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Abstract

Many scientists are now interested in studying the correlative relationships between mi-
crobes and metabolites. However, these kinds of analyses are complicated by the compositional
(i.e., relative) nature of the data. Recently, Morton et al. proposed a neural network architec-
ture called mmvec to predict metabolite abundances from microbe presence. They introduce
this method as a scale invariant solution to the integration of multi-omics compositional data,
and claim that “mmvec is the only method robust to scale deviations”. We do not doubt the
utility of mmvec, but write in defense of simple linear statistics. In fact, when used correctly,
correlation and proportionality can actually outperform the mmvec neural network.

1 Response

Many scientists are now interested in studying the correlative relationships between microbes and
metabolites (e.g., [1, 2, 3, 4]). However, these kinds of analyses are complicated by the composi-
tional (i.e., relative) nature of the data [5, 6]. Recently, Morton et al. proposed a neural network
architecture called mmvec to predict metabolite abundances from microbe presence [7]. They in-
troduce this method as a scale invariant solution to the integration of multi-omics compositional
data, and claim that “mmvec is the only method robust to scale deviations”. We do not doubt
the utility of mmvec, but write in defense of simple linear statistics. In fact, when used correctly,
correlation and proportionality can actually outperform the mmvec neural network.

Scale invariance is important because we do not want a method that is sensitive to (i.e., is variant
to) changes in technical factors like sequencing depth (i.e., differences in scale). In compositional
data analysis (CoDA), scale invariance is forced by using a log-ratio transformation that recasts
the data with respect to an internal reference [8]. The resultant log-ratios are scale invariant, and
so any analysis of log-ratios is scale invariant. This is true for multi-omics data too, but only
if the transformation is performed correctly. Let us consider two possible transformations of the
multi-omics data, presented here as functions of the input:
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for sample ¢, where u; measures the 1...M microbes and v; measures the 1...N metabolites. Only

approach B is scale invariant, but Morton et al. use approach A when they claim that correlation
and proportionality are unreliable.
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Why is approach B valid, but not approach A7 It is because the microbe and metabolite data
are generated from two separate sampling processes: they are individually, not jointly, constrained
to sum to 1. In other words, the abundance of microbe 1 is limited by the abundance of microbes
2-to-M, but is in no way limited by the abundance of metabolites 1-to-IN. Consequently, the de-
nominator from approach A has no meaning. On the other hand, the denominators from approach
B have the property that they cancel any constant factor multiplied with the sample values in each
numerator. As such, they cancel the implicit biases that arise from the sequencing procedure and
cause the samples to be on different scales. An additional property of these numerators is that
they are useful normalization factors themselves [9]: under the assumption that the majority of
features are unchanged, approach B will make the transformed data proportional to the original
(absolute) data (thus performing an effective library-size normalization).

How important is the choice between approach A and approach B? We repeated the authors’
analysis to measure the Fl-score (precision and recall) for the top microbe-metabolite associations,
except this time we used approach B. Figure 1 shows the updated performance of correlation and
proportionality, both of which outperform mmvec on their simulated benchmark. Interestingly,
correlation (Spearman and Pearson) performed best, suggesting that the “ground truth” includes
power-law relationships between microbes and metabolites (i.e., log-linear relationships with slopes
other than 1). Since ¢ and p are designed for intercept-free linear relationships, pairs in which one
feature is proportional to another when taken to an exponent will usually go undetected.

We do not disagree that neural networks can add value to multi-omics data integration. Their
ability to learn non-linear relationships could improve metabolite prediction by directly modeling
complex microbe-microbe interactions. However, neural networks do not offer a magical solution
to the problems of compositional data analysis [10]. They are merely a nested series of transformed
linear operators. As such, they may be prone to yield spurious results whenever a simple linear
method would. It seems to us that mmvec’s primary advantage is how it handles the compositional
data, not its neural network architecture. Indeed, our analysis shows that when we transform the
multi-omics data correctly, simple linear methods outperform mmvec in their own benchmark. We
conclude by reminding our readers that not all problems in biology are solved by adding layers of
complexity: sometimes it is sufficient to use our simplest solutions more carefully.
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Figure 1: Our re-analysis of the Morton et al. simulated data shows that, with the correct log-ratio
transformation, simple linear statistics are scale invariant and sufficient for use in the integration
of multi-omics compositional data. In the top panels, we see excellent agreement between absolute
and relative correlation, as well as between absolute and relative proportionality. In the bottom
panels, we see the updated performances from the simulated data benchmark. When used correctly,
correlation and proportionality can actually outperform the mmvec neural network. All scripts
available from https://doi.org/10.5281/zenodo.3544999.
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