23 Prss55 1.91E-05 1.35E-02 -2.43 2 60 Afmid 1.52E-04 4.11E-02 1.98 2
24 Apln 2.07E-05 1.41E-02 1.48 5 61 Slc4a11 1.54E-04 4.11E-02 -1.78 3
25 Mfge8 2.70E-05 1.73E-02 1.50 5 62 Zfp110 1.64E-04 4.31E-02 1.24 5
26 C2cd3 2.84E-05 1.73E-02 2.06 3 63 Tek 1.70E-04 4.33E-02 -1.79 3
27 Dnaaf3 2.87E-05 1.73E-02 -2.51 2 64 Fmo5 1.70E-04 4.33E-02 1.42 4
28 Etv4 3.30E-05 1.92E-02 2.02 3 65 Blvra 1.74E-04 4.36E-02 1.52 4
29 Tmem2 3.72E-05 1.99E-02 -2.29 2 66 Prdm5 2.03E-04 4.94E-02 -1.76 3
30 Tdg 3.84E-05 1.99E-02 -1.38 5 67 Samd5 2.09E-04 4.94E-02 1.95 3
31 Mki67 4.03E-05 1.99E-02 -2.01 3 68 Ntn4 2.10E-04 4.94E-02 1.94 2
32 Tnnt1 4.06E-05 1.99E-02 -1.51 5 69 Chd1l 2.11E-04 4.94E-02 1.45 4
33 Zfp90 4.13E-05 1.99E-02 -1.59 4 70 Ccdc137 2.13E-04 4.94E-02 1.97 2
34 LOC363337 4.16E-05 1.99E-02 -2.82 2 71 Trhr 2.16E-04 4.94E-02 1.19 5
35 Uhrf1 4.95E-05 2.29E-02 -1.67 3 72 Zfp821 2.22E-04 4.98E-02 -1.48 3
36 Tuba8 5.06E-05 2.29E-02 -1.44 4 73 Myh6 2.23E-04 4.98E-02 -1.25 5
37 Rltpr 5.58E-05 2.45E-02 -2.28 2 74 Sp3 2.26E-04 4.98E-02 1.93 3

Rank Gene	Symbol P-value FDR Estimate
#	of	

Datasets Rank Gene	Symbol P-value FDR Estimate
#	of	

Datasets
1 Ncan 1.38E-07 4.86E-04 -4.16 2 1 Bmp4 9.40E-06 1.47E-01 -1.49 5

Adult	Meta-Analysis:	Top	Results	(FDR<0.05)

P7:	Top	Result	(FDR<0.05) P14:	Top	Result	(FDR<0.15)
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green/positive=higher expression in bHRs, red/negative= higher expression in bLRs), # of 

datasets=number of datasets included in the meta-analysis for that gene. 
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Figure 4. The extracellular matrix constituent Neurocan (Ncan) has elevated expression 

in bLR rats at age P7. A) A genetic variant on Chr 16 nearby Ncan (<100 kb) segregated bHR 

and bLR rats (Fisher’s exact test: p=1.63E-07). B) Boxplots illustrating the effect of age and 

bHR/bLR phenotype on Ncan expression (log(2) signal) in two microarray studies 

(boxes=median and interquartile range, whiskers=range, red=bLR, green=bHR). The effect of 

phenotype is most obvious at an age when Ncan is elevated in development (P7). C-D) Forest 
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plots showing that Ncan was more expressed in bLRs than bHRs (boxes=Cohen’s D from each 

study +/-95% confidence intervals, “Model”=estimated effect size +/-95% confidence intervals 

provided by the meta-analysis) C) in the P7 meta-analysis (β=-4.16, p=1.38E-07, FDR=4.86E-

04), D) and nominally in the P14 meta-analysis (β=-0.90, p=1.01E-02, FDR=7.24E-01). 
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Figure 5.  A regulator of proliferation and differentiation, Bone morphogenetic protein 4 

(Bmp4), is more highly expressed in bLR rats than bHR rats at P14 and adulthood. A-B) 

Two forest plots showing that Bmp4 was consistently elevated in bLR rats (boxes=Cohen’s D 

from each study +/-95% confidence intervals, “Model”=estimated effect size +/-95% confidence 

intervals provided by the meta-analysis) at A) P14 (β=-1.49, p=9.40E-06, FDR=1.47E-01) and 

B) adulthood (adult: β=-1.04, p=1.01E-03, FDR=9.38E-02). This direction of effect mirrors 

findings in the literature that show that blocking the expression of Bmp4 in mice reduces anxiety 
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and depressive-like behavior (98). C) Using qPCR, we confirmed that bLRs showed greater 

Bmp4 expression than bHRs at P14 and adulthood (P90) using hippocampal tissue from later 

generations (F51, F55). Log(2) fold change in Bmp4 expression was calculated using the Livak 

method (-∆∆Cq, (43)), using Gapdh as the reference housekeeping gene and bLRs as the 

reference group (therefore the bLR mean is set to 0 in all panels). **p<0.005 (Data release: doi: 

10.6084/m9.figshare.10321658;  P14: Log(2)FC=-3.74, T(5.60)=-6.10, p=0.00115; P90: 

T(8.74)=-6.87, p=8.44E-05). D) Within the behavioral data accompanying the 

MBNI_RNASeq_F37 dataset, we found that Bmp4 showed a negative relationship with percent 

time in the open arms (β=-0.034, R2= 0.28, p=0.024) and a positive relationship with the number 

of fecal boli produced on the EPM (β=0.32, R2= 0.29, p=0.020, data not shown).  
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QTLs from bHR/bLR F2 Intercross: Exploratory Locomotion Overlapping QTLs from Rat Genome Database

Chr
QTL range in MB* 
(LOD>3, +/-1MB) LOD

Genes w/ FDR<0.1 
in Meta-Analysis Anxiety

Stress 
Response 

Behavioral 
Despair

1 28-31 3.13 [53] [56]
1 39-65 4.75 Ezr [47] [53]
1 98-104 3.42 Dbp [47],[48] [53]
1 115-132 7.76 Hmgn5b [47],[48] [53],[54]
1 139-142 3.14 Mfge8 [47],[48] [54]
1 156-171 4.32 Olr35, Spcs2, C2cd3 , Ucp2 [47],[48] [54]
2 43-70 4.26 Pdzd2, Selenop [49] [55]
2 92-95 3.02 [55], [55]
3 43-65 4.71 Ttc30a1 [49] [53] [56]
5 98-102 3.34 [51],[52]
7 67-85 5.14 Trhr ,  Pkhd1l1 [49] [53]

17 157-177 3.82 Chrm3, Akr1cl
18 71-81 4.99 [50]

Genetic Loci Enriched with bHR/bLR Differentially Expressed Genes (PGE) Overlapping QTLs:

Chr Location (Rnor_6.0) P-value FDR

Size of 
Region 
(kb)

Enrichment 
Score

Genes w/ FDR<0.1 
in Meta-Analysis

Exploratory 
Locomotion Anxiety

Stress 
Response

Behavioral 
Despair

1 2782900-4653300 7.76E-04 1.02E-02 1,870 0.6 Samd5 [56]
1 164225800-165684000 4.97E-05 4.68E-03 1,458 0.2 Olr35, Spcs2, C2cd3 , Ucp2 [25] [47], [48] [54]
1 174385400-174620200 1.77E-04 5.69E-03 235 1 Scube2 [48] [63]
3 62800900-63455200 7.76E-04 1.02E-02 654 0.6 Ttc30a1 [25] [49] [53] [56]
3 119361600-119677400 1.22E-04 5.69E-03 316 0.6 Blvra [53],[55] [56]
3 151032900-151150600 1.77E-04 5.69E-03 118 1 Acss2,  Myh7b [55]
3 176280000-176526000 4.08E-04 7.97E-03 246 0.8
5 155246400-155264100 1.77E-04 5.69E-03 18 1 C1qa ,  C1qc [49]
7 81919900-83358500 2.02E-04 6.05E-03 1,439 0.5 Trhr [25] [49] [53]

10 88392200-103730100 6.80E-05 4.68E-03 15,338 0.1
Slc9a3r1 , Sox9, Tubg1 ,Ghdc, 
Tmem101, Acbd4, Ddx42, Etv4 [50] [64], [65]

12 37444100-39302600 4.30E-06 2.96E-03 1,859 0.3 Eif2b1
16 81035000-81209500 3.35E-05 4.68E-03 175 0.8 [55]
19 32182900-42110300 2.85E-05 4.68E-03 9,927 0.1

Lcat, Ist1, Zfp821, Zfp612, 
Zfp90
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Figure 6.  Many of the top differentially expressed genes are located near genetic 

variants that segregate bHR/bLR rats within quantitative trait loci (QTLs) for exploratory 

locomotor activity. A. Our concurrent genetic study used exome sequencing to identify 

variants (SNPs) that segregated bHR/bLR rats in our colony (25). A high percentage of 

bHR/bLR differentially-expressed genes (adult meta-analysis: FDR<0.05) were found within +/- 

100 kb, 250 kb, 500 kb, or 1 MB of these segregating variants, using either traditional 

(Bonferonni-corrected p<0.05) or more stringent (Bonferonni-corrected p<5.00E-5) criteria to 

define segregation. Asterisks (*) designate enrichment (Fisher’s exact test p<0.0001) in 

comparison to the non-differentially expressed genes in our meta-analysis (FDR>0.05). B. Our 

concurrent genetic study used a sampling of bHR/bLR segregating variants to identify QTLs for 

exploratory locomotor activity in a novel field using an bHR/bLR F2 intercross (25). bHR/bLR 

differentially-expressed genes (adult meta-analysis: FDR<0.05) were 4.5x more likely to overlap 

(+/- 1MB) QTLs for exploratory locomotion than other genes included in our meta-analysis 

(Fisher’s exact test: p=0.0035). C. A table illustrating the top genes from our meta-analyses 

(FDR<0.1, bold+italic=FDR<0.05) that overlap (+/-1 MB) significant (LOD>4) and putative 

(LOD>3) QTLs for exploratory locomotion identified by our concurrent genetic study (25). Also 

depicted is overlap with QTLs identified in the Rat Genome Database (32) for the following 

behaviors relevant to the bHR/bLR phenotype: anxiety (47–52), stress-related responses (53–

55), and behavioral despair (56). D. The top chromosomal loci enriched for bHR/bLR DE genes 

overlap previously-identified QTLs relevant to externalizing and internalizing behaviors. The top 

chromosomal loci enriched for bHR/bLR DE genes were identified using Positional Gene 

Enrichment analysis (PGE): location (full coordinates), p-value=nominal p-value, FDR=false 

detection rate, enrichment score= ratio of genes with p<0.01 out of all genes in the region. Also 

depicted is the overlap (+/-1 MB) of these enriched chromosomal loci with QTLs for exploratory 

locomotor activity (25), as well as with QTLs identified in the Rat Genome Database (32) for 

anxiety (47–50), stress-related responses (53–55,63–65), and behavioral despair (56).  
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Figure 7.  A region on chromosome 1 implicated in bHR/bLR phenotype contains two 

genes important for brain function and development, Uncoupling Protein 2 (Ucp2) and C2 

Calcium Dependent Domain Containing 3 (C2cd3). A) Genetic variants on Chr 1 within Ucp2 

and C2cd3 segregate bHR and bLR rats in our colony (Rnor5 coordinates, Fisher’s exact test: 

SNP 1_171712284: p=1.66E-09; SNP 1_171672484: p=1.27E-13). B) Ucp2 and C2cd3 are 

located on Chr 1 within a QTL for exploratory locomotor activity. An example of the correlation 

between genetic variation in this region and behavior is illustrated using the sequencing results 
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from a nearby SNP and exploratory locomotor activity measured in a bHRxbLR F2 intercross 

(n=310; adj.R2=0.049, p=2.00E-04, FDR=0.0048). C) C2cd3 and Ucp2 were the top DE genes 

(FDR<0.05) within a segment of Chr 1 enriched for DE genes and containing a QTL for 

exploratory locomotor activity (25). The table illustrates the DE genes within this region: 

estimate=estimated effect size (green/positive=higher expression in bHRs), bold=p<0.05, 

bold+italic=FDR<0.05. D) A forest plot showing that Ucp2 had higher expression in bHRs in four 

out of the five adult datasets included in the adult meta-analysis (boxes=Cohen’s D from each 

study +/-95% confidence intervals, “Model”=estimated effect size +/-95% confidence intervals 

provided by the meta-analysis, effect of phenotype: β=1.29, p=1.27E-04, FDR=3.83E-02). This 

direction of effect mirrors findings in the literature showing that Ucp2 knockout mice have higher 

anxiety-like behavior and lower locomotor activity, as well as greater sensitivity to stress 

(57,58,60,61), much like our bLR rats. E) A forest plot showing that C2cd3 had higher 

expression in bHRs in three adult datasets included in the adult meta-analysis (effect of 

phenotype: β=2.06, p=2.84E-05, FDR=1.73E-02). F) In the behavioral data accompanying the 

MBNI_RNASeq_F37 dataset, C2cd3 (units: log(2) fragments per million (FPM)) showed a 

positive relationship with exploratory locomotor activity (β= 0.000109, R2=0.26, p=3.20E-02). G) 

In the behavioral data accompanying the MBNI_RNASeq_F37 dataset, Ucp2 showed a trend 

towards a positive relationship with percent of time spent in the anxiogenic open arms of the 

EPM (β=0.03, R2=0.22, p=5.16E-02). 
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Figure 8. Thyrotropin releasing hormone receptor (Trhr) was the top gene within two 

hippocampal specific gene sets and within a region of Chromosome 7 implicated in 

bHR/bLR phenotype. A) A genetic variant on Chr 7 near Trhr (<200 kb distant) segregates 

bHR and bLR rats in our colony (Fisher’s exact test: p=6.20E-14). B) Trhr is located on Chr 7 

within a QTL for exploratory locomotor activity. An example of the correlation between genetic 

variation in this region and behavior is illustrated using the sequencing results from a SNP 

nearby Trhr (discussed above) and exploratory locomotor activity measured in a bHRxbLR F2 

intercross (n=315, adj.R2=0.061, p=5.79E-05, FDR=0.00178). C) A forest plot showing that Trhr 

expression was consistently elevated in bHR rats since generation F4 (boxes=Cohen’s D from 

each study +/-95% confidence intervals, “Model”=estimated effect size +/-95% confidence 

intervals provided by the meta-analysis, β=1.19, p=2.16E-04, FDR=4.94E-02). This direction of 

effect mirrors findings in the literature that show Trhr-KO mice exhibit greater anxiety and 

depressive-like behavior (62). D) Trhr was the strongest result within a segment of 

Chromosome 7 enriched for DE genes and overlapping a QTL for exploratory locomotor activity. 

The table illustrates the DE genes within this region: estimate=estimated effect size 

(green/positive=greater expression in bHRs), bold=p<0.05, bold+italic=FDR<0.05. E) Trhr was a 

leading gene in two of the top hippocampal-specific gene sets identified as enriched for 

bHR/bLR DE genes by GSEA (FDR: False Detection Rate; NES: Normalized Enrichment Score, 

with positive scores (green) indicating greater expression in bHRs and negative scores (red) 

indicating greater expression in bLRs, bold: p<0.05 in GSEA results, bold+italics: FDR<0.05 in 

GSEA results). The top 10 “Leading Edge” genes for each gene set are shown (bold+italics: 

FDR<0.05 in meta-analysis). These genes have large estimated effect sizes within the meta-

analysis and help drive the enrichment of effects within these gene sets. Regional marker gene 

sets use the following abbreviations: “dg”=dentate gyrus, “v”=ventral, “d”=dorsal, “ca”=Cornu 

Ammonis subregion. F) In the behavioral data accompanying the MBNI_RNASeq_F37 dataset, 

Trhr (units: log(2) fragments per million (FPM)) showed a trend towards a positive relationship 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/774034doi: bioRxiv preprint 

https://doi.org/10.1101/774034
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head: bHR/bLR Hippocampal Gene Expression Meta-Analysis  

 53 

with exploratory locomotor activity (β=4.48E-04, R2= 0.22, p=5.08E-02). G) Trhr and its ligand, 

Thyrotropin releasing hormone (Trh), are hub genes within a hippocampal specific co-

expression network that is enriched for bHR-upregulated genes. Genes within this network with 

known protein-protein interactions are illustrated above (STRINGdb: confidence setting=0.15 

due to hippocampal co-expression already suggesting potential interaction). Many of these 

genes have documented associations with reward behavior.  
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Figure 9.  The top bHR vs. bLR DE results are enriched with genes related to cell 

proliferation, differentiation, and development, including the canonical Marker of 

Proliferation (Mki67). A) A table of the top functional ontology gene sets identified as enriched 

for bHR/bLR DE genes by GSEA (FDR: False Detection Rate; NES: Normalized Enrichment 

Score, with positive scores (green) indicating higher expression in bHRs and negative scores 

(red) indicating higher expression in bLRs, bold: p<0.05 in GSEA results, bold+italics: 

FDR<0.05 in GSEA results). The top 10 “Leading Edge” genes for each gene set are shown 

(bold+italics: FDR<0.05 in meta-analysis). These genes have large estimated effect sizes within 

the meta-analysis and help drive the enrichment of effects within these gene sets. B) A PPI 

network constructed using the top genes from the adult meta-analysis (192 genes with 

FDR<0.10, STRINGdb: confidence setting=0.40) had a dominant subnetwork that included 

Bmp4 and Mki67 as hub genes. Many of these genes are related to cell proliferation and 

differentiation within the brain. C) Two genetic variants on Chr 1 within Mki-67 fully segregated 

bHR and bLR rats in our colony (Rnor5 coordinates, Fisher’s exact test: SNP 1_214939984: 

p=2.02E-11, SNP 1_214940284: p=2.02E-11). D) A forest plot showing that Mki67 was 

consistently elevated in bLR rats in adulthood (boxes=Cohen’s D from each study +/-95% 

confidence intervals, “Model”=estimated effect size +/-95% confidence intervals provided by the 

meta-analysis, adult: β=-2.01, p=4.03E-05, FDR=1.99E-02). E) Within the behavioral data 

accompanying the MBNI_RNASeq_F37 dataset, Mki67 (units=log(2) fragments per million 

(FPM)) showed a negative relationship with locomotor score (β=-0.000249, R2=0.41, p=0.0042).  
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Figure 10. Microglial-related gene expression differentiates bHR and bLR rats. A) A 

heatmap illustrating the effect of bHR/bLR phenotype on cell type specific gene expression, 

which can reflect overall cell type balance (42) or activation: green=upregulated in bHRs, 

red=upregulated in bLRs, asterisks(*) indicate p<0.05. Note that only well-characterized non-

neuronal cell type categories were included in this analysis. B-D) Forest plots (boxes=Cohen’s 

D from each study +/-95% confidence intervals, “Model”=estimated effect size +/-95% 

confidence intervals provided by the meta-analysis) showing an upregulation in bLRs of (B) 

endothelial-specific gene expression at P14 (β=-0.89, p=5.75E-03) and (C-D) microglial-specific 

gene expression C) at P14 (β=-0.69, p=2.90E-02) and D) adulthood (β=-0.65, p=4.47E-02).  E) 

A genetic variant on Chr 1 in Milk fat globule-EGF factor 8 (Mfge8) segregates bHR and bLR 

rats in our colony (Fisher’s exact test: p=7.53E-08). Mfge8 promotes alternative (M2) activation 

of microglia. F) A forest plot illustrating that Mfge8 is more highly expressed in bHRs than bLRs 

in the adult meta-analysis in all five adult datasets (β=1.50, p=2.70E-05, FDR=1.73E-02). G) 

Mfge8 is located on Chr 1 within a QTL for exploratory locomotor activity. An example of the 

correlation between genetic variation in this region and behavior is illustrated using the 

sequencing results from a nearby SNP (Rnor5 coordinates 1_ 141117448) and exploratory 

locomotor activity measured in a bHRxbLR F2 intercross (n=317, adj.R2=0.061, p=1.81E-05, 

FDR=0.002). H) Within the behavioral data accompanying the MBNI_RNASeq_F37 dataset, 

Mfge8 (units=log(2) fragments per million (FPM)) showed a positive relationship with total 

locomotor score (β=0.000146, R2=0.62, p=1.10E-04) as well as the percent time in the open 

arms of the EPM (β=0.00603, R2=0.28, p=2.30E-02). I) A genetic variant on Chr 5 near 

Complement component C1q A Chain (500 kb distant) segregates bHR and bLR rats in our 

colony (Rnor5 coordinates 5_159525078, Fisher’s exact test: p=1.09E-07). C1qa promotes 

classical activation of microglia via the complement cascade. J) A forest plot illustrating that 

C1qa is more highly expressed in bLRs than bHRs in all five datasets in the adult meta-analysis 

(β=-1.40, p=6.57E-05, FDR=2.61E-02). K) C1qa is the top DE gene (FDR<0.05) within a 
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segment of Chr 5 enriched for DE genes. The table illustrates the DE genes within this region: 

estimate=estimated effect size (red/negative=higher expression in bLRs), bold=p<0.05, 

bold+italic=FDR<0.05. L) Within the behavioral data accompanying the MBNI_RNASeq_F37 

dataset, C1qa showed a negative relationship with total locomotor score (C1qa: β=-5.17E-04, 

R2=0.29, p=2.09E-02). 
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