

Supplementary Information for

Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva.

Marnie L Freckelton, Brian T. Nedved, You-Sheng Cai, Shugeng Cao, Helen Turano, Rosanna A. Alegado and Michael G. Hadfield^{*}

*correspondence: Michael G. Hadfield Email: hadfield@hawaii.edu

This PDF file includes:

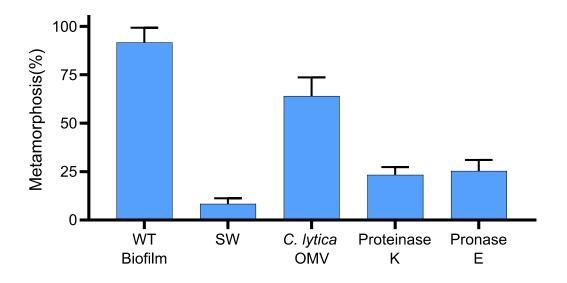
Supplementary text Figures S1 to S5 Tables S1 to S3 SI References

Supplementary Information Text

Small molecule analysis of cell pellets from C. lytica:

Cell pellets of *C. lytica* were extracted with MeOH twice followed by repeated extraction with MeOH: DCM (1:1). The MeOH: DCM extract was subjected to semi-preparative reverse chromatography HPLC (C18, ACN: 10-25%, 20 mins; 25-40%, 10 mins; 40-100%, 20 mins; 100% 10 mins). Fractions were collected every minute, dried and resuspended at 20 mg/ml and tested for metamorphic activity at a concentration of (10 μ g/ml). Activity was detected in fraction 7 and fraction 29; fraction CLP-29 did not contain enough material or any indicative absorbance to pursue further.

Semi-preparative reverse chromatography of CLP7 (C18; MeOH 10%, 30 mins) yielded activity in the 2nd and 4th fractions (Fig S2). LC-Mass spectrometry and ¹H NMR spectroscopy were consistent with the presence of phenylalanine and adenosine (Fig S3). To confirm the activity and further elucidate the stereochemistry, both isolated and commercial versions of adenosine (Sigma-Aldritch) and phenylalanine (D and L; Sigma-Aldritch) were tested for metamorphic induction (Fig S4 and S5). Additional commercially available compounds (thymidine, leucine (D and L) and niacin) were also tested (Fig S5).


Small molecule analysis of cell-free supernatant from C. lytica containing OMVs:

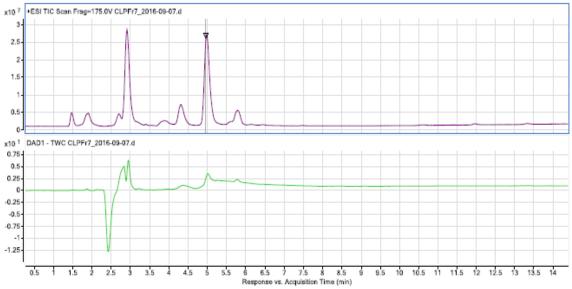
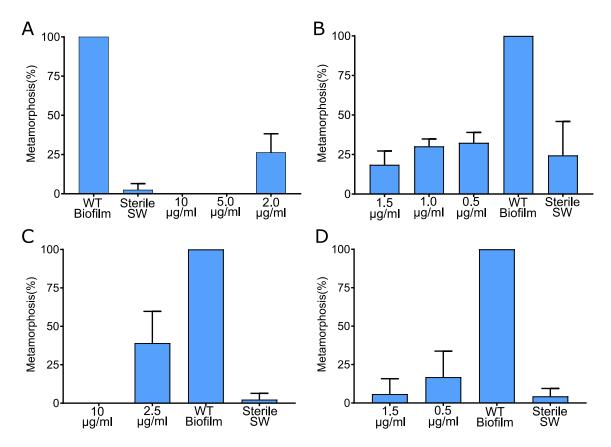
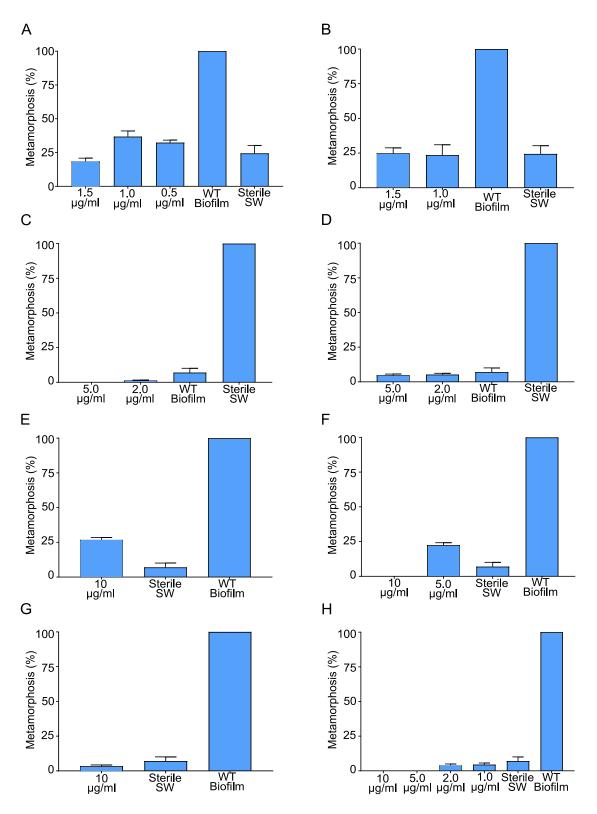
Conditioned media of *C. lytica* cultures (3.7 L) were extracted with ethyl acetate (EtOAc) and dried (363 mg). The EtOAc extract_was subjected to semi-preparative reverse chromatography HPLC (C18, ACN: 10-25%, 20 mins; 25-40%, 10 mins; 40-100%, 20 mins; 100% 10 mins). Fractions were collected every minute, dried and resuspended at 20 mg/ml ethanol and tested for metamorphic activity at a concentration of (10 μ g/ml). Activity was identified in the 25th and 26th fractions which were combined. LC-MS revealed a compound consistent with the presence of a diketopiperazine of phenylalanine and proline. Isolated and commercial versions of this compound were subjected to metamorphosis assay as previously described (Fig S6).

2

Genome Mining for Secondary Metabolites

Analysis of the genome of *C. lytica* for the presence of secondary metabolite biosynthesis gene clusters revealed a single contig (*ctg1_392*) located between 455,027 - 455,863. A protein blast of this contig, identified it as a phytoene synthase (Table S1). The Minimum Information about a Biosynthetic Gene cluster (MIBiG) failed to match any enzymes with greater than 50% sequence identity (Table S2). Similar low matches were generated using NaPDos (Table S3).

Fig. S1. Proteases induce metamorphosis in larvae of *C. lytica*. Larvae of *H. elegans* were exposed to either Proteinase K (5 U) or Pronase E (5 U). Metamorphosis was counted after 24 h exposure. Filtered seawater (SW) served as a negative control, and a multispecies biofilm and untreated OMVs were used as positive controls.

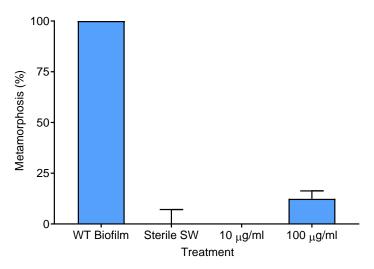

Fig. S2. Positive mode LCMS data from most active cell pellet fraction (CLP7) yielded m/z of 123.0459 and 268.1043. Ions were detected within a mass range m/z 100-1100.

Fig. S3. Metamorphosis of larvae of *H. elegans* when exposed to isolated A and B) adenosine and C and D) phenylalanine from Fraction 7 of the cell pellet for 24 hrs. Positive Control: Wild Type (WT) Biofilm. Negative Control: Sterile Seawater (SW).

Fig S4. Metamorphosis of larvae of *H. elegans* when exposed to commercial versions of compounds detected in fraction 7 for 24 hrs. A) Adenosine; B) DL-Phenylalanine; C) L-Phenylalanine; D) D-Phenylalanine; E) Niacin; F) Thymidine; G) L=Leucine; H) D-Leucine. Positive Control: Wild Type (WT) Biofilm. Negative Control: Sterile Seawater (SW).

Fig S5. Metamorphosis of larvae of *H. elegans* when exposed to commercial version of the diketopiperizine of phenylalanine and proline detected in fraction 25 of the supernatant from a *C. lytica* culture for 24 hrs. Positive Control: Wild Type (WT) Biofilm. Negative Control: Sterile Seawater (SW).

Accession			Query Cover		% Ident
	phytoene synthase [<i>Cellulophaga lytica</i>]	563	100%	0.0	100.00%

Table S1. NCBI BlastP on ctg1_392 from genome of C. lytica generated by AntiSMASH (1)

Table S2. Minimum Information about a Biosynthetic Gene cluster (MIBiG) search results from genome of *C. lytica* generated by AntiSMASH (1)

MIBiG	Description	MIBiG	MiBiG	%	%	BLAST	E-
Protein	Description	Cluster	Product	ID	Coverage	Score	value
ABB88949.1	CrtB	BGC0000650	terpene	50.0	99.6	255.0	1.2e- 67
AAK64298.1	Phytoene synthase	BGC0000637	terpene	37.0	100.4	168.0	1.5e- 41
ABD24399.1	Phytoene synthase	BGC0000644	terpene	33.0	97.1	155.0	9.9e- 38
AAF65581.1	Phytoene synthase	BGC0000636	terpene	34.0	102.5	134.0	2.4e- 31
ABP56869.1	Phytoene synthase	BGC0001087	saccharide- terpene	25.0	89.9	80.0	5.3e- 15

Table S3: Polyketide Synthase (KS) domains within the genome of *C. lytica* generated by NaPDos (2). Search was run with relaxed parameters.

	Query ID	Database match ID	% ident.	Align length		Pathway product
KS2	CP009239.1_3_157_15_425	FabF_Bacillus_FAS	55			<u>fatty acid</u> synthesis
KS1	CP009239.1_4_290_11_391	FabF_Bacillus_FAS	26	414		<u>fatty acid</u> synthesis
KS3	CP009239.1_6_112_8_221	Myca_YP880565_1KSB	30	131	2e 06	<u>mycocerosic</u> <u>acid</u> synthase

SI References

- M. H. Medema, *et al.*, AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. *Nucleic Acids Res.* **39**, W339–W346 (2011).
 N. Ziemert, *et al.*, The natural product domain seeker NaPDoS: A phylogeny based
- 2. N. Ziemert, *et al.*, The natural product domain seeker NaPDoS: A phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. *PLoS One* **7**, e34064 (2012).