SUPPLEMENTARY FIGURE LEGENDS

Supplementary Fig. 1. Karyotypes of the three subjects: (a) jg1a, (b) jg1b, and (c) jg1c. The arrow in panel (a) indicates the normal variation inv(9)(p12q13).

Supplementary Fig. 2. Harr plot of the alignment between chromosome 9 of GRCh38 and two largest scaffolds aligned to chromosome 9 from the (a) jg1a, (b) jg1b, and (c) jg1c assemblies, indicating that the two individual genomes harbor a possible shared inversion. 'Super-scaffold' is the default prefix designated by BionanoSolve software.

Supplementary Fig. 3. Workflow of the construction of JG1. (a) Workflow of the construction of each draft assembly. (b) Workflow of the integration of three draft assemblies. Rectangles indicate substrates such as reads, contigs, and scaffolds. Rectangles with rounded corners indicate software or processes.

Supplementary Fig. 4: Histogram of PacBio subreads length for (a) jg1a, (b) jg1b, and (c) jg1c. The length of each subread was calculated using the SAMtools (ver. 1.8) faidx command.

Supplementary Fig. 5: Histogram of Bionano data for (a) Nt.BspQI of jg1a, (b) Nb .BssSI of jg 1 a, (c) jg 1 b , and (d) jg 1 c . The length of each molecule was extracted from the BNX file.

Supplementary Fig. 6: Majority decision. (a) Schematic representation of majority decision approach. (b) Venn diagram of SNVs detected in JG1, jg1a, jg1b, and jg1c by comparison with hs37d5. The intersection relationship was inferred using the BCFtools (ver. 1.8) isec command.

Supplementary Fig. 7: Length distributions of detected transposable elements in the GRCh38 and JG1 genomes. Shown are Alu, SVA, and LINE1. Transposable elements and their subclasses were identified using RepeatMasker software (ver. 4.0.7) with the 'species human' option. The resulting OUT format files were converted to BED format using the rmsk2bed command of BEDOPS software ${ }^{59}$ (ver. 2.4.35). Transposable elements disrupted by other elements were counted as distinct.

b

C

Supplementary Fig. 1; Takayama et al.

Supplementary Fig. 2
Takayama et al.

Supplementary Fig. 3; Takayama et al

Supplementary Fig. 4
Takayama et al.

Supplementary Fig. 5
Takayama et al.

Supplementary Fig. 6
Takayama et al.

Supplementary Table 1. Basic statistics of PacBio subreads.

Individual	Number of subreads	Sum of subread length (bp)	depth*
jg1a	$34,445,474$	$364,777,563,591$	122 X
jg1b	$36,798,731$	$370,437,373,175$	123 X
jg1c	$41,535,337$	$383,220,406,482$	128 X

* Depth is calculated by assuming the genome size $=3.0 \mathrm{~Gb}$.

Supplementary Table 2. Basic statistics of Bionano molecules.

Individual	Enzyme	Number of molecules	Sum of molecule length (bp)	depth*
jg1a	BspQI	$1,156,682$	$368,075,072,000$	123 X
	BssSI	$1,834,771$	$418,513,858,000$	140 X
jg1b	DLE-1	$2,840,733$	$480,476,071,000$	160 X
jg1c	DLE-1	$3,594,225$	$524,851,027,000$	175 X

* Depth is calculated by assuming the genome size $=3.0 \mathrm{~Gb}$.

Supplementary Table 3. Basic statistics of Illumina paired-end and mate-pair reads.

Method	Individual	read length (bp)	\# of reads	Sum of read length (bp)	depth*
paired end	jg1a	162	543,599,992	88,063,198,704	29X
		259	303,625,608	78,639,032,472	26X
	jg1b	162	578,161,124	93,662,102,088	31X
		259	319,177,020	82,666,848,180	28X
	jg1c	162	571,414,220	92,569,103,640	31X
		259	302,332,088	78,304,010,792	26X
mate pair**	jg1a	201	189,189,310	38,027,051,310	13X
	jg1b		184,346,446	37,053,635,646	12X
	jg1c		185,928,504	37,371,629,304	12X

[^0]Supplementary Table 4. Basic statistics of Bionano assembly.

Individual	Enzyme	\# of fragments	N50 (Mb)	Total length (Mb)
jg1a	BspQI	4,761	1.179	3846.912
jg1a	BssSI	4,392	1.034	3202.036
jg1b	DLE-1	581	41.761	3194.487
jg1c	DLE-1	496	64.293	3481.086

Supplementary Table 5. Length of consecutive Ns inserted manually.

chr	pter (bp)	cen (bp)	qter (bp)	References
1	10,000	30,000,000	10,000	48-50
2	10,000	3,000,000	10,000	
3	10,000	3,000,000	10,000	
4	10,000	3,000,000	10,000	
5	10,000	3,000,000	10,000	
6	10,000	3,000,000	10,000	
7	10,000	3,000,000	10,000	
8	10,000	-	10,000	
9	10,000	30,000,000	10,000	48-50
10	10,000	3,000,000	10,000	
11	10,000	-	10,000	
12	10,000	3,000,000	10,000	
13	16,000,000	-	10,000	50
14	16,000,000	-	10,000	50
15	17,000,000	-	10,000	50
16	10,000	20,000,000	10,000	48-50
17	10,000	3,000,000	10,000	
18	10,000	3,000,000	10,000	
19	10,000	3,000,000	10,000	
20	10,000	3,000,000	10,000	
21	11,000,000	-	10,000	
22	13,000,000	-	10,000	
X	10,000	3,000,000	10,000	
Y	2,260,577	3,000,000	30,000,000	48, 51-53

[^0]: * Depth is calculated by assuming the genome size $=3.0 \mathrm{~Gb}$.
 **all reads (before library separation)

