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The identification and separation of specific cells from 
heterogeneous populations is an essential 
prerequisite for further analysis or use. Conventional 
passive and active separation approaches rely on 
fluorescent or magnetic tags introduced to the cells of 
interest through molecular markers. Such labeling is 
time- and cost-intensive, can alter cellular properties, 
and might be incompatible with subsequent use, for 
example, in transplantation. Alternative label-free 
approaches utilizing morphological or mechanical 
features are attractive, but lack molecular specificity. 
Here we combine image-based real-time fluorescence 
and deformability cytometry (RT-FDC) with 
downstream cell sorting using standing surface 
acoustic waves (SSAW). We demonstrate basic sorting 
capabilities of the device by separating cell mimics 
and blood cell types based on fluorescence as well as 
deformability and other image parameters. The 
identification of blood sub-populations is enhanced by 
flow alignment and deformation of cells in the 
microfluidic channel constriction. In addition, the 
classification of blood cells using established 
fluorescence-based markers provides hundreds of 
thousands of labeled cell images used to train a deep 
neural network. The trained algorithm, with latency 
optimized to below 1 ms, is then used to identify and 
sort unlabeled blood cells at rates of 100 cells/sec. This 
approach transfers molecular specificity into label-
free sorting and opens up new possibilities for basic 
biological research and clinical therapeutic 
applications. 
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Introduction 

The identification and sorting of cells of interest 
from heterogeneous populations is a necessary first 
step in many biological, biotechnological, or medical 
procedures1–3. The sorted cells can subsequently be 
subjected to refined analysis and inquiry into their 
proteomic, transcriptomic, or genetic identity and 
function4,5. Alternatively, they can be used for 
culture and serve the establishment of specific 
drugs4,6,7, or for transplantation into patients in 
regenerative medicine applications8–12. 

Conventional sorting techniques used for this 
purpose can be divided into bulk sorters, such as 
magnetic-activated cell sorting (MACS)13,14, filtration-
based approaches15–17, deterministic lateral 
displacement18,19 or optical lattices20, and single-cell 
sorters, such as fluorescence-activated cell sorter 
(FACS)21–23, as well as light scattering- and image-
based flow cytometers24–26. Bulk sorters separate 
cells passively according to a small number of 
parameters hard-wired into the experimental setup, 
can operate in a massively parallel way and have, 
thus, superior throughput. However, with their use 
it is not possible to separate particular cells based 
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on a variable choice of orthogonal, individual 
features (e.g. fluorescent, small, and deformable) in 
a single sorting run. Single-cell sorters assess cells 
serially, and are thus slower, but the sorting decision 
can be made for each cell separately, using features 
flexibly chosen from a large set. Both bulk and 
single-cell sorters most often rely on cell 
identification, and in the case of MACS also cell 
separation, based on molecular labels, which confer 
great specificity. Such reliance on molecular labels, 
however, can alter cells and their function, comes 
with additional cost and preparation time, renders 
the experimenter blind to cells without known 
molecular marker or to subpopulations not yet 
known, and might be incompatible with subsequent 
use, for example in transplantation. 

 Label-free approaches to identify cells promise to 
address the aforementioned issues. A flagship 
example is the usage of forward and side scatter 
signals in flow cytometry to report on the size and 
internal structure of cells, albeit only in an indirect 
way24,27. Other label-free approaches interrogate 
diverse chemical or physical properties of cells. 
Raman scattering, for example, provides 
multiplexed information on the presence of 
chemical species in cells28,29, quantitative phase 
imaging yields internal mass density distributions30–

33, and Brillouin scattering34,35 and deformability 
cytometry36 are used for mechanical phenotyping of 
cells. The latter is particularly relevant to feel for 
functional changes of cells involving cytoskeletal 
adaptations37,38 or to identify disease states in 
blood39 and can analyze cells in the context of cell 
circulation and migration ability40. One recent 
implementation of deformability cytometry, which is 
based on imaging cells flowed through a narrow 
constriction channel, analyzes the ensuing cell 
deformation continuously in real-time at rates of 
100–1,000 cells/sec41, and is thus well-suited for 
downstream sorting. The image analysis aspect is 
similar to commercial imaging flow cytometry (IFC), 
where 2D spatial bright-field and fluorescence 
information is obtained in high-throughput42. While 
using fluorescence information to identify cells has 
the draw-backs discussed above, its correlation with 

bright-field images and cell morphology in IFC is 
intriguing25,43. Although IFC is commercially 
established42 and has opened a steadily growing 
field of applications25,43,44, its extension to sorting is 
technically challenging as it necessitates real-time 
image processing and advanced hardware solutions, 
and has, thus, only been demonstrated in few highly 
specialized laboratories25,26. An important aspect of 
IFC is the provision of huge numbers of cell images, 
which predestines it to be combined with artificial 
intelligence analysis25,43. 

Here we introduce a robust sorting platform, 
combining image-based morphological cell analysis 
with mechanical characterization and subsequent 
active sorting by feeding real-time fluorescence and 
deformability cytometry (RT-FDC)45 information to a 
down-stream SSAW-based cell sorter23. We 
demonstrate its ability to identify and sort cell 
mimics, as well as various blood cells, based on the 
parameters available from image analysis (size, 
deformation, brightness), also in combination with 
fluorescence, at the rates of 100 cells/sec. We 
further show that the cell passage through a 
constriction simplifies automated image analysis by 
aligning cells along their major symmetry axis and 
enhances the separation of subpopulations by 
inducing cell deformation. Importantly, since RT-FDC 
also provides three-channel fluorescence 
information for each cell in real-time, we can 
generate training sets of hundreds of thousands of 
images labeled based on molecular markers in order 
to train a deep neural network (DNN) for label-free 
cell identification based on bright-field images 
alone. We demonstrate this possibility by first 
training a DNN using a set of cell images classified 
based on the expression of CD66 and CD14 surface 
markers, and then using this classifier to sort 50,000 
non-stained neutrophils based on the bare cell 
images. Such identification and sorting, optimized 
for latency time below 1 ms, resulted in 89.7% purity 
and 10-fold enrichment of neutrophils. This 
application is of particular relevance since 
neutrophils are notorious for becoming activated by 
molecular interventions. Taken together, sorting 
RT-FDC (soRT-FDC) makes it possible to not only 
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combine the specificity of molecular labeling with 
the additional information of morphological and 
mechanical phenotypes, but also to transfer 
molecular specificity into label-free sorting using 
artificial intelligence, thereby avoiding the 
disadvantages of molecular labeling. This new 
approach of specific and non-invasive cell sorting 
paves the way to many applications in basic 
biological research, as well as in diagnostics and 
regenerative medicine. 

Results 

Combining SSAW-enabled sorting with RT-FDC. 
RT-FDC is a microfluidic platform that combines 
high-throughput bright-field imaging of cells with 
flow cytometry-like acquisition of 1D fluorescence 
signals in 3 spectral channels45. Since the imaging 
takes place in a narrow channel, it enables 
extraction of features related not only to cell 
morphology, but also to cell mechanics. Utility of RT-
FDC for basic research as well as for prospective 
medical use, for example in blood analysis39, has 
been well demonstrated, however, to fully harness 
the potential of this method, the capability to 
actively sort cells based on recorded features was 
missing.  

To address this need, and enable sorting based on 
combinations of cell morphology, mechanics, and 
fluorescence, we have implemented an SSAW-based 
sorting capability23 to the RT-FDC setup45. To this 
end, a standard RT-FDC chip was modified by adding 
the sorting region after the analysis channel as 
depicted in Figure 1a. Downstream of the 
measurement region of interest (red dashed 
rectangle) the analysis channel widens from 20 or 
30 µm to 50 µm to allow for SSAW-induced cell 
deflection, before it bifurcates into default and 
target outlets. The channel diameter of 50 µm 
ensures that, upon excitation of interdigital 
transducers (IDT) at their designed resonance 
frequency of ca. 54 MHz (l = 70 µm), only one 
pressure node is present within the channel width. 
The chip consists of a lithium niobate substrate, a 
PDMS slab with the imprinted channel structures 
bonded on top, and two IDTs with electrical contacts 

at each channel side (Figure 1b). The phase shift 
between the two IDT actuators is tuned so that the 
pressure node is located off-center (Figure 1b), 
which causes a deflection of cells of interest into the 
target outlet. Due to a slight asymmetry at the 
bifurcation point (5 µm shift from the channel 
center) all cells are collected in the default outlet 
when SSAW is switched off. With SSAW on, the cells 
are pushed into the pressure node and guided to the 
target outlet (Figure 1c, Supplementary Figure 1). 
For sufficient deflection, cells need to be exposed to 
the sound waves for about two milliseconds, which 
is ensured by the applied flow rate (0.04 µl/s or 
0.08 µl/s, depending on the size of the analysis 
channel) and the chosen channel geometry in the 
sorting region (50 µm width and 200 µm length, 
height corresponds to the size of the analysis 
channel). The trigger for SSAW actuation is based on 
the real-time assessment of high-speed microscopy 
images or fluorescence signals from one of three 
available fluorescence channels (FL-1, FL-2, and FL-3; 
for spectral specifications, and full list of sorting 
parameters assessed, see Supplementary Table 1) 
in the measurement region of interest (Figure 1a). 
The processing pipeline was implemented in a 
custom C++ program running on a standard PC. The 
latency between cell detection and sorting trigger 
was optimized to be held below one millisecond, 
which is suitable for reliably analyzing up to 
100 cells/s at typical cell concentrations during 
RT-FDC experiments. 

Active sorting using fluorescence and image-
derived parameters. To validate the efficacy of 
SSAW-based sorting in our setup, heterogeneous 
mixtures of polymer beads — serving as cell mimics 
— were separated based on features such as 
fluorescence, size, and deformation.  

First, to demonstrate FACS-like capabilities of 
soRT-FDC to perform fluorescence-activated sorting, 
we mixed polyacrylamide microgel beads labeled 
with AlexaFluor488 and unlabeled ones in a 1:5 ratio 
(beads were produced in house46, see Online 
Methods for details) and sorted for fluorescence 
intensity (Figure 1d, upper panel). The percentage 
of fluorescence-positive beads contained in the 
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sorting gate (FL-1 intensity between 1,000 and 
10,000 a.u.) increased from 20.9% in the initial bead 
mixture to 98.8% in the sample collected into the 
target outlet, providing for 4.7-fold enrichment of 
the labeled beads. 

Next, we set out to validate the efficiency of sorting 
for image-derived parameters such as the object 
size and deformation. For size-based sorting, we 
employed a 1:6 mixture of commercially-available 
monodisperse polymer beads of two different sizes 

 

Figure 1| Sorting real-time fluorescence and deformability cytometry (soRT-FDC) is a platform that enables active 
sorting based on fluorescence and image-derived parameters. (a) Operation principle of a soRT-FDC device. Flowed-
in cells are deformed in a constriction of the microfluidic channel and analyzed in the region of interest (ROI, outlined in 
red) in real-time. The fluorescence data as well as bright-field images collected for each cell can be used for making a 
feature- or artificial intelligence (AI)-classifier-based decision to trigger actuation of a standing surface acoustic wave 
(SSAW) by interdigital transducers (IDTs). The SSAW deflects the trajectories of selected cells to the target outlet. (b) A side 
view of the device cross-section in the sorting region. In the presence of SSAW, cells are pushed towards the pressure 
node (indicated with an arrow). (c) Micrographs of sorting region of the device taken when SSAW is off (left image, cells 
flow towards the default outlet), and when SSAW is on (right image, cells are deflected into the target channel). (d) Analysis 
of feature-based sorting of fluorescent and non-fluorescent bead mixture (upper panel), a mixture of beads of two 
different sizes (middle panel), and a mixture of beads with different stiffnesses (lower panel). On the left, the 
measurements of initial samples are shown, and on the right the re-analysis of samples collected in the target outlet. The 
color map in scatter plots represents event density. The histograms of features presented in the scatter plots are shown 
on top and on the right of the corresponding scatter plots, the histograms were fit with a superposition of Gaussian 
functions (solid lines). The gates used for sorting are outlined in green. Percentages on scatter plots indicate the fraction 
of beads in the sorting gate. 
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(with a diameter of 13.79 ± 0.59 µm and 
17.23 ± 0.24 µm as specified by the supplier; 
Figure 1d, middle panel). The sorting gate was set to 
220 – 300 µm2 of bead size expressed as cross-
sectional area (corresponding to a diameter of 
16.74 – 19.54 µm). We observed an enrichment of 
5.7-fold for the beads of selected size, with 16.9% of 
total events contained within the sorting gate in the 
initial sample and 96.3% in the target sample. 

It is important to note that precise determination of 
cell size is relevant for the identification of cell types 
in heterogeneous populations such as blood39 or for 
investigating basic scientific questions related to e.g. 
cell size regulation47. While the forward scatter (FSC) 
intensity in flow cytometry typically correlates with 
cell size, it does not provide a quantitative measure 
of it and is further influenced by other parameters 
such as the object’s refractive index24,27. In fact, the 
relative differences in the object sizes captured by a 
flow cytometer can, in certain cases, be misleading. 
To illustrate this issue, we have measured a mixture 
of monodisperse beads of four different diameters 
made of a different material each using both 
soRT-FDC and a high-performance flow cytometer 
(BD LSR II, BD Biosciences) (Supplementary 
Figure 2). With soRT-FDC, we were able to capture 
relative differences in bead sizes and determine the 
bead diameter with an overestimation of 2 – 8%, 
while reproducing the standard deviation of the 
diameters reported by the supplier. Strikingly, we 
observed that FSC measurements performed with 
flow cytometer did not faithfully reflect the 
differences in bead sizes.  

Another image-derived parameter that is of high 
interest for sorting, as it gives access to mechanical 
properties of cells48,49, is deformation. To 
demonstrate sorting for deformation, we utilized a 
mixture of two polyacrylamide microgel bead 
populations of different stiffness46. We sorted for 
the beads with low deformation values of 
0.000 – 0.016 contained within the size range of 
95 – 105 µm2 (Figure 1d, lower panel). The 
percentage of beads in the gate increased from 
16.2% in the initial mixture (prepared in a 1:6 ratio), 
to 83.7% in the target sample, amounting to 5.2-fold 

enrichment. This experiment illustrates not only 
sorting for deformation, but also the capability of 
soRT-FDC to select objects using combinations of 
features of interest. Further examples of sorting 
using two orthogonal features, such as florescence 
intensity and deformation (Supplementary 
Figure 3a), or size and average brightness 
(Supplementary Figure 3b), are presented in 
Supplementary Information. 

Sorting of objects based on size and deformation 
was also demonstrated for living cells. Specifically, 
we were able to enrich human promyelocytic 
leukemia cells (HL60/S4) in their mixture with Kc167 
drosophila cells from 22.1% to 88.2% through size-
based sorting (Supplementary Figure 4, 
Supplementary Video 1). Deformation-based 
sorting allowed for enrichment of red blood cells 
(RBCs) with high or low deformation values 
(Supplementary Figure 5). These experiments 
confirm that cells, which are more difficult to trans-
locate using SSAW due to their lower acoustic 
contrast factor compared to polymer beads50, can 
also be successfully sorted in our setup.  

Finally, since it is important for the subsequent use 
to validate if cells are in good condition after the 
sorting procedure, we analyzed the viability, 
proliferation, and mechanical properties of cells 
after exposure to SSAW. The cells exposed to SSAW 
in soRT-FDC were able to proliferate at rates similar 
to that of control cells (Supplementary Figure 6a-
b), their viability in culture remained at levels 
exceeding 90% (Supplementary Figure 6c), and 
their mechanical properties were not affected as 
shown by atomic force microscopy indentation 
measurements (Supplementary Figure 7). 

Deformation-assisted sorting for major blood 
cell types. The efficient separation of cells based on 
their ability to deform using soRT-FDC opens up 
interesting experimental avenues in and of itself. 
Additionally, we have observed that the flow-
induced deformation of cells, together with their 
alignment along the major channel axis, enhances 
the separation of subpopulations in heterogeneous 
mixtures of cells, which would be obscured 
otherwise. 
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A prominent example of the role of deformation in 
subpopulation analysis is the identification of 
various blood cell types. Measurements of RBC-
depleted blood in the inlet region of the chip 
(Figure 2a, inset i), where the channel is broad and 
cells are undeformed and randomly oriented, 
results in overlaps between the populations of RBCs, 
lymphocytes, and myeloid cells in a deformation-
size scatter plot (Figure 2b). In this case, well-
defined gates for sorting individual cell subtypes are 
difficult to define. Acquiring the same measurement 
in the channel region (Figure 2a, inset ii), where cells 
are deformed and aligned with the channel major 

axis, results in clear separation of blood cell 
subtypes (Figure 2c), as previously established39,41. 
In particular, the highly-deformed RBC population 
moves further away from the two remaining cell 
subtypes on the deformation axis. The now distinct 
populations can be easily gated and sorted for. Upon 
sorting for gates specified by deformation and size, 
we were able to achieve a purity of 96.6% for RBCs 
(Figure 2d), 89.1% for lymphocytes (Figure 2e), and 
94.7% for myeloid cells (Figure 2f), with an 
enrichment factor of 1.95, 21.7 and 2.0, respectively 
(see Supplementary Table 2 for more details). 

 

Figure 2| Deformation-assisted sorting for blood cell types. (a) Isometric view of the sorting device (not to scale). 
Inset (i) indicates the sample inlet region where cells are undeformed and randomly oriented. Inset (ii) shows the analysis 
channel region where cells are deformed and aligned along major channel axis. (b) Deformation-size scatter plot of RBC-
depleted blood (dextran sedimentation) measured in the inlet region as indicated in (a). The red data point in the scatter 
as well as the arrow on the side indicate a tracked (red periphery around cell) randomly oriented RBC (remaining despite 
depletion). (c) Deformation-size scatter plot of RBC-depleted blood measured in the channel region as shown in (a). The 
indicated cell populations include: red blood cell (RBC, 49.6%), lymphocytes (ly, 4.3%) and myeloid cells (my, 43.1%). The 
typical images of cells from each population are shown on the right. (d) Post analysis of sorted RBCs with 96.6% purity. 
(e) Post analysis of sorted lymphocytes with 89.1% purity. (f) Post analysis of sorting for myeloid cell population with 
94.7% purity. 
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Label-free neutrophil sorting based on 
brightness. Both myeloid and lymphoid cells 
presented above can be further divided into several 

distinct subtypes. As demonstrated previously39, by 
adding average brightness of pixels contained within 
the cell contour as an additional separation 

 

Figure 3| Brightness-based sorting of neutrophils from RBC-depleted blood. (a) Brightness-size scatter plots of RBC-
depleted blood (dextran sedimentation) for initial (left-hand side) and target (right-hand side) samples. Color-coded 
patches delineate subpopulations of different cell types. Sorting gate is indicated with dashed green line. Typical cell 
images of respective subpopulations are displayed next to the scatter plots. The subpopulations include: lymphocytes 
(ly), basophils (ba), monocytes (mo), neutrophils (neu), eosinophils (eo), red blood cells (RBC) and red blood cell doublets 
(RBC-d). (b) CD66 and CD14 surface marker expression for initial (left) and target (right) samples measured with RT-FDC. 
(c) Brightness-cell size scatter plots as in (a) with CD66+/CD14− cells (putative neutrophils) indicated in orange. 
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parameter, we can further distinguish myeloid cells 
into neutrophils, monocytes, basophils, and 
eosinophils (Figure 3a). Since brightness is a 
parameter calculated in real-time by our analysis 
software, it can be utilized for sorting of the specified 
myeloid blood subtypes. To demonstrate this 
possibility, we used a combination of size 
(50 – 100 µm2) and brightness (30 – 40 a.u.) gates to 
perform label-free sorting of neutrophils from RBC-
depleted blood (Supplementary Video 2). The 
percentage of events in the sorting gate increased 
from 19.4% in the initial sample to 81.5% in the 
target sample (Figure 3a), amounting to 4.2-fold 
enrichment. To validate the identity of sorted cells, 
we stained both the initial and the target samples 
after sorting with a mixture of anti-CD66 and anti-
CD14 antibodies and measured them with RT-FDC. 
We could confirm that while in the initial sample the 
CD66+/CD14− cells corresponding to neutrophils51 
constituted 24.7% of the population, in the target 
sample their content increased to 84.7% (Figure 3b), 
corresponding roughly to the percentages in the 
size-brightness sorting gate (Figure 3a). 74.4% of all 
CD66+/CD14− events in the initial sample fell into the 
size-brightness gate specified for vital, resting, single 
neutrophils52, as displayed in the color-coded scatter 
plots in Figure 3c. The remaining CD66+/CD14− 
events appear to belong to other blood cell type 
populations based on their physical appearance 
(Figure 3c), implicating occurrence of false positive 
neutrophil classification when using molecular 
labels. This result shows that the use of physical 
parameters, such as size and brightness, for cell 
identification can reduce the false positive rates 
inherent to fluorescent staining.  

DNN-assisted identification and sorting of 
neutrophils. The image-derived parameters 
exploited for sorting in the aforementioned 
examples (such as size, deformation, and 
brightness) are far from being exhaustive. In fact, 
there is a plethora of image-based features and their 
combinations that can be further explored for 
potential use in cell classification. Examples include 
Haralick texture features, scale-invariant feature 
transforms, local binary patterns, or threshold 

adjacency statistics53–56. However, development of 
such parameters — also known as feature 
engineering — as well as their selection and 
classifier training, albeit potentially powerful57,58, is 
typically too computationally expensive to allow for 
real-time evaluation and applicability for sorting. 
Another approach is to take advantage of 
information contained within all pixels of the image, 
and to use a labeled dataset to train a DNN to 
classify cells of interest in a featureless way 
(Figure 4a). Supervised machine learning eases the 
engineering of a predictor for a specific classification 
task and DNNs have already been shown to 
outperform traditional handcrafted features and 
classifiers for different applications59,60. DNN 
training generally requires a sufficiently large 
training dataset for its successful application. Since 
RT-FDC can acquire thousands of cell images within 
a span of seconds and simultaneously evaluate 
fluorescent antibodies against specific surface 
markers to provide labels of cell identity for training, 
our method is primed for the implementation of 
featureless DNN-based classifiers for label-free cell 
identification and sorting. 

To demonstrate how such transferring of molecular 
specificity into label-free DNN-based sorting can be 
implemented, we have used highly optimized 
libraries61–63 to train DNNs on a standard PC with the 
aim to distinguish neutrophils based on bright-field 
images alone in the RBC-depleted blood samples. 
First, we set out to select a neural network 
architecture that would be robust enough for our 
application. To this end, we tested the performance 
of 162 multilayer perceptrons (MLPs, a class of 
artificial neural networks) on a hand-labelled 
dataset, and settled on an architecture that offered 
a good trade-off between maximum validation 
accuracy (MVA = 85.9 %) and inference time 
(183.7 µs) (Figure 4b). Prior to the sorting 
experiment, we recorded a training set consisting of 
several tens of thousands of CD66/CD14-labelled 
blood cells images using RT-FDC. During acquisition 
of the training set, the focus was altered in order to 
account for noise that can appear during soRT-FDC 
experiments. After the experiments, images were 
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cropped to 26 × 26 pixels with the cell body centered 
and augmented by randomly altering brightness and 
rotation. Experimental alterations (focus change) 
and computational augmentation (brightness and 
rotation) help to train more robust models that 
perform well even when applied to previously 
unseen cell images, which is essential for 
prospective sorting. CD66+/CD14− cells were 
classified as neutrophils and the dataset was fed for 
training to the selected MLP architecture. We then 
applied the trained MLP on a separately recorded 
validation set and observed a 95.5% classification 
accuracy as verified by fluorescent label-based cell 
assignment as ground truth (Figure 4c). Finally, we 
used this DNN-classifier to sort neutrophils in real-
time from RBC-depleted blood based on images 
alone. The post-analysis of the target as well as the 

initial sample was performed using RT-FDC and 
CD14/CD66 staining. We obtained a 89.7% purity 
and an 10-fold enrichment of CD66+/CD14− cells 
(Figure 4d,e). 

Discussion 

Enriching cells of interest within heterogeneous 
populations can be based on molecular 
labels13,14,21,24 or morpho-rheological properties 
such as cell size or deformability15–19. The latter is 
particularly interesting because it allows for label-
free cell type purification, which is of particular value 
for downstream applications. Additionally, the 
development of machine learning approaches 
allows now for cell identification and sorting without 
prior knowledge of features distinguishing cells of 
interest. In this work, we introduce soRT-FDC, an on-

 
Figure 4| DNN-based sorting of neutrophils from RBC-depleted blood. (a) Schematic representation of DNN-based 
image analysis. (b) MVA versus inference time for 162 tested differently complex MLPs. The MLP selected for sorting 
(MLP 24-16-24) is indicated in red; its architecture details are summarized on the right. (c) Percentage of different cell 
types classified as neutrophils by DNN. Calculation based on fluorescent staining: CD66+/CD14− cells correspond to 
neutrophils, CD66−/CD14+ to monocytes, double negative cells to RBCs and double positive are staining errors or cell 
doublets. (d-e) Post-analysis of the initial (d) and the target (e) samples using RT-FDC and CD14/CD66 staining. 
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demand label-free cell sorting approach based on 
RT-FDC, SSAW, and artificial intelligence, that 
synergizes all of the aforementioned sorting 
modalities. With its use we demonstrate active 
sorting based on fluorescence (Figure 2d, 
Supplementary Figure 3a) and image-derived 
features, such as size (Figure 2d, Supplementary 
Figure 3b, Supplementary Figure 4), deformation 
(Figure 2d, Supplementary Figure 4a, 
Supplementary Figure 5), and brightness 
(Figure 2d, Supplementary Figure 3b) of polymer 
bead cell mimics as well as heterogeneous cell 
samples, reaching purities of up to 98%. We further 
show that cell alignment and deformation in a 
narrow constriction can be beneficial for 
discriminating between different cell populations. 
Finally, we demonstrate the possibility of 
transferring molecular specificity of cell markers into 
label-free sorting of neutrophils from blood samples 
with the aid of DNN. 

One of the most basic physical properties of cells, 
which can be used for sorting or for monitoring cell 
behavior, is its size. In conventional flow cytometry, 
cell size is inferred from measurements of the FSC 
signal intensity24. While this quantity can provide a 
good representation of the cell diameter in many 
cases, it is not an absolute readout of cell size since 
FSC depends also on features such as, for example, 
the refractive index of the measured object24,27. As 
demonstrated in Supplementary Figure 2, when 
measuring beads made of different materials, FSC 
signals fail to evaluate the relative bead sizes 
correctly. In our setup we rely on a direct 
measurement of cell size based on image-derived 
cell contour, which provides a physical value of cell 
cross-sectional area that can be converted to cell 
volume by contour rotation64, and provides a more 
reliable measure of object size. 

Another relevant physical property of cells that can 
be used for sorting with soRT-FDC is cell 
deformation. Cell deformation, together with size, 
gives access to mechanical properties of cells and 
can, in fact, be converted to Young’s modulus in real-
time using a look-up table obtained from numerical 
simulations49,65. Sorting for cell mechanics opens up 

versatile research venues both in basic science and 
in clinical research. Since the knowledge about 
molecular mechanisms controlling cell mechanics is 
still limited, sorting for the stiff or soft fraction of 
cells and performing genomic, transcriptomic, or 
proteomic analysis could foster identification of cell 
mechanics regulators and elucidate target 
molecules for on-demand modification of cell 
stiffness. In case of clinical applications, enrichment 
of small and deformable cells, which were shown to 
have improved capability of passing the 
microvasculature40, could aid in attaining successful 
delivery of cells to target organs in cell-based 
therapies with, for example, hematopoietic stem 
cells. 

What distinguishes our sorting modality from other 
techniques for mechanics-based cell sorting is the 
active sorting mechanism, and the possibility to 
freely combine sorting for mechanics and other 
available parameters, such as cell size, fluorescence, 
or brightness. While previous studies have shown 
active sorting for cell mechanics66,67, we provide its 
first realization with practically useful throughput. 
Additionally, a range of techniques enabling passive 
mechanics-based sorting such as DLD19,68, inertial 
microfluidics69, acoustophoresis70,71, or filtration-
based approaches15,16, have been developed. These 
techniques provide high throughput; however, they 
often convolve cell deformability with size — small 
stiff cells are sorted with large soft ones — and, since 
the sorting parameters are hard-wired into the 
device design, they do not offer flexibility in choosing 
sorting parameters on demand. Moreover, unlike 
soRT-FDC (see Supplementary Figure 3), the 
passive techniques do not provide the possibility of 
combining physical parameters with fluorescence 
readouts during sorting, which can be of use for 
many applications45. 

Deformation of cells induced in the narrow channel 
constriction of the microfluidic chip not only enables 
evaluation of cell mechanical properties, but also 
aids in revealing differences in cell subpopulations 
that would be concealed otherwise. In Figure 2 we 
have shown how aligning and deforming cells in the 
analysis channel facilitates identification of blood 
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cell types. Another example of how deformation can 
aid in capturing differences between cells is the 
detection of plasmodium-infected RBCs in RT-FDC. 
While deformed, the infected RBCs are 
distinguishable from uninfected ones by the 
appearance of a characteristic feature: a white spot 
within the cell, likely being a vacuole39. This 
difference between infected and uninfected cells 
could not be picked up in static light scattering of 
stationary, undeformed cells in a previous study72. 

Label-free sorting of cells, including feature-based as 
well as featureless AI-based sorting, is of high 
interest for downstream applications. In our setup it 
is possible to sort cells based on many image-
derived features, such as cell deformation or 
brightness, which do not require introducing labels. 
Such parameters can be used for label-free 
identification of, for example, plasmodium-infected 
RBCs, or leukocytes with engulfed bacteria and 
fungi, which could be used for downstream 
genotyping. Furthermore, we demonstrate that the 
molecular specificity conferred by fluorescent 
markers can be transferred to label-free sorting with 
the aid of DNN for virtually any application of 
interest. For example, iPSC-derived cells intended 
for transplantation are conventionally identified 
with fluorescent reporters. The specificity of these 
reporters could be used for DNN training, and the 
actual sorting of unlabeled cells could then be 
performed exclusively based on images. This 
approach eliminates the need of altering the cells 
with markers, and avoids extra cost and lengthy 
preparation procedures. Additionally, since most of 
the tools used in current research rely on molecular 
markers for cell identification, they remain blind to 
populations for which labels are not established. 
Ultimately, massive amounts of images, in tandem 
with machine learning approaches, such as t-
Distributed Stochastic Neighbor Embedding (t-
SNE)73, could be used to identify previously unknown 
cell populations. 

While the benchmark soRT-FDC throughput of 
100 cells/s is compelling, it is far from reaching the 
throughput of 30-50k cells/s offered by FACS. At 
present, the throughput of soRT-FDC is limited by 

the time a cell needs to be exposed to SSAW for 
sufficient deflection (2 ms), which, together with 
signal latency of 1 ms, amounts to a total cell 
processing time of 3 ms. To keep the number of 
falsely sorted cells low, only one cell should be 
present in the analysis and sorting regions within 
this time. Therefore, the concentration of used 
samples needs to be restricted. For faster deflection 
of cells, redesigning IDT geometry and using higher 
SSAW power could be implemented. However, 
higher power could lead to overheating and 
consequent problems with both chip integrity and 
cell viability. Boosting the image processing time 
could, in turn, be achieved by specialized hardware 
such as field-programmable gate arrays or GPUs. 

Another technical challenge, introduced to soRT-FDC 
by the use of SSAW, is the decreased image quality 
due to scarceness of light. The lithium niobate 
substrate, used to induce surface acoustic wave 
propagation, is birefringent, which necessitates the 
use of a polarizer to remove the twin image. This 
reduces the amount of light coming through the 
system by half as compared to using a plain glass 
substrate. Even when compensating for this 
reduction by increased lamp brightness, the image 
quality is still lower than with a glass-based chip. 
Better images would potentially lead to improved 
DNN training and classification. Therefore, it could 
be beneficial to implement alternative sorting 
mechanisms, such as vapor bubble generation with 
microheaters74,75 or direct mechanical actuation of a 
dual-membrane system by piezoelectric 
elements25,76, which would eliminate the need for a 
special substrate. 

Taken together, the combination of RT-FDC and 
SSAW-based cell sorting in conjunction with DNN 
classification provides a flexible sorting platform, 
capable of not only parameter-based sorting but 
also of automated image-based separation of cells. 
The latter provides for the opportunity to transfer 
molecular specificity into label-free cell sorting and 
to identify new cell types, the distinction of which is 
not possible based on known features. We 
anticipate broad use of soRT-FDC in both basic 
research and medical applications, immediate 
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examples include label-free sorting of stem cells or 
retinal precursor cells for transplantation purposes. 
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Methods 

soRT-FDC chip design. Schematic illustrations 
of the soRT-FDC chip layout are presented in 
Figures 1a and 2a. The sheath and sample inlet 
regions follow a previously published layout41,45, 
with an additional serpentine-like curved 
channel in the sample inlet region (see 
Figure 2a) which aids in focusing and 
longitudinal ordering of cells77. Upon contact 
with sheath fluid, cells enter a 20-µm or 30-µm 
wide and 880-µm long channel, in which cell 
deformation is induced and cell images, as well 
as fluorescence signals, are recorded. 
Afterwards, the channel broadens to 50 µm for 
a 200-µm long stretch where SSAW are applied 
by IDTs located on the channel sides. This 50-µm 
wide region is followed by a bifurcation dividing 
the flow into a target and default branch. Finite 
element flow simulations in the channel were 
conducted using COMSOL (COMSOL 
Multiphysics, Sweden) to analyze the velocity 
fields and verify the bifurcation position. The 
bifurcation was positioned 5 µm off-center to 
ensure that all cells move towards the default 
outlet if the SSAW are switched off (see 
Supplementary Figure 1). 

Chip fabrication and assembly. A soRT-FDC 
chip consists of a polydimethylsiloxane (PDMS) 
replica bonded to a lithium niobate substrate 
with chromium-gold IDTs deposited on its 
surface. PDMS replicas were fabricated 
according to well established soft-lithography 
processes. In brief, 20-µm or 30-µm high layer of 
AZ 15nXT (450 CPS) photoresist 
(MicroChemicals, Germany) was spun onto a 4” 
silicon wafer using a spin coater (Laurell WS-
650Mz-23NPP, Laurell Technologies, PA, USA) 
and a master mold was developed using UV-
exposure. 1H,1H,2H,2H-perfluorooctyl-
trichlorosilane (#448931, Sigma-Aldrich, 
Germany) vapor was deposited onto the 

developed master mold under vacuum to 
provide hydrophobic coating and ease the peel-
off of the replicas. PDMS (base to curing agent 
ratio of 10:1 w/w; #634165S, SYLGARD 184, VWR, 
Germany) was poured over the master, 
degassed, and cured at 65°C for six hours. The 
fabrication of IDTs onto 128° Y-cut lithium 
niobate (LiNbO3, Roditi International, UK) 
substrate was performed via photolithography 
on a thin layer of AZ 5214E image reversal resist 
(MicroChemicals, Germany), metal evaporation 
of chromium and gold layers (Cr/Au, 
10 nm/70 nm, respectively; Kurt J. Lesker, UK) in 
a thermal evaporation system (NANO36; Kurt J 
Lesker, UK) and subsequent lift-off. Each IDT has 
30 electrode pairs, an aperture of 200 µm, and 
an inter-finger distance of 70 µm, resulting in an 
excitation frequency of 55.23 MHz. The 
resonance frequency SSAW return loss (S11) = –
2.8 dBm. Before bonding, holes were punched 
into the PDMS slab at inlet and outlet positions 
using 1.5-mm biopsy punchers (#49115, pfm 
medical, Germany). The substrate and the PDMS 
were covalently bonded to prevent leakage 
using plasma activation (50 W, 30 s; Plasma 
Cleaner Atto; Diener electronic, Germany). The 
bonded devices were cured in an oven at 65°C 
for 48 hours. The sheath and sample fluid 
syringes (BD Luer-LokTM 5-ml syringe #613-
2043P and BD Luer-LokTM 1-ml syringe #613-
4971; VWR, Germany) were connected to the 
fabricated chip via FEP Tubing (1/16” OD, 0.03” 
ID; #1520XL, Postnova Analytics, Germany). The 
fluids were flowed through the chip using high-
precision syringe pump (three modules, 
neMESyS 290N, NeMESyS, Cetoni, Germany). 
The default outlet was connected to a 1-ml 
syringe and fitted into the third pump module 
which was operated in withdrawal mode. This 
additional withdrawal helps to avoid accidental 
slipping of cells to the target outlet. The target 
outlet was fitted with tubing which led into a 
collection vial. For the 20-µm chip, flow rates of 
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0.01, 0.03 and ca. –0.027 µl/s were used for the 
sample, sheath, and default modules, 
respectively. For the 30-µm chip flow rates of 
0.02, 0.06, and ca. –0.05 µl/s were applied. 

SSAW sorting mechanism. Two IDTs were 
placed at opposing channel sides and actuated 
at their resonance frequency, 𝑓, given by: 

 𝑓 =
𝜐
𝜆,	 

 

(1)  

where 𝜐 is the velocity of sound in the lithium 
niobate substrate (1890 m s-1) and 𝜆 is the 
acoustic wavelength, defined by the distance 
between adjacent IDT fingers. The distance 
between the two IDTs was a multiple of 𝜆, which 
results in constructive interference of counter-
propagating waves and emergence of standing 
surface acoustic waves (SSAW). The SSAW were 
tuned to have one pressure node positioned in 
front of the target outlet. SSAW generated an 
acoustic radiation force, 𝐹(, that pushed cells 
towards the pressure node and directed them 
into the target outlet.	𝐹(	is given by the following 
formula78: 

 𝐹( = −*
𝜋	𝑝-.	𝑉0	𝛽2

2𝜆 4𝜙(𝛽, 𝜌)	sin(2𝑘𝑥) 

 

(2)  

where 𝑝- is the acoustic pressure, 𝜆 is the 
acoustic wavelength, 	𝑉0 is the volume of the 
particle, 𝛽	is compressibility, 𝜌 is density, and 𝜙 
is the acoustic contrast factor that defines if the 
particle will translate to the pressure node (𝜙 >0) 
or the pressure antinode (𝜙 <0) defined as: 

 𝜙(𝛽, 𝜌) =
5𝜌0 − 2𝜌2
2𝜌0 + 𝜌2

−
𝛽0
𝛽2
. 

 

(3)  

The subscripts p and f stand for particle and 
fluid, respectively. 

Experimental setup and sorting feedback 
system. The experiments were performed using 
an RT-FDC setup45 with a digital output (TTL) 

controlling the actuation of SSAW function 
generator (BSG F20, BelektroniG, Germany). The 
basic RT-FDC setup consists of an inverted 
microscope (Axio Observer Z1, Zeiss, Germany) 
and a pulsed, high-power controlled by a custom 
driver circuit (AcCellerator L1, Zellmechanik 
Dresden, Germany). Images captured by a high-
speed CMOS camera (EoSens CL, MC1362, 
Mikrotron, Germany) were transferred to a 
standard PC using a full camera-link frame 
grabber card (PCIe-1433, National Instruments, 
TX, USA). The camera operates at 2,500 frames 
per second and triggers short LED light pulses 
(2 µs) to prevent image blurring. Real-time 
image processing is performed by a custom C++ 
based sorting software, which leverages the 
OpenCV computer vision library79, returning a 
set of parameters describing the captured object 
(summarized in Supplementary Table 1). If the 
values of these parameters fall into a user-
specified sorting gate, a trigger signal from the 
frame grabber card is induced to the SSAW 
function generator. The delay induced by image 
processing is on average 225 µs. The total delay 
between image exposure and sorting trigger 
was measured to be 1 ms. During sorting 
experiments using a 20-µm analysis channel, we 
apply a constant flow rate of 0.04 µl/s, resulting 
in an object speed of approximately 9 cm/s. 
Based on this speed and the trigger delay, the 
cell travels ca. 120 µm before the SSAW can 
switch on, therefore the measurement region of 
interest is placed 120 µm before the SSAW 
sorting region. In the case of 30-µm analysis 
channel used with a flow rate of 0.08 µl/s, the 
measurement region of interest is placed 
180 µm before the SSAW sorting region. For 
imaging during sorting, a 20× objective (Plan-
Apochromat, 20×/0.8; #440640-9903, Zeiss, 
Germany) and additional polarizer (Polarizer D, 
90° rotatable, removable; #427706-0000-000, 
Zeiss) were used. For most of the post-analysis 
measurements, standard RT-FDC chips45 with 
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glass coverslip bottom, in combination with a 
20× objective or a 40× objective (EC-Plan-
Neofluar, 40×/0.75; #420360-9900, Zeiss, 
Germany), were used. For details of 
experimental conditions used in every 
measurement see Supplementary Table 3. 

Data acquisition and analysis. For the 
acquisition of post-analysis measurements, an 
RT-FDC setup45 and ShapeIn software (ShapeIn2; 
Zellmechanik Dresden, Germany) were used. 
The data was post-processed using ShapeOut 
(ShapeOut 0.9.5; 
https://github.com/ZELLMECHANIK-
DRESDEN/ShapeOut; Zellmechanik Dresden) 
and MATLAB (MATLAB R2018b, The MathWorks, 
MA, United States). Details regarding filtering for 
plotting and purity calculations are summarized 
in the Supplementary Table 4. 

Measurement buffer. For soRT-FDC 
experiments and post-analysis measurements 
we used a measurement buffer (MB) with high 
viscosity, which provides for scalable cell 
deformation and abates cell sedimentation. MB 
is PBS-based solution containing 0.6 % (w/v) 
methyl cellulose (4000 cPs; Alfa Aesar, Germany) 
with pH 7.4, osmolality of 310-315 mOsm/kg and 
viscosity adjusted to 25 mPa s at 24°C with a 
falling sphere viscometer (HAAKE™ Faling Ball 
Viscometer Type C, Thermo Fisher Scientific, MA, 
USA), which corresponds to 7.3 mPa s in the 
measurement channel80. MB was used as sheath 
fluid and as medium for suspensions of cells or 
beads. 

Commercially-available beads. For the 
validation of size estimation (Supplementary 
Figure 1 and 2b) and sorting based on size 
(Figure 2d, middle panel) we used mixtures of 
several commercially-available microspheres, 
including melamine beads (MF-FluoBlau-L948, 
9.78 ± 0.15 µm diameter), silica beads (SiO2-F-

L3519-1, 13.79 ± 0.59 µm diameter), polystyrene 
beads (PS/Q-F-KM194, 15.21 ± 0.31 µm 
diameter), and poly(methyl methacrylate) beads 
(PMMM-F-B1423, 17.23 ± 0.24 µm diameter), all 
purchased from Microparticles, Germany. 

Polyacrylamide bead production. 
Polyacrylamide hydrogel beads were produced 
in house using PDMS-based flow-focusing 
microfluidic device as described elsewhere46. For 
the preparation of beads with different 
stiffnesses (Figure 1d, lower panel, 
Supplementary Figure 2a) total monomer 
concentrations (molar ratio of bis-acrylamide to 
acrylamide 1:61.5; #146072 and #A3553, Sigma-
Aldrich) of 7.9%, 9.9% and 13.8% were used. To 
enable modification with the fluorescent dye 
(Figure 1d, upper panel, Supplementary 
Figure 2a), N-hydroxysuccinimide ester 
(#130672, Sigma-Aldrich) was incorporated into 
polyacrylamide droplets during the production. 
After the production process, 1 pg of AlexaFluor 
488 Hydrazide (#A10436, Thermo Fisher 
Scientific) per bead was added. 

Cell lines and cell culture. Kc167 Drosophila 
cells (received from Buzz Baum, MRC Laboratory 
for Molecular Cell Biology, University College 
London, London, United Kingdom) were 
cultured at room temperature in M3 Shields and 
Sang medium (Invitrogen, CA, USA) 
supplemented with 10% heat-inactivated fetal 
bovine serum (FBS) (#10270106, Thermo Fisher 
Scientific) and 1% penicillin/streptavidin 
(#15140122, Thermo Fisher Scientific) at 24°C 
under atmospheric CO2 concentration. HL60/S4 
cells (received from Donald E. Olins and Ada L. 
Olins, Department of Biology, Bowdoin College, 
Brunswick, Maine, USA) were grown in ATCC-
modified RPMI-1640 medium (#A1049101, 
Thermo Fisher Scientific) supplemented with 
10% heat-inactivated FBS and 1% 
penicillin/streptavidin at 37°C and 5% CO2 with 
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subculturing every second day. For experiments, 
cells were harvested by spinning down at 
114 RCF for 5 min and re-suspended in MB at a 
final concentration of 1 × 106 cells/ml. 

Blood sample preparation. Whole blood was 
drawn from healthy human donors after 
informed consent (ethical approval EK89032013, 
granted by the ethics committee of the 
Technische Universität Dresden) into 10 ml 
sodium-citrate tubes (S-Monovette® 10ml 9NC; 
#02.1067.001, Sarstedt, Germany) and depleted 
for RBCs using dextran sedimentation. To this 
end, 6% dextran solution was prepared by 
dissolving dextran (Dextran T500, 
Pharmacosmos, Denmark) in 0.9% sodium 
chloride solution (0.9% Sodium Chloride 
Irrigation, Baxter Healthcare, Switzerland). So-
prepared dextran solution was added to whole 
blood in a 1:4 ratio and RBCs were allowed to 
sediment for 30 min, forming a red pellet. RBC-
depleted supernatant was collected and 
centrifuged for 10 min at 120 g (Universal 30RF, 
Hettich, Switzerland). The supernatant was 
discarded, and the cell pellet was resuspended 
in 2 ml of MB (0.6% MC). For evaluation of 
CD14/CD66 surface marker expression, the cells 
were stained with APC-conjugated anti-human 
CD14 (dilution 1:20, #17-0149-42, eBioscience, 
CA, USA) and PE-conjugated anti-human 
CD66a/c/e (dilution 1:40, #34303, BioLegend, CA, 
USA) in MB for 25 min at 600 rpm in a block 
thermomixer (Thermomixer comfort 5355, 
Eppendorf, Germany). For sorting of RBCs based 
on deformation the blood was used directly, 
without performing the dextran sedimentation 
step.  

MLP Selection. For the selection of a robust 
MLP architecture, we used an extensive dataset 
of 100 measurements of RBC-depleted blood 
samples from 20 donors captured at 20× 
magnification in a soRT-FDC chip. The dataset 

was labelled manually with 7 categories using 
polygon gates in the deformation-size space to 
distinguish between debris, lymphocytes, RBCs, 
granulo-monocytes, and cell doublets. Granulo-
monocytes were further classified into 
eosinophils, neutrophils, and monocytes using 
polygon gates in the brightness vs. standard 
deviation of brightness space. MLP screening 
was performed using a collection of models in 
AID software (AIDeveloper_0.0.4; 
https://github.com/maikherbig/AIDeveloper)81. 

Training of MLP for neutrophil sorting. Prior 
to the sorting experiment, a dataset of 
approximately 30,000 cells labeled with 
CD14/CD66 fluorescent markers was recorded 
fed into AID software81 to train the selected MLP 
architecture. To provide for robust training, the 
focus was varied during the dataset acquisition 
and computational augmentation of recorded 
images was performed by altering brightness 
using a linear transfer function, adding Gaussian 
noise, and random rotation. For the purpose of 
training, CD66+/CD14− cells were classified as 
neutrophils. For validation, an additional dataset 
of approximately 10,000 cells was acquired. The 
trained DNN model was exported from AID as 
*.nnet file using keras2cpp library 
(https://github.com/pplonski/keras2cpp). The 
keras2cpp library was then used to load the 
*.nnet file into the C++ sorting software.  

Cell viability and proliferation assay. HL60/S4 
cells were suspended in MB at 1 × 106 cells/ml 
and exposed to SSAW during sorting in a soRT-
FDC chip. The initial sample (prepared as for the 
measurement, but not run through the setup), 
as well as cells collected in the target outlet after 
exposure to SSAW and default outlet when 
SSAW was off, were collected by centrifugation 
at 114 RCF for 5 min and suspended in 1 ml of 
fresh medium in a cell culture-treated 12-well 
plate (#665180, Greiner Bio-One, Austria). The 
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starting cell count was equal to 70,400 for target 
sample, and 100,000 for both initial and default 
samples. Cell count and cell viability were 
assessed using an automated cell counter 
(Countess II, AMQAX1000, Thermo Fischer 
Scientific) and trypan blue staining (Trypan Blue 
stain 0.4%, #T10282, Thermo Fischer Scientific) 
on the day of seeding (day 0) and on the four 
following days (day 1 – 4). On day 2, cells were 
collected by centrifugation at 114 RCF for 5 min 
and transferred into 2 ml of fresh medium in a 
cell culture-treated 6-well plate (#657160, 
Greiner Bio-One) to provide for sufficient space 
for further growth. 

AFM indentation measurements. To assess 
the influence of surface acoustic waves and/or 
circulation through the soRT-FDC microfluidic 
system on cell stiffness, cells were flowed 
through the microfluidic channel of the soRT-
FDC chip either with or without SSAW-induced 
sorting. The initial sample (prepared as for the 
measurement and kept at room temperature for 
comparable time but not run through the setup), 
as well as cells collected in the target outlet after 
exposure to SSAW and default outlet when 
SSAW was off, were collected by centrifugation 
for 3 min at 180 RCF and seeded onto glass 
bottom dishes (fluorodish; #FD35100, WPI, FL, 
USA) in CO2-independent medium (#18045-054, 
Thermo Fisher Scientific). After settling down for 
10 minutes and attachment to the surface, cells 
were mechanically probed on a Nanowizard 4 
(JPK Instruments, Germany) equipped with a 
Petri dish heater (JPK Instruments) at 37°C. Cells 
were indented using an arrow-T1 (Nanoworld, 
Switzerland) cantilever equipped with a 
R = 2.5 µm polystyrene bead (PS-R-5.0; 
Microparticles) at a speed of 5 µm/s. Apparent 
Young’s moduli were extracted after fitting the 
force-indentation curves up to a maximum 
depth of 2 µm using the Sneddon-Hertz model 
for a spherical indenter in the JPK data 

processing software (JPK Instruments). The 
obtained Young’s modulus values were 
corrected using the simplified double-contact 
model accounting for the compression of cells 
from the bottom82. Datasets were compared 
using a Kruskal-Wallis test with a Dunn’s multiple 
comparisons test (GraphPad Prism; GraphPad 
Software, CA, USA). 
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