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ABSTRACT 107 
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical 108 
studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution 109 
during PDX engraftment and propagation, impacting the accuracy of PDX modeling of human 110 
cancer. Here we exhaustively analyze copy number alterations (CNAs) in 1451 PDX and matched 111 
patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing 112 
and microarray data displayed substantially higher resolution and dynamic range than gene 113 
expression-based inferences, and they also showed strong CNA conservation from PTs through 114 
late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-115 
late trios confirmed high-resolution CNA retention. We observed no significant enrichment of 116 
cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between 117 
patient and PDX tumors were comparable to variations in multi-region samples within patients. 118 
Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse 119 
host. 120 
 121 
MAIN 122 
A variety of models of human cancer have been used to study basic biological processes and 123 
predict responses to treatment. For example, mouse models with genetically engineered 124 
mutations in oncogenes and tumor suppressor genes have clarified the genetic and molecular 125 
basis of tumor initiation and progression1,2,  though responses sometimes differ between human 126 
and mouse3. Cell lines have also been widely used to study cancer cells, but they lack the 127 
heterogeneity and microenvironment of in vivo tumors and have shown limitations for predicting 128 
clinical response4. Human tumors engrafted into transplant-compliant recipient mice (patient-129 
derived xenografts, PDX) have advantages over prior systems for preclinical drug efficacy studies 130 
because they allow researchers to directly study human cells and tissues in vivo5-8. Comparisons 131 
of genome characteristics and histopathology of primary tumors and xenografts of human breast 132 
cancer9-13, ovarian cancer14, colorectal cancer15 and lung cancer16-18, have demonstrated that the 133 
biological properties of patient-derived tumors are largely preserved in xenografts. A growing body 134 
of literature supports their use in cancer drug discovery and development19-21.  135 
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 A caveat to PDX models is that intratumoral evolution can occur during engraftment and 136 
passaging11,22-25. Such evolution could potentially modify treatment response of PDXs with 137 
respect to the patient tumors23,26,27, particularly if the evolution were to systematically alter cancer-138 
related genes. This issue is related to multi-region comparisons of patient tumors28-31, for which 139 
local mutational and immune infiltration variations have suggested differential phenotypes among 140 
multi-region samples32. However, it remains unclear how therapies should be designed with 141 
respect to this variation. Comparing patient tumor-PDX evolution to the multi-region variations 142 
within the patient tumor would clarify the importance of primary-PDX divergence for treatment. 143 

Recently, Ben-David et al.26 reported extensive PDX copy number divergence from the 144 
patient tumor of origin and across passages, based mainly on large-scale assessment of CNA 145 
profiles inferred from gene expression microarray data, which allowed analysis of aberrations at 146 
the scale of chromosomal arms. They raised concerns about genetic evolution in PDXs as a 147 
consequence of mouse-specific selective pressures, which could impact the capacity of PDXs for 148 
faithful modeling of patient treatment response. Such results contrast with reports that have 149 
observed genomic fidelity of PDX models with respect to the originating patient tumors and from 150 
early to late passages by direct DNA measurements (DNA sequencing or SNP arrays) in several 151 
dozen PDX models9,10,33. 152 

Here we resolve these contradicting observations by systematically evaluating CNA 153 
changes and the genes they affect during engraftment and passaging in a large, internationally 154 
collected set of PDX models, comparing both RNA and DNA-based approaches. The data 155 
collected, as part of the U.S. National Cancer Institute (NCI) PDXNet (PDX Development and 156 
Trial Centers Research Network) Consortium and EurOPDX consortium, comprises 1548 PT and 157 
PDX datasets (1451 unique samples) from 509 models derived from American, European and 158 
Asian cancer patients. Our study demonstrates that prior reports of systematic copy number 159 
divergence between patient tumors and PDXs are incorrect, and that there is high retention of 160 
copy number during PDX engraftment and passaging. This work also finely enumerates the copy 161 
number profiles in hundreds of publicly available models, which will enable researchers to assess 162 
the suitability of each for individualized treatment studies. 163 
 164 
RESULTS 165 
Catalog of copy number alterations in PDXs   166 

We have assembled copy number alteration (CNA) profiles of 1451 unique samples (324 167 
patient tumor, PT, and 1127 PDX samples) corresponding to 509 PDX models contributed by 168 
participating centers of the PDXNET, the EurOPDX consortium, and other published datasets9,34 169 
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(see METHODS, Supplementary Table 1 and Supplementary Fig. 1). We estimated copy number 170 
(CN) from five data types: single nucleotide polymorphism (SNP) array, whole-exome sequencing 171 
(WES), low-pass whole-genome sequencing (WGS), RNA sequencing (RNA-Seq) and gene 172 
expression array data, yielding 1548 tumor datasets including samples assayed on multiple 173 
platforms. Paired-normal DNA and in some cases, paired normal RNA, were also obtained to 174 
calibrate WES and RNA-Seq tumor samples. To estimate the CNA profiles for the different data 175 
types, we used tools including ASCAT for SNP arrays35, Sequenza for tumor-normal WES36, 176 
qDNAseq37 and ASCAT for WGS and e-karyotyping38 for gene expression (RNA-Seq and gene 177 
expression array) data (see METHODS). Copy number segments for each sample were filtered 178 
for measurement noise, median-centered, and intersected with gene coordinates (see 179 
METHODS, Supplementary Data 1).  180 

The combined PDX data represent 16 broad tumor types (see METHODS), with 64% 181 
(n=324) of the models having their corresponding patient tumors assayed and another 64% 182 
(n=328) having multiple PDX samples of either varying passages (ranging from P0 – P21) or 183 
varying lineages from propagation into distinct mice (Fig. 1a, Supplementary Table 2). The 184 
distributions of PT and PDX samples across different tumor types, passages, and assay platforms 185 
(Fig. 1b, Supplementary Fig. 2-12) show the wide spectrum of this combined dataset, which is 186 
the most comprehensive copy number profiling of PDXs compiled to date. Additionally, our data 187 
include 7 patients with multiple tumors collected either from different relapse time points or 188 
different metastatic sites, resulting in multiple PDX models derived from a single patient.  189 
 190 
Comparison of CNA profiles from SNP array, WES and gene expression data 191 
To compare the CNA profiles from different platforms in a controlled fashion, we assembled a 192 
benchmarking dataset with matched measurements across multiple platforms (Supplementary 193 
Table 3, Supplementary Fig. 13 – 17). Copy number calling has been reported to be noisy for 194 
several data types39,40, and we observed that quantitative comparisons between CNA profiles are 195 
sensitive to: (1) the thresholds and baselines used to define gains and losses, (2) the dynamic 196 
range of copy number values from each platform, and (3) the differential impacts of normal cell 197 
contamination for different measurements. To control for such systematic biases, we assessed 198 
the similarity between two CNA profiles using the Pearson correlation of their log2(CN ratio) values 199 
across the genome in 100kb windows. Regions with discrepant copy number were identified as 200 
those with outlier values from the linear regression model (see METHODS).  201 
 202 
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CNAs from WES are consistent with CNAs from SNP array data. While SNP arrays are widely 203 
accepted for estimating tumor CNA profiles41,42, CNA estimates from WES data have more 204 
uncertainty36,43. We implemented a WES-based CNA pipeline and benchmarked it against SNP 205 
array-based estimates for matched samples, which we used as a gold standard. Copy number 206 
gain or loss segments (see METHODS) from SNP arrays were of a higher resolution (Fig. 2a; 207 
median/mean segment size: 1.49/4.05 Mb for SNP, 4.70/14.6 Mb for WES, p < 2.2e-16) and wider 208 
dynamic range (Fig. 2b; range of log2(CN ratio): –8.62 – 2.84 for SNP, –3.04 – 1.85 for WES, p < 209 
2.2e-16). The difference in range is apparent in the linear regressions between platforms 210 
(Supplementary Fig. 19a). These observations take into account the broad factors affecting CNA 211 
estimates across platforms, such as the positional distribution of sequencing loci; the sequencing 212 
depth of WES (10 – 280X); and the superior removal of normal cell contamination by SNP array 213 
CNA analysis workflows using SNP allele frequencies35.  214 

Despite the superiority of SNP arrays, we observed strong agreement between SNP 215 
arrays and WES, with significantly higher Pearson correlation coefficients on matched samples 216 
than samples of different models (range: 0.913 – 0.957 for matched samples, 0.0366 – 0.354 for 217 
unmatched samples, p = 1.02e-06), with the exception of 2 samples that lacked CNA aberrations 218 
(Fig. 2c, Supplementary Fig. 13, 18 and 19a). Regions with discordant copy number between 219 
platforms could also be identified (Supplementary Fig. 19a, see METHODS). The discordant copy 220 
number regions largely correspond to small focal events (average size 1.53Mb) detectable by 221 
SNP arrays but missed by WES (Supplementary Fig. 19b). Still, CNA profiling by WES is reliable 222 
in most cases, with 99% of the genome locations across the samples consistent with the values 223 
from SNP arrays.  224 
 225 
Low accuracy for gene expression-derived CNA profiles. To compare the suitability of gene 226 
expression for quantifying evolutionary changes in CNA, we adapted the e-karyotyping method 227 
used in Ben-David et al.26,38,44 for RNA-Seq and gene expression array data. For each tumor type, 228 
the expression values were calibrated relative to either median expression of non-tumor tissue 229 
RNA samples, or relative to median expression of tumor samples when normal samples were not 230 
available (Supplementary Fig. 15 and 17). Copy number segments calibrated by non-tumor 231 
expression were of higher resolution (Fig. 2a; median/mean segment size: 36.0/51.9 Mb for 232 
RNASEQ NORM, 48.2/65.3 Mb for RNASEQ TUM, p < 2.2e-16; 62.0/72.4 Mb for EXPARR NORM, 233 
80.1/85.2 Mb for EXPARR TUM, p = 2.20e-07) and wider dynamic range (Fig. 2b; range of log2(CN 234 
ratio): –2.07 – 2.17 for RNASEQ NORM, –1.79 – 1.81 for RNASEQ TUM, p < 2.2e-16; –1.40 – 235 
1.89 for EXPARR NORM, –1.13 – 1.59 for EXPARR TUM, p = 4.09e-07) compared to segments 236 
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calculated by calibration with tumor samples. This was true for both RNA-Seq and gene 237 
expression array platforms.  238 

A notable problem with the expression-based calls is that the alternative expression 239 
calibrations can have a major impact on called gains and losses. This is especially apparent for 240 
regions frequently called as gains or losses in specific tumor types (Supplementary Fig. 20), e.g. 241 
as identified in other studies45-47. Chromosomes 8q and 13 were almost exclusively identified as 242 
gains and chromosomes 21 and 22 were almost exclusively as losses in the gastric cancer RNA-243 
Seq dataset when normal samples were used for calibration. Similarly, we called exclusive gains 244 
in chromosomes 7q and 20 and losses in chromosomes 4q31-35, 8p,16q and 21 using normal 245 
samples for calibration for the hepatocellular carcinoma expression array dataset. However, 246 
changing the calibration to use tumor samples resulted in these regions being erroneously called 247 
with approximately equal frequencies of gains and losses. These alternate methodologies yielded 248 
strong variability in the CNA calls, and this was the case for each of the RNAseq and expression 249 
array datasets (Pearson correlation range: 0.218 – 0.943 for RNASEQ NORM vs TUM, 0.377 – 250 
0.869 for EXPARR NORM vs TUM, Fig. 2c and Supplementary Fig. 21). For each, this range of 251 
correlations was far greater than was observed in comparisons between the DNA-based methods 252 
(p = 9.37e-5 and p = 3.28e-07 relative to SNP vs WES). This indicates the problematic nature of 253 
RNA-based CNA calling with calibration by tumor samples, which has been used when normal 254 
samples are not available. 255 

We observed other measures showing the limitations of RNA-based CNA calling. 256 
Expression-based calling had segmental resolution an order of magnitude worse than the DNA-257 
based methods (Fig. 2a and Supplementary Fig. 14 – 17; median/mean segment size: 3.45/14.0 258 
Mb for WES, 36.0/51.9 Mb for RNASEQ NORM, p < 2.2e-16; 1.73/ 5.18 Mb for SNP, 62.0/72.4 Mb 259 
for EXPARR NORM, p < 2.2e-16). The range of detectable copy number values was also superior 260 
for DNA-based methods (Fig. 2b; range of log2(CN ratio): –6.00 – 5.33 for WES, –2.07 – 2.17 for 261 
RNASEQ NORM, p < 2.2e-16; –9.19 – 4.65 for SNP, –1.40 – 1.89 for EXPARR NORM, p < 2.2e-262 
16). In addition, there was a lack of correlation between the expression-based and DNA-based 263 
methods (range: 0.0541 – 0.942 for WES vs RNASEQ (NORM); 0.00517 – 0.921 for SNP vs 264 
EXPARR (NORM)) (Fig. 2c and Supplementary Fig. 22 and 23). CNA estimates after tumor-based 265 
expression normalization resulted in further discordance with DNA-based copy number results 266 
(range: –0.182 – 0.929, p = 0.0468 for WES vs RNASEQ (TUM); –0.0274 – 0.847, p = 2.20e-06 267 
for SNP vs EXPARR (TUM)). Many focal copy number events detected by DNA-based methods, 268 
as well as some larger segments, were missed by the expression-based methods (Supplementary 269 
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Fig. 24). Representative examples illustrating the superior resolution and accuracy from DNA-270 
based estimates are given in Fig. 2d (see also Supplementary Fig. 19a and 25). 271 
 272 
Concordance of PDXs with patient tumors and during passaging 273 
We tracked the similarity of CNA profiles during tumor engraftment and passaging by calculating 274 
the Pearson correlation of gene-level copy-number for samples measured on the same platform 275 
(see METHODS, Supplementary Fig. 26-64). All pairs of samples derived from the same PDX 276 
model were compared – yielding 501 PT-PDX and 1257 PDX-PDX pairs.   277 
 For all DNA-based platforms we observed strong concordance between matched PT-PDX 278 
and PDX-PDX pairs, significantly higher than between different models from the same tumor type 279 
and the same center (p < 2.2e-16) (Fig. 3a – c, correlation heatmaps in Supplementary Fig. 27 – 280 
63). We observed no significant difference in the correlation values between PT-PDX and PDX-281 
PDX pairs for SNP array data (median correlation PT-PDX = 0.950, PDX-PDX = 0.964; p > 0.05), 282 
though there were small but statistically significant shifts for WES (PT-PDX = 0.874, PDX-PDX = 283 
0.936; p = 2.31e-16) and WGS data (PT-PDX = 0.914, PDX-PDX = 0.931; p = 0.000299). PT 284 
samples have a smaller CNA range than their derived PDXs (median ratio PT/PDX / PDX/PDX: 285 
0.832/0.982, p = 0.000120 for SNP; 0.626/0.996, p < 2.2e-16 for WES; 0.667/1.00, p < 2.2e-16 for 286 
WGS; Supplementary Fig. 64b and 65), which can be attributed to stromal DNA in PT samples 287 
“diluting” the CNA signal. In PDXs, the human stromal DNA is reduced9,15. The minimal effect for 288 
SNP array data confirm this interpretation – human stromal DNA contributions to CNA estimates 289 
can be removed from SNP arrays based on allele frequencies of germline heterozygous sites, 290 
while such contributions to WES and WGS have higher uncertainties.  291 

We also performed intra-model comparisons using RNA-based approaches, but the 292 
Pearson correlations between pairs of samples did not clearly reproduce the Pearson correlations 293 
from DNA-based platforms for those same sample pairs (Supplementary Fig. 66a). To clarify this, 294 
we considered just the highly-correlated cases (>0.8 for SNU-JAX Gastric cancer WES, >0.9 for 295 
SIBS HCC SNP). We observed that the correlation values for the corresponding RNA-based 296 
methods were lower and had higher variance (p < 0.05, Supplementary Fig. 66b). In particular, 297 
the tumor-median normalization for expression data resulted in significant differences from DNA-298 
based methods.  299 
 300 
Late PDX passages maintain CNA profiles similar to early passages. Next, we asked if there 301 
is any systematic evolution of copy number during engraftment and passaging. Mouse 302 
environment-driven evolution, if present, should reduce CN correlations relative to early samples, 303 
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such as the primary tumor or first engraftment (P0). However, we observed no apparent effect 304 
during passaging on the SNP, WES, or WGS platforms (Fig. 3d – f, Supplementary Fig. 67).  For 305 
example, the SNP data showed no significant difference between passages (Fig. 3d and 306 
Supplementary Fig. 67a). For those models having very late passages (14 breast cancer models, 307 
P18 to P21), there was a small but statistically significant correlation decrease compared to 308 
models with earlier passages (p < 8.98e-05, Supplementary Fig. 68), indicating some copy number 309 
changes can occur over long-term passaging (Supplementary Fig. 38). However even at these 310 
late passages, the correlations to early passages remained high (median = 0.896). In any given 311 
comparison, only a small proportion of the genes were affected by copy number changes (median: 312 
2.72%, range: 1.03% – 11.9%). Genes that are deleted and subsequently gained in the later 313 
passages (top left quadrant of regression plots, Supplementary Fig. 69) suggest selection of 314 
preexisting minor clones as the key mechanism in these regions. For WES and WGS data, more 315 
variability in the correlations can be observed (Fig. 3e and f, Supplementary Fig. 66b and c), likely 316 
due to a few samples having more stromal contamination or low aberration levels (Supplementary 317 
Fig. 64b and 65). However, the lack of downward trend over passaging was also apparent in 318 
these sets.  319 
 320 
PDX copy number profiles trace lineages. We next compared the similarity of engrafted PDXs 321 
of the same model with the same passage number (i.e. all P0s, all P1s, all P2s, etc.). Surprisingly, 322 
we discovered that these fragments were not more similar than PDXs from different passage 323 
numbers (Fig. 3d – e and Supplementary Fig. 66b, IQR of correlation coefficient for same-324 
passages/different-passages: 0.0700/0.0619 for SNP and 0.103/0.0979 for WES). To further this 325 
analysis, we defined, for JAX SNP array and PDMR WES datasets, samples within a lineage as 326 
those differing only by consecutive serial passages, while we defined lineages as split when a 327 
tumor was divided and propagated into multiple mice (Fig. 3g). For the EurOPDX CRC and BRCA 328 
WGS datasets, such lineage splitting was due only to cases with initial engraftment of different 329 
fragments of the PT, i.e., PDX samples of different passages were considered as different 330 
lineages if they originate from different PT fragments. We observed lower correlation between 331 
PDX samples from different lineages compared to within a lineage (Fig. 3h, p = 0.0233 for SNP, 332 
p = 0.00119 for WES, p = 0.000232 for WGS), despite a majority of these pairwise comparisons 333 
exhibiting high correlation (>0.9). A few examples of models exhibiting large drift between 334 
lineages include TM01500 (Supplementary Fig. 29); 416634, 558786 and 665939 335 
(Supplementary Fig. 50); 135848 and 762968 (Supplementary Fig. 51); 245127 and 959717 336 
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(Supplementary Fig. 52); 287954 and 594176 (Supplementary Fig. 56); 174316 and 695221 337 
(Supplementary Fig. 57).  338 
  We next asked if the phylogenetic distance between samples could explain the observed 339 
shifts in the correlations. These distance relationships are clearest for the CRC and BRCA WGS 340 
sets because these models have only one lineage split occurring at the engraftment stage. We 341 
compared correlation as a function of phylogenetic distance within a lineage, which in this 342 
phylogeny is simply equal to the difference in passage number between the two samples. 343 
Increase in passage difference did not consistently reduce the correlation between samples 344 
(Supplementary Fig. 70). This suggests that lineage-splitting is often responsible for deviations in 345 
CNAs between samples, and that copy number evolution during passaging mainly arises from 346 
evolved spatial heterogeneity27.  347 
 348 
Genes with copy number alterations acquired during engraftment and passaging show no 349 
preference for cancer or treatment-related functions. 350 
Next, we investigated which genes tend to undergo copy number changes. Genes with changes 351 
during engraftment or during passaging were identified based on a residual threshold with respect 352 
to the improved linear regression48 (see METHODS, Supplementary Fig. 26). A low copy number 353 
change threshold (|log2(CN ratio) change| > 0.5) was selected to include genes with subclonal 354 
alterations. To test for functional biases, we compared CNA-altered genes to gene sets with 355 
known cancer- and treatment-related functions, notably genes in TCGA oncogenic signaling 356 
pathways49; genes with copy number and expression changes associated with therapeutic 357 
sensitivity, resistance or changes in drug response from the JAX Clinical Knowledgebase50,51; and 358 
genes with frequent amplifications or deletions in the Cancer Gene Census52 (Cosmic version 359 
89). We calculated the proportion of altered genes for sample pairs from each model across all 360 
platforms and tumor types. In agreement with the high maintenance of CNA profiles described 361 
above, we found the proportion of altered protein-coding genes to be low (median/IQR: 1.90%/ 362 
4.11% PT-PDX, 1.25%/ 3.60% PDX-PDX pairs, Fig. 4a). Only 8.78% of PT-PDX pairs and 4.53% 363 
PDX-PDX pairs showed >10% of their protein-coding genes altered. We observed no significant 364 
increase (p < 0.1) in alterations among any of the cancer gene sets compared to the background 365 
of all protein-coding genes, for either the PT-PDX or PDX-PDX comparisons. This provides 366 
evidence that there is no systematic selection for CNAs in oncogenic or treatment-related 367 
pathways during engraftment or passaging. We next considered tumor-type-specific effects, 368 
focusing on types with larger numbers of models to ensure statistical power (breast cancer, 369 
colorectal cancer, lung adenocarcinoma and lung squamous cell carcinoma). Genomic 370 
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Identification of Significant Targets in Cancer (GISTIC)53,54 analysis of TCGA tumors has 371 
previously identified significantly altered genomic driver regions which can be used to differentiate 372 
tumor types and subtypes55-58.  We observed no significant increase in alterations in tumor-type-373 
specific GISTIC gene sets compared to the background (p < 0.1) for either PT-PDX or PDX-PDX 374 
comparisons (Fig. 4b).  375 
 376 
Low recurrence of altered genes across models. We tested if any particular genes often 377 
recurred in CNAs across models. Using a stringent CNA threshold (|log2(CN ratio) change| > 1.0 378 
with respect to linear regression model) to distinguish genes with possible functional impact (see 379 
METHODS), we observed a very low recurrent frequency (Fig. 4c), with only 12 and 2 genes 380 
recurring at > 5% frequency for PT-PDX and PDX-PDX comparisons, respectively 381 
(Supplementary Table 4). No gene had a recurrence frequency higher than 8.96%. We observed 382 
that all these recurrent genes overlapped models in which one sample displayed an unusually 383 
large gain or loss (|log2 (CN ratio)| > 1.5). This suggests that these regions may be subject to 384 
more noise in the CNA estimation procedure at these loci (Supplementary Fig. 71). None of these 385 
recurrent genes overlapped cancer- or treatment-related gene sets, nor did they intersect genes 386 
(n=3) reported by Ben-David et al.26 to have mouse-induced copy number changes associated 387 
with drug response in the CCLE59,60 database. We further queried from CCLE data whether any 388 
of these recurrent genes showed evidence for copy number-related drug response (see 389 
METHODS, Supplementary Table 5). For the 6 genes with sufficient data available, we found no 390 
association between copy number and drug response mediated by gene expression (q-value < 391 
1).  392 
 393 
Absence of CNA shifts in 130 WGS patient tumour, early passage PDX and late passage 394 
PDX trios 395 
We next investigated whether recurrent CNA changes occur in PDXs in a tumor-type specific 396 
fashion. To this aim, we analysed further the WGS-based CNA profiles of large metastatic 397 
colorectal (CRC) and breast cancer (BRCA) series (see METHODS), respectively composed of 398 
87 and 43 matched trios of patient tumour (PT), PDX at early passage (PDX-early) and PDX at 399 
later passage (PDX-late). We carried out GISTIC analysis to identify recurrent CNAs by evaluating 400 
the frequency and amplitude of observed events53,54. GISTIC was applied separately for each PT, 401 
PDX-early (P0-P1 for CRC, P0-P2 for BRCA) and PDX-late (P2-P7 for CRC, P3-P9 for BRCA) 402 
cohorts of CRC and BRCA (Supplementary Table 6). As expected, CRCs and BRCAs generated 403 
different patterns of significant CNAs, with each similar to the GISTIC patterns in their respective 404 
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TCGA series (Supplementary Fig. 72). However, within each tumour type GISTIC profiles of the 405 
PT, PDX-early, and PDX-late cohorts were virtually indistinguishable (Fig 5a and Supplementary 406 
Fig. 72), demonstrating no gross genomic alteration systematically acquired or lost in PDXs.  407 

To clarify these behaviors, we carried out gene-level analysis, where each gene was 408 
attributed the GISTIC score (G-score) of the respective segment (Supplementary Table 7). In both 409 
the CRC and BRCA cohorts, gene-level G-scores of the PTs were highly correlated with the 410 
respective PDX-early and PDX-late cohorts (Fig. 5b and c). Moreover, PT versus PDX 411 
correlations were comparable to PDX-early versus PDX-late correlations. To search for 412 
progressive shifts, we compared the change in G-score (ΔG): (i) from tumor to PDX-early  and (ii) 413 
from PDX-early to PDX-late. Correlations in these two ΔG values, as shown in the bottom-right 414 
panels of Fig. 5b and c, was absent or even slightly negative. These results confirmed the 415 
absence of systematic CNA shifts in PDXs even under high resolution, gene-level analysis.  416 
 417 
Lack of CNA-based functional shifts in trios confirms the absence of mouse-specific 418 
evolution. We then considered the possibility of systematic copy number evolution at the pathway 419 
level in these triplets. To evaluate this, we performed Gene Set Enrichment Analysis (GSEA)61,62 420 
using G-scores to rank genes in each cohort (See METHODS). Consistent with the known 421 
recurrence of cancer CNAs at driver genes, multiple gene sets displayed significant enrichment 422 
in individual cohorts. To avoid spurious apparent enrichment for sets of genes with adjacent 423 
chromosomal location, we implemented an additional filter based on G-score significance (see 424 
METHODS and Supplementary Table 8). After applying the Normalized Enrichment Score (NES), 425 
FDR q-value and G-score filters, 49 gene sets were found to be significant in at least one of the 426 
three CRC cohorts, and 89 gene sets in at least one of the three BRCA cohorts (Supplementary 427 
Table 9). Importantly, control gene sets composed of GISTIC hits identified in TCGA CRC and 428 
BRCA datasets were all significant, confirming that the WGS cohorts used here correctly 429 
recapitulate the major CNA features of these two cancer types.  430 

However, differences associated with PDX engraftment and passage were negligible. For 431 
both CRC and BRCA, the NES profiles for the ~8000 gene sets of PTs were highly correlated 432 
with the respective PDX-early and PDX-late cohorts (Fig. 5d and e). Moreover, PT versus PDX 433 
correlations were comparable to PDX-early versus PDX-late correlations. To search for 434 
progressive shifts, we calculated for each significant gene set ΔNES values between PT and 435 

PDX-early, as well as between early and late PDX. Similarly to what was observed for the ΔG-436 
scores, as shown in the bottom-right panels of Fig. 5d and e, correlations were absent or at most 437 
slightly negative, confirming the absence of systematic CNA-based functional shifts in PDXs.  438 
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 439 
CNA evolution across PDXs is no greater than variation in patient multi-region samples  440 
As a reference for the treatment relevance of PDX-specific evolution, we compared to levels of 441 
copy number variation in multi-region samples of patient tumors. For this we used copy number 442 
data from multi-region sampling of non-small-cell lung cancer (92 patient tumors, 295 multi-region 443 
samples) from the TRACERx Consortium31, performing analogous CNA correlation and gene 444 
analyses (|residual| > 0.5) between multi-region pairs (Supplementary Fig. 73). We observed no 445 
significant differences in correlation (p > 0.05) between patient multi-region and lung cancer PT-446 
PDX pairs, while PDX-PDX pairs in fact showed significantly better correlation than the multi-447 
region pairs (p < 0.05, Fig. 6a). These findings were consistent when tumors were grouped as 448 
adenocarcinomas, squamous cell carcinomas, or others. Cancer gene set analyses confirmed 449 
these results, with multi-region samples showing greater differences than either PT-PDX or PDX-450 
PDX comparisons, across all the cancer gene sets considered (p < 0.05, Fig. 6b and 451 
Supplementary Fig. 74). These results show that PDX-associated CNA evolution is no greater 452 
than what patients experience naturally within their tumors. Our PDX collection also contains a 453 
few cases in which the patient tumor was assayed at multiple time points (relapse/metastasis) or 454 
multiple metastatic sites, allowing for controlled comparison of intra-patient variation versus PDX 455 
evolution (Supplementary Fig. 3, 4 and 7). We observed no significant difference between the 456 
CNA evolution during engraftment and passaging compared to the intra-patient samples (Fig. 6c). 457 
CNA profiles for these samples are shown visually in Fig. 6d. 458 
 459 
DISCUSSION 460 
Here we have investigated the evolutionary stability of patient-derived xenografts, an important 461 
model system for which there have been prior reports of mouse-induced copy number evolution. 462 
To better address this, we assembled the largest collection of CNA profiles of PDX models 463 
reported to date, comprising over 1500 datasets from PDX samples of multiple passages and 464 
their originating patient tumors from more than 500 PDX models across a variety of tumor types. 465 
Our analysis demonstrated the reliability of copy number estimation by DNA-based 466 
measurements over RNA-based inferences, which are substantially inferior in terms of resolution 467 
and accuracy. The importance of DNA measurements is supported by the inconsistent 468 
conclusions by two independent studies on the same PDX expression array datasets by Gao et 469 
al.19 Ben-David et al.26,63 concluded that drastic copy number changes, driven by mouse-specific 470 
selection, often occur within a few passages. On the other hand, Mer et al.64 reported high 471 
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similarity between passages of the same PDX model based on direct correlations of gene 472 
expression, consistent with our findings in large, independent DNA-based datasets.  473 

To understand this, we note that the CN shifts inferred by Ben-David et al. are inherently 474 
impacted by major technical issues. First, the microarray signal for PT samples is diluted by 475 
introgressed human stromal cells, while in PDXs mouse stromal transcripts hybridize only to a 476 
fraction of the human probes65. As a consequence, PT samples with substantial stromal content 477 
would display a reduced signal compared to the corresponding PDX, which can lead to an 478 
erroneous inference of systematic increase in aberrations during PDX engraftment. Second, the 479 
mouse host microenvironment can affect the transcriptional profile of the PDX tumor66 and the 480 
quantity of mouse stroma can vary across passages. This can result in variability in the expression 481 
signal which can be wrongly inferred as CN changes, both from the tumor itself and through cross 482 
hybridization of mouse RNA to the human microarray. Although improved concordance in 483 
expression between PT and PDX can be achieved with RNA sequencing with the removal of 484 
mouse reads67,68, we observed that expression-based copy number inferences still have low 485 
resolution and robustness. Hence, many cancer-driving genes, which are found mainly in focal 486 
events with a size of 3Mb or lower69-72, cannot be evaluated for PDX-specific alterations. These 487 
issues are further worsened by the lack of tissue-matched normal gene expression profiles for 488 
calibration38, which have been only intermittently available but can substantially impact copy 489 
number inferences. Because of these considerations, the question of how much PDXs evolve as 490 
a consequence of mouse-specific selective pressures cannot be adequately addressed by 491 
expression data. 492 
 The studies we have presented here take into account the above issues by use of DNA 493 
data, as well as by assessing copy number changes by pairwise correlation/residual analysis to 494 
control for systematic biases, and they overall confirm the high retention of CNA profiles from 495 
PDX engraftment to passaging. We do observe larger deviations between PT-PDX than in PDX-496 
PDX comparisons, though this is likely due to dilution of PT signal by human stromal cells. 497 
Interestingly, we found that a major contributor to the differences between PDX samples is 498 
lineage-specific drift associated with splitting of tumors into fragments during PDX propagation. 499 
This spatial evolution within tumors appears to affect sample comparisons more than time or the 500 
number of passages.  501 

A challenge for evaluating any model system is that there is no clear threshold for genomic 502 
change that determines whether the model will still reflect patient response. Genetic variation 503 
among multi-region samples within a patient can shed light on this point, since the goal of a 504 
successful treatment would be to eradicate all of the multiple regions of the tumor. We found that 505 
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the copy number differences between PT and PDX are no greater than the variations among 506 
multi-region tumor samples or intra-patient samples. Thus concerns about the genetic stability of 507 
the PDX system are likely to be less important than the spatial heterogeneity of solid tumors 508 
themselves. This result is consistent with our results on lineage effects during passaging, which 509 
indicate that intratumoral spatial evolution is the major reason for genetic drift. 510 

We observed no evidence for systematic mouse environment-induced selection for cancer 511 
or treatment-related genes via copy number changes, though individual cases vary (see example 512 
in Supplementary Fig. 75). Moreover, only a small fraction of sample pairs (2.44%, 43 out of 1758) 513 
shows large CNA discordance (see METHODS), suggesting that clonal selection out of a complex 514 
population is rare. These results indicate that the variations observed in PDXs are mainly due to 515 
spontaneous intratumoral evolution rather than murine pressures. The extreme cases (see 516 
Supplementary Fig. 76 for examples with same lineage) may be informative for future studies of 517 
the evolutionary process, especially through consideration of repeated spatial sampling. It may 518 
be informative to compare such examples to those reported by Eirew et al.22,  who described a 519 
variety of clonal selection dynamics during engraftment and passaging for breast cancer PDXs, 520 
as well as by Ding et al.11, who demonstrated the possibility of cellular selection during xenograft 521 
formation similar to that during metastasis. While such cases are uncommon in our study, further 522 
subclonal analysis may be useful for clarifying potential selection pressures.  523 

In summary, our in-depth tracking of CNAs throughout PDX engraftment and passaging 524 
confirms that tumors engrafted and passaged in PDX models maintain a high degree of molecular 525 
fidelity to the original patient tumors and their suitability for pre-clinical drug testing. Overall, we 526 
find that PDX are highly concordant with the originating patient tumor and stable through multiple 527 
passaging, and that differences are no greater than those observed spatially within patient solid 528 
tumors. At the same time, our study does not rule out that PDXs will evolve in individual 529 
trajectories over time, and for therapeutic dosing studies, the best practice is to confirm the 530 
existence of expected molecular targets and obtain sequence characterizations in the cohorts 531 
used for testing as close to the time of the treatment study as is practicable. 532 
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 624 
FIGURE LEGENDS 625 
Figure 1. PDXNet and EurOPDX patient derived xenograft datasets used for copy number 626 
profiling across 16 tumor types. (a) Numbers of PDX models for each tumor type, with models 627 
also having multiple PDX samples or having matched patient tumor samples specified. (b) 628 
Distributions of datasets by passage number and assay platform for patient tumors and PDX 629 
samples, separated by tumor type. “Late” passages include P18, P19 and P21 samples. 630 
 631 
Figure 2. Comparisons of resolution and accuracy for copy number alterations estimated 632 
by DNA-based and expression-based methods. (a) Pairwise comparisons of distributions of 633 
segment size (Mb) of CNAs estimated by different measurement platforms in the benchmarking 634 
dataset (see Supplementary Table 3). CNAs are regions with (|log2(CN ratio)| ≥ 0.1). P-values 635 
indicate significance of difference between distributions by Wilcoxon rank sum test. (b) Pairwise 636 
comparisons of distributions of log2(CN ratio) of CNA segments. P-values were computed by 637 
Kolmogorov-Smirnov test. (c) Distributions of Pearson correlation coefficient of median-centered 638 
log2(CN ratio) in 100-kb windows from CNA segments between pairs of samples estimated by 639 
different platforms (see Supplementary Table 3). Samples with non-aberrant profiles in SNP array 640 
and WES data are omitted (Range (5-95 percentile) of log2(CN ratio) < 0.3). P-values indicate 641 
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Wilcoxon rank sum test. (d) Examples of CNA profiles in comparisons of different platforms. 642 
Pearson correlation coefficients of CNA segments between pairs of samples are shown on the 643 
right. (SNP: SNP array, WES: whole-exome sequencing, RNASEQ: RNA sequencing, EXPARR: 644 
gene expression array, NORM: normalization by median expression of normal samples, TUM: 645 
normalization by median expression of tumor samples) 646 
 647 
Figure 3. Comparisons of copy number alterations from patient tumor to early and late PDX 648 
passages. (a-c) Distributions of Pearson correlation coefficient of gene-based copy number, 649 
estimated by (a) SNP array, (b) WES, and (c) WGS, between: PT-PDX samples from the same 650 
model; PDX-PDX samples of the same model; and samples of different models from a common 651 
tumor type and contributing center. P-values were computed by Wilcoxon rank sum test (ns: not 652 
significant p-value > 0.05). (d-f) Distributions of Pearson correlation coefficients of gene-based 653 
copy number, estimated by (d) SNP array, (e) WES, and (f) WGS, among patient tumor and PDX 654 
passages of the same model. Comparisons relative to PT and P0 are shown (higher passages 655 
are shown in Supplementary Fig. 66). (g) Schematic of lineage splitting during passaging and 656 
expansion of tumors into multiple mice. This is a simplified illustration for passaging procedures 657 
in which different fragments of a tumor are implanted into different mice. (h) Pearson correlation 658 
distributions for PDX sample pairs of different lineages and sample pairs within the same lineage: 659 
for JAX SNP array, PDMR WES, and EuroPDX WGS datasets. P-values were computed by 660 
Wilcoxon rank sum test. The numbers in the parentheses represent the number of pairwise 661 
correlations. 662 
 663 
Figure 4. Cancer pathway analysis for copy number altered genes during engraftment and 664 
passaging. (a) Distribution of proportion of altered genes for pairwise comparisons of PDX 665 
samples for various gene sets: Protein-coding genes annotated by Ensembl; Oncogenic signaling 666 
pathways identified by TCGA49; JAX CKB50,51 Amp indicates genes with copy number gain or 667 
over-expression associated with therapeutic sensitivity or resistance; JAX CKB Del indicates 668 
genes with copy number loss or under-expression associated with therapeutic sensitivity or 669 
resistance; Census Amp Del indicates genes with frequent amplifications or deletions in the 670 
Cancer Gene Census52. CNA genes were identified by |residual| > 0.5 from linear regression 671 
model. P-values were computed by Wilcoxon rank sum test (ns: not significant, p > 0.1). (b) 672 
Distribution of proportion of altered genes for pairwise comparisons within breast cancer, 673 
colorectal cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) 674 
models. Prevalence of alterations in significantly amplified (TCGA Gistic Amp) or deleted (TCGA 675 
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Gistic Del) genes for the corresponding tumor type are shown. P-values were computed by 676 
Wilcoxon rank sum test (ns: not significant, p > 0.1). The numbers in the parentheses in the 677 
horizontal axis represent the number of genes, and those in the plot title represent the number of 678 
pairwise correlations. (c) Recurrence frequency of protein coding genes with copy number 679 
alterations, |residual| > 1, across all models in PT-PDX and PDX-PDX comparisons. 680 
 681 
Figure 5. Absence of mouse-driven recurrent CNAs during engraftment and propagation 682 
of colorectal and breast cancer PDXs. (a) Bar charts representing genome-wide GISTIC G-683 
score for amplifications (red) and deletions (blue) in each of the three cohorts (PT, PDX-early, 684 
PDX-late) for CRC and BRCA. (b-c) Scatter plots comparing gene-level GISTIC G-score between 685 
each of the three cohorts, for (b) CRC and (c) BRCA. Bottom-right panels of (b) and (c): scatter 686 
plots comparing ΔG-scores from PT to PDX-early and from PDX early to PDX-late. (d-e) Scatter 687 
plots comparing GSEA Normalized Enrichment Score (NES) for gene sets between each of the 688 
three cohorts, for (d) CRC (e) and BRCA. Grey dots: all gene sets; red dots: gene sets significantly 689 
enriched in at least one among the PT, PDX-early, PDX-late cohorts. Bottom-right panels of (d) 690 
and (e): scatter plots comparing ΔNES from PT to PDX-early and from PDX-early to PDX-late. 691 
 692 
Figure 6. Comparison of CNA variation during PDX engraftment and passaging to CNA 693 
variation among patient multi-region, tumor relapse, and metastasis samples. (a) 694 
Distributions of Pearson correlation coefficients of gene-based copy number for lung 695 
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and other lung cancer 696 
subtypes.  Columns compare: multi-region tumor samples from TRACERx31; PT-PDX samples 697 
from the same model; and PDX-PDX samples from the same model. P-values indicate Wilcoxon 698 
rank sum test (ns: p-value > 0.05). (b) Distributions of proportion of altered genes between multi-699 
region tumor pairs from TRACERx, and PT-PDX and PDX-PDX pairs for various gene sets for 700 
LUAD and LUSC. Gene sets are the same as in Fig. 4. TCGA Gistic and JAX CKB gene sets are 701 
shown (other gene sets are shown in Supplementary Fig. 76). (c) Distributions of Pearson 702 
correlation coefficients of gene-based copy number between intra-patient PT 703 
(primary/relapse/metastasis) pairs from the same patient and corresponding PT-PDX/PDX-PDX 704 
(derived from the same model; a different PT sample from the same patient generates a different 705 
model) pairs from the same set of patients. P-values were computed by Wilcoxon rank sum test 706 
(ns: p-value > 0.05). (d) CNA profiles of PT and PDX samples from patients with multiple PDX 707 
models from multiple PT collection (primary/relapse/metastasis). 708 
 709 
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ONLINE METHODS 1 
 2 
Experimental details for sample collection, PDX engraftment and passaging, and array or 3 
sequencing.  4 
The tumor types and patient tumor (PT) and patient derived xenograft (PDX) samples contributed 5 
by various centers are summarized in Supplementary Fig. 1-12 and Supplementary Table 1. The 6 
sample collection, PDX engraftment and passaging, and array and sequencing methodologies by 7 
the various centers are described below. 8 
The Jackson Laboratory (JAX). Patient tumor engraftment and PDX passaging of various tumor 9 
types were performed as previously described1-3. Detailed information of the PDX models can be 10 
found in the PDX model search form in Mouse Tumor Biology Database (MTB, 11 
http://tumor.informatics.jax.org/mtbwi/pdxSearch.do). SNP array samples were genotyped with 12 
the Affymetrix Genome-Wide Human SNP Array 6.0 as described in Woo et al3. Whole-exome 13 
sequencing were processed as follows: DNA was isolated from tumor and blood samples using 14 
the Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer’s protocols. 15 
DNA quality was assessed using an E-Gel General Purpose Agarose Gel, 0.8% (Invitrogen) and 16 
Nanodrop 2000 spectrophotometer (Thermo Scientific). DNA concentration was determined using 17 
a Qubit dsDNA BR Assay Kit (Thermo Scientific). Libraries were prepared by the Genome 18 
Technologies core facility at The Jackson Laboratory using SureSelectXT Reagents and 19 
SureSelectXT Human All Exon V4 Target Enrichment System (Agilent Technologies), according 20 
to the manufacturer’s instructions. Briefly, the protocol entails shearing the DNA using the Covaris 21 
E220 Focused-ultrasonicator (Covaris), ligating Illumina specific adapters, and PCR amplification. 22 
Amplified DNA libraries are then hybridized to the Human All Exon probes, amplified using 23 
indexed primers, and checked for quality and concentration using the DNA High-Sensitivity 24 
LabChip assay (Agilent Technologies) and quantitative PCR (KAPA Biosystems), according to 25 
the manufacturers’ instructions. Libraries were sequenced on a HiSeq 2500 100bp paired-end 26 
flow cell using TruSeq Rapid SBS reagents (Illumina). Average coverage for normal samples was 27 
154.38x (115.13 min – 212.31 max), and was 232.10x for tumor samples (161.48 min – 280.65 28 
max).  29 
Seoul National University-Jackson Laboratory (SNU-JAX). Gastric cancer tissues, paired 30 
normal gastric tissues, and blood samples were obtained from individuals who underwent 31 
gastrectomies at the Hospital of Seoul National University from 2014 to 2016. All samples were 32 
obtained with informed consent at the Hospital of Seoul National University, and the institutional 33 
review board approved the study per the Declaration of Helsinki. These samples were stored into 34 



2 
 

RPMI media with 1% penicillin/streptomycin immediately after resected from patients and shipped 35 
using specimen ice box to the laboratory within half an hour. Gastric cancer samples were divided 36 
into several small pieces (2mm × 2mm) and used to generate PDX models and for genomic 37 
analysis. Mice were cared for according to institutional guidelines of the Institutional Animal Care 38 
and Use Committee of the Seoul National University (no. 14-0016-C0A0). For PDX models, 39 
surgically resected tissues were minced into pieces approximately ~2 mm in size and injected 40 
into the subcutaneous area in the flanks of 6-week-old NOD/SCID/IL-2γ-receptor null female mice 41 
(NSGTM mice, Jackson Laboratory, Bar Harbor, ME). The volume of tumors and body weight of 42 
mice were checked once or twice a week. The volume was calculated as (tumor length x tumor 43 
width2) / 2. When a tumor reached >700~1000 mm3, the mouse was sacrificed, and tumor tissues 44 
were stored. Tumor tissues were divided and stored for several purposes: (1) Tumor tissues were 45 
cryopreserved in liquid nitrogen and stored at −80 °C for generating next passage PDXs. (2) 46 
Tumor tissues were frozen in liquid nitrogen for genomic analysis. Whole-exome sequencing was 47 
conducted as follows: Genomic DNA (gDNA) was extracted from blood and tissues using DNeasy 48 
blood and tissue kit (QIAGEN) and checked for purity, concentration, and integrity by OD260/280 49 
ratio using NanoDrop Instruments (NanoDrop Technologies, Wilmington, DE, USA) and agarose 50 
gel electrophoresis. DNA was sheared by fragmentation by Bioruptor (Diagenode, Inc., Denville, 51 
NJ, USA) and purified using Agencourt AMPure XP beads (Beckman Coulter, Fullerton, CA, 52 
USA). DNA samples were then tested for size distribution and concentration using an Agilent 53 
Bioanalyzer 2100. Standard protocols were utilized for adaptor ligation, indexing, high-fidelity 54 
PCR amplification. Subsequently, exome enrichment was performed by hybrid capture with the 55 
All Exon v5 capture library. Capture libraries were amplified, pooled, and submitted to the 56 
commercial sequencing company (Macrogen) for 100bp paired-end, multiplex sequencing on a 57 
HiSeq 2000 sequencing system. Average coverage for normal samples was 62.67x (38.97 min – 58 
108.77 max), and was 102.35x for tumor samples (36.02 min – 150.49 max). RNA-Sequencing 59 
data was generated as follows: RNA was extracted from tissues using the RNeasy Mini Kit 60 
(Qiagen, Valencia, CA, USA). RNA-Sequencing libraries were prepared from 1 μg total RNA using 61 
the TruSeq RNA Sample Preparation v2 Kit (Illumina, San Diego, CA) according to the 62 
manufacturer’s protocol. Libraries were submitted to the commercial sequencing company 63 
(Macrogen) for 100bp paired-end, multiplex sequencing on a HiSeq 2000 sequencer. 64 
Huntsman Cancer Institute (HCI). Patient tumor engraftment and PDX passaging of breast 65 
cancer samples were performed as previously described4,5. SNP array samples were genotyped 66 
by the Affymetrix SNP 6.0 array for profiling. These samples were processed, according to 67 
DeRose et al5. Additionally, some samples, were also processed using the Illumina Infinium Omni 68 
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2.5 Exome-8 v1.3 Beadchip array. Hybridized arrays were scanned using an Illumina iScan 69 
instrument following the Illumina Infinium LCG Assay Manual Protocol and processed using 70 
GenomeStudio. When samples had both Affymetrix and Illumina chips, we deferred to Illumina 71 
intensity values for copy number calling. Whole-exome sequencing was conducted as follows: 72 
Agilent SureSelectXT Human All Exon V6+COSMIC or Agilent Human All Exon 50Mb library 73 
preparation protocols were used with inputs of 100-3000ng sheared genomic DNA (Covaris). 74 
Library construction was performed using the Agilent Technologies SureSelectXT Reagent Kit. 75 
The concentration of the amplified library was measured using a Qubit dsDNA HS Assay Kit 76 
(ThermoFisher Scientific). Amplified libraries (750 ng) were enriched for exonic regions using 77 
either the Agilent Technologies SureSelectXT Human All Exon v6+COSMIC or Agilent Human All 78 
Exon 50Mb kits and PCR amplified. Enriched libraries were qualified on an Agilent Technologies 79 
2200 TapeStation using a High Sensitivity D1000 ScreenTape assay and the molarity of adapter-80 
modified molecules was defined by quantitative PCR using the Kapa Biosystems Kapa Library 81 
Quant Kit. The molarity of individual libraries was normalized to 5 nM, and equal volumes were 82 
pooled in preparation for Illumina sequence analysis. Sequencing libraries (25 pM) were 83 
chemically denatured and applied to an Illumina HiSeq v4 paired-end flow cell using an Illumina 84 
cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with 85 
reagents from an Illumina HiSeq PE Cluster Kit v4-cBot (PE-401-4001). Following the transfer of 86 
the flowcell to an Illumina HiSeq 2500 instrument (HCS v2.2.38 and RTA v1.18.61), a 125-cycle 87 
paired-end sequence run was performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-88 
4003). Average coverage for normal samples was 90.22x (15.28 min – 131.69 max), and was 89 
96.66x for tumor samples (10.65 min – 166.06 max). 90 
Baylor College of Medicine (BCM). Patient tumor engraftment and PDX passaging of breast 91 
cancer samples were performed as previously described6,7. SNP array samples were genotyped 92 
at Huntsman Cancer Institute using the Illumina Infinium Omni 2.5Exome-8 v1.4 Beadchip array 93 
by the procedures provided in the HCI section above.  94 
The University of Texas MD Anderson Cancer Center (MDACC). Fresh non-small-cell lung 95 
carcinoma tumor samples were collected from surgically resected specimens with the informed 96 
consent of the patients. Generation and passaging of PDXs, and histological analysis and DNA 97 
fingerprint assay for PDXs and their primary tumor tissues were performed as previously 98 
described8. The protocols for the use of clinical specimens and data in this study were approved 99 
by the Institutional Review Board at The University of Texas MD Anderson Cancer Center. All 100 
animal studies were carried out in accordance with the Guidelines for the Care and Use of 101 
Laboratory Animals (National Institutes of Health Publication 85-23) and the institutional 102 



4 
 

guidelines of MDACC. Whole-exome sequencing was conducted at the Sequencing and 103 
Microarray Core Facility at MD Anderson Cancer Center as follows: Genomic DNA was quantified 104 
and quality was assessed using Picogreen (Invitrogen) and Genomic DNA Tape for the 2200 105 
Tapestation (Agilent), respectively. DNA from each sample (100-500 ng of genomic DNA) was 106 
sheared by sonication and then used for library preparation by using KAPA library preparation kit 107 
(KAPA) following manufacturer’s instruction. Equimolar amounts of DNA were pooled (2-6 108 
samples per pool) and whole exome regions were captured by using biotin labeled probes from 109 
Roche Nimblegen (Exome V3) followed manufacture’s protocol. The captured libraries were 110 
sequenced on a HiSeq 2000 with 100bp paired-end (Illumina Inc., San Diego, CA, USA) on a 111 
paired-end flowcell. Average coverage for normal samples was 85.61x (40.80 min – 228.41 max), 112 
and was 125.79x for tumor samples (25.12 min – 251.53 max).  113 
The WISTAR Institute (WISTAR). Tumor biopsy samples were collected according to IRB-114 
approved protocol with the informed written consent of the patients. Collected fresh tumor pieces 115 
were snap frozen and stored at -80 °C. Subcutaneous implantation into NSG SCID mice were 116 
used to create PDX models. BRAF inhibitor treatment (PLX) was administered as PLX4720 117 
200ppm chemical additive diet chow (Research Diets, New Brunswick, NJ). Whole exome 118 
sequencing was conducted as follows: Genome DNA extraction was done using Qiagen DNeasy 119 
Blood & Tissue Kit, and libraries for whole exome sequencing were performed using Nextera DNA 120 
exome kit. Capture libraries were amplified, pooled, and then sequenced on an Illumina HiSeq 121 
2500 76bp paired-end run. Average coverage for normal samples was 97.50x (71.46 min – 124.64 122 
max), and was 208.27x for tumor samples (146.88 min – 281.20 max). 123 
National Cancer Institute Patient-Derived Models Repository (PDMR). For engraftments, 124 
tumor material plus a drop of Matrigel (BD BioSciences, Bedford, MA) were implanted 125 
subcutaneously in NSGTM mouse model NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ. Mice were housed in 126 
sterile, filter-capped polycarbonate cages, maintained in a barrier facility on a 12-hour light/dark 127 
cycle, and were provided sterilized food and water, ad libitum. Animals were monitored weekly 128 
for tumor growth. The initial passage of material was grown to approximately 1000-2000mm3 129 
calculated using the following formula: weight (mg)  =  (tumor length x [tumor width]2) / 2. Tumor 130 
material was then harvested, a portion cryopreserved, and the remainder implanted into NSG 131 
host mice. Every PDX tumor harvested and cryopreserved also has 2-3 fragments snap frozen 132 
for next generation sequence analysis and short tandem repeat validation and a piece is fixed in 133 
neutral buffered formalin and then embedded in paraffin for histological assessment. Related 134 
patient data, clinical history, representative histology and short-tandem repeat profiles for the PDX 135 
models can be found at https://pdmr.cancer.gov. Full PDMR standard operating procedures for 136 
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tumor engraftment and PDX passaging are available at https://pdmr.cancer.gov/sops. Whole-137 
exome sequencing data were generated with the Agilent SureSelect capture kit, and sequenced 138 
with 125bp pair-end Illumina HiSeq 2500 runs following standard operating procedures available 139 
here: https://pdmr.cancer.gov/sops. Average coverage for normal samples was 148.47x (50.95 140 
min – 242.24 max), and was 174.77x for tumor samples (81.41 min – 403.22 max). 141 
Washington University in St. Louis (WUSTL). All human tissues acquired for these 142 
experiments were processed in compliance with NIH regulations and institutional guidelines, 143 
approved by the Institutional Review Board at Washington University. Tumors from all patients 144 
were obtained via core needle biopsy, skin punch biopsy, or surgical resection after informed 145 
consent. All animal procedures were reviewed and approved by the Institutional Animal Care and 146 
Use Committee at Washington University in St. Louis. Pancreatic cancer models were derived 147 
from tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized, 148 

female NOD/SCID/γ mice (Jackson Laboratory, Bar Harbor, ME) using Matrigel. The sample 149 
tissues for these PDX models were obtained from archived, cryopreserved PDX harvests. Final 150 
tumor passages in mice were kept cold and harvested into RPMI-1640 with antibiotic and 151 
antimycotic additives. Pieces of each tumor were processed into the following: flash frozen tissue 152 
fragments, OCT blocks and matched Haemotoxylin and Eosin (H&E) slides, formalin fixed paraffin 153 
blocks and matched H&E slides, RNAlater tissue storage, and cryopreserved fragments (FBS + 154 
10% DMSO). A minimum of 250 mg of flash frozen material was submitted to the Siteman Cancer 155 
Center’s Proteomics Core. The tissues were cryo-pulverized and subsequently divided for DNA 156 
and RNA preparation, and long-term storage. Patient tumors were obtained directly from 157 
operating rooms and placed into sterile collection media (RPMI-1640 with antibiotic and 158 
antimycotic additives). Pieces of each tumor were processed into the following: flash frozen tissue 159 
fragments, OCT blocks and matched H&E slides, formalin fixed paraffin blocks and matched H&E 160 
slides, and cryopreserved fragments (FBS + 10% DMSO). Parental genomic DNA was prepared 161 
from OCT blocks if available, and if not available, paraffin blocks were utilized. In addition, 162 
genomic DNA for sequencing control was prepped from peripheral blood mononuclear cells that 163 
were both procured and processed at time of surgery. Breast cancer models were derived from 164 
tissue fragments implanted subcutaneously into dorsal flank regions of non-humanized, 165 

NOD/SCID/γ mice (Jackson Laboratories, Bar Harbor, ME) as previously described7,9. Whole-166 
exome sequencing was conducted as follows: Libraries were constructed using unamplified 167 
genomic DNA (minimum 100 ng) from blood (normal), tumor, and xenograft samples. Exons were 168 
captured via IDT Exome library kit followed by high-throughput sequencing on an Illumina 169 
NovaSeq S4 platform (Illumina Inc., San Diego, CA) using 150bp paired-end reads. Details of 170 
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whole exome library construction have been given elsewhere (Fisher, Barry et al. 2011). Average 171 
coverage for normal pancreatic cancer samples was 85.73x (55.65 min – 108.91 max), and was 172 
124.01x (49.68 min – 242.35 max) for tumor pancreatic cancer samples. Average coverage for 173 
normal breast cancer samples was 58.33x (45.37 min – 70.30 max), and was 89.90x (17.24 min 174 
– 149.53 max) for tumor breast cancer samples.  175 
Shanghai Institute for Biological Sciences (SIBS). Gene expression and copy number data, 176 
generated by the Affymetrix Human Genome U133 Plus 2.0 Array and Affymetrix Human SNP 177 
6.0 platforms respectively, of hepatocellular carcinoma (HCC) PDX models were retrieved from 178 
the Gene Expression Omnibus (GEO) accession ID GSE9065310. Expression microarray data 179 
generated by the Affymetrix Human Genome U133 Plus 2.0 Array for normal liver were 180 
downloaded from GEO and ArrayExpress: GSE352611, GSE3300612 and E-MTAB-1503-313. 181 
EurOPDX colorectal cancer (EuroPDX CRC). Liver-metastatic colorectal cancer samples were 182 
obtained from surgical resection of liver metastases at the Candiolo Cancer Institute, the 183 
Mauriziano Umberto I Hospital, and the San Giovanni Battista Hospital. Informed consent for 184 
research use was obtained from all patients at the enrolling institution before tissue banking, and 185 
study approval was obtained from the ethics committees of the three centers. Tissue from hepatic 186 
metastasectomy in affected individuals was fragmented and either frozen or prepared for 187 
implantation as described previously14,15. Non-obese diabetic/severe combined immunodeficient 188 
(NOD/SCID) female mice (4–6 weeks old) were used for tumor implantation. Snap-frozen aliquots 189 
were obtained from surgical specimens and corresponding tumor grafts at different passages. 190 
Whole genome sequencing was conducted as follows: DNA was extracted using Maxwell RSC 191 
Blood DNA kit (Promega AS1400) from colorectal cancer liver metastasis and corresponding 192 
tumor grafts at different passages. Genomic DNA was fragmented and used for Illumina TruSeq 193 
library construction (Illumina) according to the manufacturer’s instructions. Libraries were then 194 
purified with Qiagen MinElute column purification kit and eluted in 17 µl of 70°C EB to obtain 15 195 
µl of DNA library. The libraries were sequenced on HiSeq4000 (Illumina) with single-end reads of 196 
51bp at low coverage (~0.1x genome coverage on average). 197 
EurOPDX breast cancer (EuroPDX BRCA). Human breast tumors were obtained from surgical 198 
resections at the Netherland Cancer Institute (NKI), Institut Curie (IC) and Vall d’Hebron Institute 199 
of Oncology (VHIO). Engraftment was conducted with different procedures at each center. NKI: 200 
Small tumor fragments (2mm diameter) were implanted into the 4th mammary fat pad of 8-week-201 
old Swiss female nude mice. Mice were checked for tumor appearance once a week, and 202 
supplemented with estrogen, if the tumor was ER positive. After palpable tumor detection, tumor 203 
size was measured twice a week. When tumors reached a size of 700-1000 mm3, animals were 204 
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sacrificed and tumors were explanted and subdivided in fragments for serial transplantation as 205 
described above, or for frozen vital storage in liquid nitrogen. IC: Breast cancer fragments were 206 
obtained from patients at the time of surgery, with informed written patient consent. Fragments of 207 
30 to 60 mm3 were grafted into the interscapular fat pad of 8 to 12-week-old female Swiss nude 208 
mice. Mice were supplemented with estrogen. Xenografts appeared at the graft site 2 to 8 months 209 
after grafting. When tumors were close to 1500 mm3, they were subsequently transplanted from 210 
mouse to mouse and stocked frozen in DMSO-fetal calf serum (FCS) solution or frozen dried in 211 
nitrogen. Fragment fixed tissues in phosphate buffered saline (PBS) 10% formol for histologic 212 
studies were also stored. The experimental protocol and animal housing were in accordance with 213 
institutional guidelines as proposed by the French Ethics Committee (Agreement B75-05-18, 214 
France). VHIO: Fresh tumor samples from patients with breast cancer were collected for 215 
implantation following an institutional IRB-approved protocol and the associated informed 216 
consent, or by the National Research Ethics Service, Cambridgeshire 2 REC (REC reference 217 
number: 08/H0308/178). Experiments were conducted following the European Union’s animal 218 
care directive (2010/63/EU) and were approved by the Ethical Committee of Animal 219 
Experimentation of the Vall d’Hebron Research Institute. Surgical or biopsy specimens from 220 
primary tumors or metastatic lesions were immediately implanted in mice. Fragments of 30 to 60 221 
mm3 were implanted into the mammary fat pad (surgery samples) or the lower flank (metastatic 222 
samples) of 6-week-old female athymic HsdCpb:NMRI-Foxn1nu mice (Harlan Laboratories). 223 
Animals were continuously supplemented with estradiol. Upon growth of the engrafted tumors, 224 
the model was perpetuated by serial transplantation onto the lower flank. Tumor growth was 225 
measured with caliper bi-weekly. In all experiments, mouse weight was recorded twice weekly. 226 
When tumors reached 1500 mm3, mice were euthanized and tumors were explanted. Whole 227 
genome sequencing was conducted as follows: genomic DNA was extracted from breast cancers 228 
and corresponding PDXs using (i) QIAamp DNA Mini Kit s(50) (#51304, Qiagen) (IC) or (ii) 229 
according to Laird PW’s protocol16 (NKI and VHIO). The amount of double stranded DNA in the 230 
genomic DNA samples was quantified by using the Qubit® dsDNA HS Assay Kit (Invitrogen, cat 231 
no Q32851). Up to 2000 ng of double stranded genomic DNA were fragmented by Covaris 232 
shearing to obtain fragment sizes of 160-180bp. Samples were purified using 1.6X Agencourt 233 
AMPure XP PCR Purification beads according to manufacturer’s instructions (Beckman Coulter, 234 
cat no A63881). The sheared DNA samples were quantified and qualified on a BioAnalyzer 235 
system using the DNA7500 assay kit (Agilent Technologies cat no. 5067-1506). With an input of 236 
maximum 1 µg sheared DNA, library preparation for Illumina sequencing was performed using 237 
the KAPA HTP Library Preparation Kit (KAPA Biosystems, KK8234). During library enrichment, 238 
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4-6 PCR cycles were used to obtain enough yield for sequencing. After library preparation the 239 
libraries were cleaned up using 1X AMPure XP beads. All DNA libraries were analyzed on the GX 240 
Caliper (a PerkinElmer company) using the HT DNA High Sensitivity LabChip, for determining the 241 
molarity. Up to two pools of 24 uniquely indexed samples and one pool of 81 uniquely indexed 242 
samples were mixed together by equimolar pooling in a final concentration of 10nM, and 243 
subjected to sequencing on an Illlumina HiSeq2500 machine in a total of 12 lanes of a single read 244 
65bp run at low coverage (~0.4x genome coverage on average), according to manufacturer’s 245 
instructions. 246 
 247 
Consolidating tumor types from different datasets 248 
As the terminology of tumor types/subtypes by the different contributing centers were not 249 
consistent, we used the Disease Ontology database17 (http://disease-ontology.org/), cancer types 250 
listed in NCI website (https://www.cancer.gov/types) and in TCGA publications18,19 to unify and 251 
group the tumor types/subtypes under broader terms as shown in Fig.1 and Supplementary Table 252 
2. 253 
 254 
Copy number alteration (CNA) estimation methods 255 
SNP array. The estimation of CNA profiles from SNP array were detailed previously3. In short, for 256 
Affymetrix Human SNP 6.0 arrays, PennCNV-Affy and Affymetrix Power Tools20 were used to 257 
extract the B-allele frequency (BAF) and Log R Ratio (LRR) from the CEL files. Due to the 258 
absence of paired-normal samples, the allele-specific signal intensity for each PDX tumor were 259 
normalized relative to 300 randomly selected sex-matched Affymetrix Human SNP 6.0 array CEL 260 
files obtained from the International HapMap project21. For Illumina Infinium Omni2.5Exome-8 261 
SNP arrays (v1.3 and v1.4 kit), the Illumina GenomeStudio software was used to extract the B-262 
allele frequency (BAF) and Log R Ratio (LRR) from the signal intensity of each probe. The single 263 
sample mode of the Illumina GenomeStudio was used, which normalizes the signal intensities of 264 
the probes with an Illumina in-house dataset. The single tumor version of ASCAT22 (v2.4.3 for 265 
JAX SNP data, v2.5.1 for SIBS SNP data) was used for GC correction, predictions of the 266 
heterozygous germline SNPs based on the SNP array platform, and estimation of ploidy, tumor 267 
content and allele-specific copy number segments. The resultant copy number segments were 268 
annotated with log2 ratio of total copy number relative to predicted ploidy from ASCAT.  269 
Whole-exome sequencing (WES) data. All the samples were subjected to quality control 270 
(filtering and trimming of poor-quality reads and bases) using in-house QC script with the cut-off 271 

that half of the read length should be ≥20 in base quality at phred scale. We further removed the 272 
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known adaptors using cut-adapt23 v1.15 11 at -m 36. Afterward, we aligned the reads to the 273 
human genome (GRCh38.p5) using bwakit24 v0.7.15. Engrafted tumor samples were subjected 274 
to the additional step of mouse read removal using Xenome25 v1.0.0, with default parameters. 275 
The alignment was converted to BAM format using Picard SortSam v2.8.1 276 
(https://broadinstitute.github.io/picard/), and duplicates were removed by Picard MarkDuplicates 277 
utility. BaseRecalibrator from the Genome Analysis Tool Kit26,27 (GATK) v4.0.5.1 was used to 278 
adjust the quality of raw reads. Training files for the base quality scale recalibration were 279 
Mills_and_1000G_gold_standard.indels.hg38.vcf.gz, 280 
Homo_sapiens_assembly38.known_indels.vcf.gz, and dbSNP v151. Mean target coverage was 281 
determined for each sample by Picard CollectHsMetrics. Aligned bams were subset to target 282 
region by GATK and SAMTools28 v0.1.18 was used to generate the pileup for each sample. Pileup 283 
data were used for CNA estimation as calculated with Sequenza29 v2.1.2. Both tumor and normal 284 
data, that utilized the same capture array, were used as input. pileup2seqz and GC-windows (-w 285 
50) modules from sequenza-utils.py utility were used to create the native seqz format file for 286 
Sequenza and compute the average GC content in sliding windows from hg38 genome, 287 
respectively. Finally, we ran the three Sequenza modules with these modified parameters 288 
(sequenza.extract: assembly = "hg38", sequenza.fit: chromosome.list = 1:23, and 289 
sequenza.results: chromosome.list = 1:23) to estimate the segments of copy number 290 
gains/losses. Finally, segments lacking read counts, in which ≥50% of the segment with zero read 291 
coverage, were removed. A reference implementation of this workflow (Supplementary Fig. 77) 292 
is developed and deployed in the cancer genomics cloud at SevenBridges 293 
(https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-294 
workflow/, https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/pdx-wes-cnv-295 
xenome-tumor-normal-workflow/). 296 
Low-pass whole-genome sequencing (WGS) data. Whole-genome sequence reads from 297 
EuroPDX CRC liver metastasis and corresponding tumor grafts at different passages were 298 
mapped to the reference human genome (GRCh37) using Burrows-Wheeler Aligner24 (BWA) 299 
v0.7.12. SAMTools28 v0.1.18 was used to convert SAM files into BAM files and Picard v1.43 to 300 
remove PCR duplicates (http://broadinstitute.github.io/picard/). Raw copy number profiles for 301 
each sample were estimated by QDNAseq30 R package v1.20 by dividing the human reference 302 
genome in non-overlapping 50 kb windows and counting the number of reads in each bin. Bins in 303 
problematic regions were removed31. Read counts were corrected for GC content and mappability 304 
by a LOESS regression, median-normalized and log2-transformed. Values below –1000 in each 305 
chromosome were floored to the first value greater than –1000 in the same chromosome. Raw 306 
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log2 ratio values were then segmented using the ASCAT22 algorithm implemented in the ASCAT 307 
R package v2.0.7. Whole-genome sequence reads from EuroPDX BRCA tumors and 308 
corresponding tumor grafts at different passages were mapped to the reference human genome 309 
(GRCh38) and mouse genome (GRCm38/mm10, Ensembl 76) using Burrows-Wheeler Aligner 310 
(BWA) v0.7.15. Subsequently, mouse reads were excluded with XenofilteR32. Other processing 311 
steps are similar as described above. Raw copy number profiles were estimated for each sample 312 
by dividing the human reference genome in non-overlapping 20 kb windows and counting the 313 
number of reads in each bin. Only reads with at least mapping quality 37 were considered. Bins 314 
within problematic regions (i.e. multimapper regions) were excluded. Downstream analysis to 315 
estimate copy number was conducted as described above.  316 
RNA-sequencing (RNA-Seq) and gene expression microarray (EXPARR) data. For SNU-JAX 317 
RNA-Seq data, Simultaneous read alignment was performed to both mouse (mm10) and human 318 
genome (GRCh38.p5) and only human specific reads were used for the expression quantification. 319 
Expression of mRNA was quantified as Transcripts Per Million (TPM) for downstream analysis 320 
using RNA-Seq by Expectation Maximization33 (RSEM) with ensemble GTF reference 321 
GRCh38.92. Gene expression microarray data for SIBS HCC and normal liver samples from GEO 322 
and ArrayExpress databases were profiled as follows. After initial quality control and outlier 323 
removal, CEL files were normalized according to RMA algorithm and probesets were annotated 324 
according to Affymetrix annotation file for HG-U133 Plus 2, released on 2016-03-15 build 36. For 325 
expression-based copy number inference, we referred to the previous protocols for e-karyotyping 326 
and CGH-Explorer34-37. For each cancer type, expression values of tumor and corresponding 327 
normal samples were merged in a single table, and gene identifiers were annotated with 328 
chromosomal nucleotide positions. Genes located on sex chromosomes were excluded. Genes 329 
which values below 1 TPM (RNAseq) or probeset log2-values below 6 (microarray) in more than 330 
20% of the analyzed dataset were removed. Remaining gene expression values below the 331 
thresholds were respectively raised to 1 TPM or log2-value of 6. In the case of multiple transcripts 332 
(RNA-seq) or probesets (microarray) per gene, the one with the highest median value across the 333 
entire dataset was selected. According to the e-karyotyping protocol, the sum of squares of the 334 
expression values relative to their median expression across all samples was calculated for each 335 
gene, and 10% most highly variable genes were removed. For each gene, the median log2 336 
expression value in normal samples was subtracted from the log2 expression value in each tumor 337 
sample and subsequently input in CGH-explorer. For tumor-only datasets, the median log2 338 
expression value in the same set of tumor samples was instead subtracted. The preprocessed 339 
expression profiles of each sample were individually analyzed using CGH-Explorer 340 



11 
 

(http://heim.ifi.uio.no/bioinf/Projects/CGHExplorer/). CGH-PCF analysis was carried out to call 341 
copy number according to parameters previously reported38: least allowed deviation = 0.25; least 342 
allowed aberration size = 30; winsorize at quantile = 0.001; penalty = 12; threshold = 0.01.  343 
 344 
Filtering and gene annotation of copy number segments 345 
Copy number (CN) segments with log2 copy number ratio estimated from the various platforms 346 
were processed in the following steps (Supplementary Fig. 26). Segments <1kb were filtered 347 
based on the definition of CNA39. In addition, SNP array segments had to be covered by >10 348 
probes, with an average probe density of 1 probe per 5kb. The copy number segments were then 349 
binned into 10kb windows to derive the median log2(CN ratio), which was subsequently used to 350 
re-center the copy number segments. Median-centered copy number segments were visualized 351 
using IGV40 v2.4.13 and GenVisR41 v1.16.1. Median-centered copy number of genes were 352 
calculated by intersecting the genome coordinates of copy number segments with the genome 353 
coordinates of genes (Ensembl Genes 93 for human genome assembly GRCh38, Ensembl 354 
Genes 96 for human genome assembly GRCh37). In the case where a gene overlaps multiple 355 
segments, the most conservative (lowest) estimate of copy number was used to represent the 356 
copy number of the entire intact gene. 357 
 358 
Comparison of CN gains and losses 359 
For the comparison of resolution, range of CN values and frequency of gains and losses between 360 
different platforms and analysis methods, we defined copy number gain or loss segments as – 361 
Gain: log2(CNratio) > 0.1; Loss: log2(CN ratio) < -0.1.  362 
 363 
Correlation of CNA profiles  364 
The overall workflow to compare CNA profiles is shown in Supplementary Fig. 26. PDX samples 365 
without passage information were omitted in the following downstream analysis. The copy number 366 
segments were binned into 10kb-windows or smaller using Bedtools42 v2.26.0, and the variance 367 
of log2(CN ratio) and range (difference) of log2(CN ratio) between 5th to 95th percentile across all 368 
the bins were calculated as a measure of degree of aberration for each CNA profile. A non-369 
aberrant profile results in a low variance or range. While variance can be biased for CNA profiles 370 
with small segments of extreme gains or losses, we preferred the use of 5th to 95th percentile 371 
range to identify samples with low degree of aberration, such that a narrow range indicates ≥90% 372 
of the genome has very low-level gains and losses. The similarity of two CNA profiles is quantified 373 
by the Pearson correlation coefficient of log2(CN ratio) of 100kb-windows binned from segments 374 
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or genes between 2 samples. Gene-based and segment-based (100kb windows) correlations 375 
were highly similar (data not shown). Using correlation avoided the issue of making copy number 376 
gain and loss calls based on thresholds, though it can be inconsistent due to different baseline 377 
and range in copy number values. Such variations are impacted by sample-specific variation in 378 
human stromal contamination or sensitivity copy number detection by different platforms. 379 
Comparison of CNA profiles between different platforms. The copy number segments of each 380 
pair of data were intersected and binned into 100kb-windows or smaller using Bedtools. The 381 
Pearson correlation coefficient and linear regression model was calculated for the log2(CN ratio) 382 
of the windows. Windows with discrepant copy number were identified by outliers of the linear 383 
regression model defined by |studentized residual| > 3. These outlier windows were mapped to 384 
their corresponding segments to identify the size of CNA events that were discordant between 385 
the different copy number estimation methods. The proportion of the genome discordant CNA 386 
was calculated from the summation of the outlier windows. 387 
Identification of genes with CNA between different samples of the same model. To compare 388 
the CNA profiles between different samples (PT or PDX) of the same model, the Pearson 389 
correlation coefficient and linear regression model was calculated for the log2(CN ratio) of the 390 
genes for each pair of data. Prior to that, deleted genes with log2(CN ratio) < -3 were rescaled to 391 
-3 to avoid large shifts in the correlation coefficient and linear regression model due to extremely 392 
negative values on the log scale. Extreme outliers of the linear regression model defined by 393 
|studentized residual| > 3 were removed to derive an improved linear regression model43 not 394 
biased by few extreme values. Genes with copy number changes between the samples were 395 
identified by the difference in log2(CN ratio) relative to the improved linear regression model of 396 
|standard residual| < 0.5. We also removed some samples with low correlation due to sample 397 
mislabeling as they displayed high correlation with samples from other models. We also omit 398 
samples with low correlation values (<0.6) which resulted from non-aberrant CNA profiles in 399 
genomically stable tumors (5th to 95th percentile range < 0.3, Supplementary Fig. 64). 400 
Identification of aberrant sample pairs with highly discordant CNA profiles. Aberrant CNA 401 
profiles were identified based on the 100kb-window copy number range (5th to 95th percentile) 402 
>0.5, for both samples. Sample pairs with Pearson correlation <0.6 were selected as highly 403 
discordant CNA profiles between them. 404 
 405 
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Annotation with gene sets with known cancer or treatment-related functions 406 
Copy number altered genes (|residual| < 0.5) were annotated by various gene sets with cancer 407 
or treatment-related functions gathered from various databases and publications (Supplementary 408 
Fig. 26):  409 
1. Genes in 10 oncogenic signaling pathways curated by TCGA and were found to be frequently 410 
altered in different cancer types44. 411 
2. Genes with gain in copy number or expression, or loss in copy number or expression that 412 
conferred therapeutic sensitivity, resistance or increase/decrease in drug response from the JAX 413 
Clinical Knowledgebase45,46 (JAX-CKB) based on literature curation (https://ckbhome.jax.org/, as 414 
of 06-18-2019).  415 
3. Genes with evidence of promoting oncogenic transformation by amplification or deletion from 416 
the Cancer Gene Census47 (COSMIC v89).  417 
4. Significantly amplified or deleted genes in TCGA cohorts of breast cancer48, colorectal cancer49, 418 
lung adenocarcinoma50 and lung squamous cell carcinoma51 by GISTIC analysis. 419 
 420 
Identification of genes with recurrent copy number changes 421 
Genes with a more stringent threshold of |residual| > 1.0 with respect to the improved regression 422 
linear model (without discriminating gain or loss) were selected for each pairwise comparison 423 
between different samples of the same model. Pairwise cases in which genes are deleted in both 424 
samples (log2(CN ratio) £ -3 ) are omitted. Recurrent frequency for each gene across all models 425 
was calculated on a model basis such that genes with copy number between multiple pairs of the 426 
same model was counted as once. This avoided the bias towards models with many samples of 427 
similar copy number changes between the different pairs.  428 
 429 
Drug response analysis using CCLE data 430 
We developed a pipeline to evaluate gene copy number effects on drug sensitivity52,53 by using 431 
the Cancer Cell Line Encyclopedia54,55 (CCLE) cell line genomic and drug response data (CTRP 432 
v2). We downloaded the CCLE drug response data from Cancer Therapeutics Response Portal 433 
(www.broadinstitute.org/ctrp), and CCLE gene-level CNA and gene expression data from depMap 434 
data portal (‘public_19Q1_gene_cn.csv’ and ‘CCLE_depMap_19Q1_TPM.csv’, 435 
https://depmap.org/portal/download/). For CCLE drug response data, we used the area-under-436 
concentration-response curve (AUC) sensitivity scores for each cancer cell line and each drug. In 437 
total, we collected gene-level log2 copy number ratio data derived from the Affymetrix SNP 6.0 438 
platform from 668 pan-cancer CCLE cell lines, with a total of 545 cancer drugs tested. With the 439 
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CCLE gene-level CNA and AUC drug sensitivity scores, we performed gene-drug response 440 
association analyses for genes with recurrent copy number changes. Pearson correlation p-441 
values between each gene’s log2 (CN ratio) and each drug’s AUC score across all cell lines were 442 
calculated, and q-values were calculated by multiple testing Bonferroni correction. Significant 443 
gene-CNA and drug associations were kept (q-value < 0.1) to further evaluate gene-expression 444 
and drug response associations. If a gene’s expression was also significantly correlated with AUC 445 
drug sensitivity scores, particularly in the same direction (either positively or negatively correlated) 446 
as the gene-CNA and drug association, that gene would be considered as significantly correlated 447 
with drug response based on both its CNA and gene expression.  448 
 449 
GISTIC analysis of WGS data 450 
To obtain perfectly matching and comparable PT–PDX cohorts, for GISTIC analysis, CRC trios in 451 
which at least one sample did not display significant CNAs were excluded from the analysis 452 
resulting in a total of 87 triplets. The GISTIC56 algorithm (GISTIC 2 v6.15.28) was applied on the 453 
segmented profiles using the GISTIC GenePattern module (https://cloud.genepattern.org/), with 454 
default parameters and genome reference files Human_Hg19.mat for EuroPDX CRC data and 455 
hg38.UCSC.add_miR.160920.refgene.mat for EuroPDX BRCA data. For each dataset, GISTIC 456 
provides separate results (including segments, G-scores and FDR q-values) separately for 457 
recurrent amplifications and recurrent deletions. Deletion G-scores were assigned negative 458 
values for visualization. We observed that the G-Score range was systematically lower in PT 459 
cohorts, which is likely the result of the dilution of CNA by normal stromal DNA. In contrast, human 460 
stromal DNA in PDX samples were lower or negligible. To account for this difference in gene-461 
level G-scores, PDXs at early and late passages were scaled with respect to PT gene-level G-462 
score values using global linear regression, separately for amplification and deletion outputs. 463 
 464 
Gene set enrichment analysis (GSEA) of WGS data 465 
To assess the biological functions associated with the recurrent alterations detected by the 466 
GISTIC analysis, we performed GSEAPreranked analysis57,58 on gene-level GISTIC G-score 467 
profiles, for both amplifications and deletions. In particular, we applied the algorithm with 1000 468 
permutations on various gene set collections from the Molecular Signatures Database59,60 469 
(MSigDB): H (Hallmark), C2 (Curated : CGP chemical and genetic perturbations, CP canonical 470 
pathways), C5 (Gene Ontology: BP biological process, MF molecular function, CC cellular 471 
component) and C6 (Oncogenic Signatures) composed of 50, 4762, 5917 and 189 gene sets 472 
respectively. We also included gene sets with known cancer or treatment-related functions 473 
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described in an earlier section. We noted that multiple genes with contiguous chromosomal 474 
locations, typically in recurrent amplicons, generated spurious enrichment for gene sets which 475 
consists of multiple genes of adjacent positions, while very few or none of them had a significant 476 
GISTIC G-score. To avoid this confounding issue, we only considered the “leading edge genes”, 477 
i.e. those genes with increasing Normalized Enrichment Score (NES) up to its maximum value, 478 
that contribute to the GSEA significance for a given gene set. The leading-edge subset can be 479 
interpreted as the core that accounts for the gene set’s enrichment signal 480 
(http://software.broadinstitute.org/gsea). We included a requirement that the leading edge genes 481 
passing the GISTIC G-score significant thresholds based on GISTIC q-value 0.25 (Supplementary 482 
Table 8 and Fig. 73) make up at least 20% of the gene set. This 20% threshold was chosen as 483 
the minimal threshold at which gene sets assembled from TCGA-generated lists of genes with 484 
recurrent CNA in CRC or BRCA were identified as significant in GSEA (see Supplementary Table 485 
9). Finally, gene sets with a NES greater than 1.5 and a FDR q-value of less than 0.05, which 486 
passed the leading edge criteria, were considered significantly enriched in genes affected by 487 
recurrent CNAs. 488 
 489 
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