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Abstract

Mathematical models of biological reactions at the system-level lead to a large set of
ordinary differential equations with many unknown parameters that need to be inferred
using relatively few experimental measurements. Having a reliable and robust algorithm
for parameter inference and prediction of the hidden dynamics has been one of the core
subjects in systems biology, and is the focus of this study. We have developed a novel
systems-biology-informed deep learning algorithm that incorporates the system of
ordinary differential equations into the neural networks. Enforcing these equations
effectively adds constraints to the optimization procedure that manifests itself as an
imposed structure on the observational data. Using few scattered and noisy
measurements, we are able to infer the dynamics of unobserved species, systematic
forcing and the unknown model parameters. We have successfully tested the algorithm
for three different benchmark problems.

Author summary

The dynamics of systems biological processes are usually modeled using ordinary
differential equations (ODEs), which introduce various unknown parameters that need
to be estimated efficiently from noisy measurements of concentration for a few species
only. In this work, we present a novel “systems-informed neural network” to infer the
dynamics of experimentally unobserved species as well as the unknown parameters in
the system of equations. By incorporating the system of ODEs into the neural networks
we effectively add constraints to the optimization algorithm, which makes the method
robust to measurement noise and few scattered observations.

Introduction 1

Systems biology aims at a system-level understanding of biological systems, which is a 2

holistic approach to deciphering the complexity of biological systems. To understand 3

the biological systems, we must understand the structures of the systems (both their 4

components and structural relationships), and their dynamics [1]. The dynamics of 5

systems biological processes are usually modeled using ordinary differential equations 6

(ODEs) that describe the time evolution of chemical and molecular species 7

concentrations. Once the pathway structure of chemical reactions is known, the 8

corresponding equations can be derived using widely accepted kinetic laws, such as the 9

law of mass action or the Michaelis-Menten kinetics [2]. 10
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Most system-level biological models introduce various unknown parameters, which 11

need to be estimated efficiently. Thus, the central challenge in computational modeling 12

of these systems could be the prediction of model parameters such as rate constants or 13

initial concentrations, and model trajectories such as time evolution of experimentally 14

unobserved concentrations. Due to the importance of parameter estimation, a lot of 15

attention has been given to this problem in the systems biology community. A lot of 16

research has been conducted on the applications of several optimization techniques, such 17

as linear and nonlinear least-squares fitting [3], genetic algorithms [4], and evolutionary 18

computation [5]. Considerable interest has also been raised by Bayesian methods [6], 19

which can extract information from noisy or uncertain data. The main advantage of 20

these methods is their ability to infer the whole probability distributions of the 21

parameters, rather than just a point estimate. More recently, parameter estimation for 22

computational biology models has been tackled in the framework of control theory by 23

using state observers. These algorithms were originally developed for the problem of 24

state estimation in which one seeks to estimate the time evolution of the unobserved 25

components of the state of a dynamical system. In this context, extended Kalman 26

filtering [7] and unscented Kalman filtering [8] methods have been applied as well. 27

Due to technical limitations, however, biological reaction networks are often only 28

partially observable. Usually, experimental data are insufficient considering the size of 29

the model, which results in parameters that are non-identifiable [9] or only identifiable 30

within confidence intervals. Furthermore, it is known that a large class of systems 31

biology models display sensitivities to the parameter values that are roughly evenly 32

distributed over many orders of magnitude. Such sloppiness has been suggested as a 33

factor that makes parameter estimation difficult [10]. In the process of parameter 34

inference, two issues accounting for system’s (non-)identifiability have to be considered: 35

structural identifiability that is related to the model structure independent of the 36

experimental data [11]; and practical identifiability that takes into account the amount 37

and quality of measured data. The a priori structural identifiability addresses the 38

question of unique estimation of the unknown parameters based on the postulated 39

model. However, a parameter that is structurally identifiable may still be practically 40

non-identifiable assuming that the model is exact, but the measurements are noisy or 41

sparse [12]. 42

In this work, we introduce a novel systems-informed neural network to infer the 43

hidden dynamics of experimentally unobserved species as well as the unknown 44

parameters in the system of equations. By incorporating the system of ODEs into the 45

neural networks (through adding the residuals of the equations to the loss function), we 46

effectively add constraints to the optimization algorithm, which makes the method 47

robust to measurement noise and few scattered observations. In addition, since large 48

system-level biological models are typically encountered, our algorithm is 49

computationally scalable and, hence, feasible and its output is interpretable even though 50

it depends on a high-dimensional parameter space. 51

Materials and methods 52

Throughout this paper, we assume that the systems biological process can be modeled
by a system of ordinary differential equations (ODEs) of the following form

ẋ = f (x,u,p, t), (1a)

y = h(x) + ε(t), ε(t) ∼ N (0, σ2) (1b)

x(t0) = x0, (1c)

where the state vector x represents the concentration of s = 1..S species, the input 53
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signal u represents the external forcing and p is a vector of k = 1..K parameters of the 54

model, which remain to be determined. Hence, the system of ODEs f will be identified 55

once p is known. The output signal y is the observable vector, which we can measure 56

experimentally and could possibly be contaminated with noise ε considered to be 57

Gaussian with zero mean and standard deviation σ. The output function h is to be 58

determined from the design of the experiments that are used for parameter inference. 59

While h could in general be any function, it is assumed to be a linear function of the 60

state vector x in most models. 61

Systems-informed neural networks and parameter inference 62

We introduce a deep learning framework that is informed by the systems biology 63

equations that describe the kinetic pathways (Eq. (1)a) as shown in Fig. 1. Parameters 64

of the neural network as well as the system of equations (1) can be inferred by 65

minimizing the following mean of squared errors loss function 66

L = MSEdata + α MSEode + β MSEaux, (2)

where 67

MSEdata =
1

NM

M∑
m=1

N∑
n=1

[ynm − ym (tn;θ,p)]
2

(3)

68

MSEode =
1

NS

S∑
i=1

N∑
n=1

[ẋni − fi (xni ,u
n, tn;θ,p)]

2
, (4)

69

MSEaux =
1

S

S∑
i=1

{[
x0i − xi(t0;θ,p)

]2
+
[
xNi − xi(tN ;θ,p)

]2}
. (5)

Equation (3) is associated with the M sets of observations ym given by Eq. (1)b, while 70

Eq. (4) enforces the structure imposed by the system of ODEs given in Eq. (1)a. The 71

parameters of the neural network θ as well as the unknown parameters of the ODEs p 72

are to be inferred. Note that observations are made on N discrete and randomly 73

distributed time instants tn ∈ T . While the time instants used to enforce the ODEs 74

may be chosen differently from the set of observation times, we have used the same time 75

instants for simplicity. Additionally, the auxiliary loss function given by Eq. (5) involves 76

two sets of data that are required by the network to pinpoint the unique dynamics of 77

the system. The first set of data is the initial conditions at time t0 for the state 78

variables given by Eq. (1)c, and the second set includes the values of the state variables 79

at any arbitrary time instant within the training time window. The final time instant 80

tN is considered here in this work. 81

Analysis of system’s identifiability 82

A parameter pi is identifiable if the confidence interval of its estimate p̂i is finite. In 83

systems identification problems, two different forms of identifiablity namely, structural 84

and practical are typically encountered. Structural non-identifiability arises from a 85

redundant parameterization in the formal solution of y due to insufficient mapping h of 86

internal states x to observables y in Eq. (1) [9]. A priori structural identifiability has 87

been studied extensively using e.g., power series expansion [13] and differential algebraic 88

methods [14], yet mostly limited to linear models as the problem is particularly difficult 89

for nonlinear dynamical systems. Furthermore, practical non-identifiability cannot be 90

detected with these methods, since experimental data are disregarded. 91
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Fig. 1. Systems biology informed deep neural networks. An “uninformed” neural
network NN (θ) takes time as the input and outputs a vector of the state variables
x(t;θ). Scattered observations y are given to the network as labeled data for only a few
state variables. Having an analytic representation of x(t;θ), we are able to use
automatic differentiation and enforce the system of equations (ODEs(p)) by adding its
residuals to the loss function. This is the way to “inform” the neural networks by the
governing system of ODEs.

A parameter that is structurally identifiable may still be practically non-identifiable. 92

Practical non-identifiability is intimately related to the amount and quality of measured 93

data and manifests in a confidence interval that is infinite. Different methods have been 94

proposed to estimate the confidence intervals of the parameters such as local 95

approximation of the Fisher-Information-Matrix (FIM) [12] and bootstrapping 96

approach [15]. Another approach is to quantify the sensitivity of the systems dynamics 97

to variations in its parameters using a probabilistic framework [16]. For identifiability 98

analysis, we primarily use the FIM method, which is detailed in the Supporting 99

Information. 100

Implementation 101

The algorithm is implemented in Python using the open-source Tensorflow platform [17], 102

where the required derivatives are taken analytically using automatic differentiation. 103

The width and depth of the neural networks depend on the size of the system of 104

equations and the complexity of the dynamics. For the benchmark problems in this 105

study, we have used 5-layer deep neural networks with 30 units for each state variable 106

(e.g., for the glycolysis problem there are 7× 30 units/layer). We use a standard logistic 107

function as the activation function σ shown in Fig. 1. For the training, we use an Adam 108

optimizer [18] with default hyper-parameters and a learning rate of 10−3, where the 109

training is performed using the full batch of data for typically 20,000 iterations. To 110

further refine the inferred dynamics and parameters, we train the neural networks for 111

20,000 more iterations using a learning rate of 10−4. Training was performed on a single 112

GPU TITAN Xp, and did not take more than half hour to reach the optimal solution 113

for the benchmark tests in this study. The source codes for these three problems are 114

available to download at https://github.com/alirezayazdani1/SBINNs. 115
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Results 116

Yeast glycolysis model 117

The model of oscillations in yeast glycolysis [19] has become a standard benchmark 118

problem for systems biology inference [20,21] as it represents complex nonlinear 119

dynamics typical of biological systems. We use it here to study the performance of our 120

deep learning algorithm used for parsimonious parameter inference with only two 121

observables. The system of ODEs for this model as well as the target parameter values 122

and the initial conditions are included in the Supporting Information. To represent 123

experimental noise, we corrupt the observation data by a Gaussian noise with zero mean 124

and the standard deviation of σε = cµ, where µ is the mean of each observable over the 125

observation time window and c = 0− 0.1. 126

We start by inferring the dynamics using noiseless observations on two species 127

S5 − S6 only. These two species are the minimum number of observables we can use to 128

effectively infer all the parameters in the model. Figure S1 shows the noiseless 129

synthetically generated data by solving the system of ODEs in Eq. (4). We sample data 130

points within the time frame of 0− 10 minutes at random and use them for training of 131

the neural networks, where the neural network is informed by the the governing ODEs 132

of the yeast model as explained above. Figure S2 shows the inferred dynamics for all 133

the species predicted by the systems-informed neural networks, and plotted against the 134

exact dynamics that are generated by solving the system of ODEs. We observe excellent 135

agreement between the inferred and exact dynamics within the training time window 136

0− 10 minutes. The neural networks learn the input data given by scattered 137

observations (shown by symbols in Fig. S2) and is able to infer the dynamics of other 138

species due to the constraints imposed by the system of ODEs. 139

Fig. 2. Glycolysis oscillator noisy observation data given to the algorithm for
parameter inference. Measurements are corrupted by a zero-mean Gaussian noise and
standard deviation of σ = 0.1µ. Only two observables S5 and S6 are considered and the
data are randomly sampled in the time window of 0− 10 minutes.

Next, we verify the robustness of the algorithm to noise. For that purpose, we 140

introduce Gaussian additive noise with zero mean and 10% standard deviation of the 141

observation mean to the observational data. The input training data are shown in 142

Fig. 2 for the same species (S5 − S6) as the observables, where similar to the previous 143

test, we sample random scattered data points in time. Results for the inferred dynamics 144

are shown in Fig. 3. The agreement between the inferred and exact dynamics is 145

excellent considering the relatively high level of noise in the training data. Interestingly, 146

the enforced equations in the loss function in Eq. (2) act as a constraint that can 147

effectively prevent the algorithm from overfitting the data (the noise is not overfitted as 148
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shown in Fig. 3). The advantage of encoding the equations here is their regularization 149

effect without using any additional L1 or L2 regularization. 150

Fig. 3. Glycolysis oscillator inferred dynamics from noisy measurements compared
with the exact solution. Predictions are performed on equally-spaced time instants in
the interval of 0− 10 minutes. The scattered observations are plotted using symbols for
the two observables S5 and S6. The exact data and the scattered observations are
computed by solving the system of ODEs given in Eq. (4).

Table 1. Parameter values for yeast glycolysis model and each corresponding inferred
values (the unit for each parameter is given in Table S1). Note that the standard
deviations are estimated using Eq. (3) as practical non-identifiablity analysis based on
the FIM.

Parameter Target Value
Inferred Value

(Noiseless Observations)
Inferred Value

(Noisy Observations)
Standard
Deviations

J0 2.5 2.51 2.45 0.3
k1 100 94.1 71.2 66.7
k2 6 2.54 2.42 36.5
k3 16 16.19 12.14 27.5
k4 100 97.3 94.2 188.2
k5 1.28 1.25 1.25 0.34
k6 12 12.39 12.55 6.1
k 1.8 1.78 1.89 7.4
κ 13 13.65 13.03 50.2
q 4 4.03 3.95 0.4
K1 0.52 0.533 0.558 0.1
ψ 0.1 0.095 0.103 0.47
N 1 2.12 2.19 5.0
A 4 3.97 4.59 3.7

Our main objective in this work, however, is to infer the unknown model parameters 151
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p. This can simply be achieved by training the neural networks for its parameters θ as 152

well as the model parameters using backpropagation. The results for the inferred model 153

parameters along with their target values are given in Table 1 for both test cases (i.e., 154

with and without noise in the observations). First thing to note is that the parameters 155

can be identified within a confidence interval. Estimation of the confidence intervals a 156

priori is the subject of structural identifiability analysis, which is not in the scope of 157

this work. Second, practical identifiability analysis can be performed to identify the 158

practically non-identifiable parameters based on the quality of the measurements and 159

the level of the noise. We have performed local sensitivity analysis by constructing the 160

Fisher Information Matrix (FIM) using Eq. (1) and the correlation matrix R derived 161

from the FIM. 162

The inferred parameters from both noiseless and noisy observations are in good 163

agreement with their target values. The most significant difference can be seen for the 164

parameters k2 and N (close to 100% difference). However, given that the glycolysis 165

system of Eq. (4) is identifiable (c.f. [19, 21] and Fig. S3), and the inferred dynamics 166

shown in Figs. S2 and 3 compare very well with the exact dynamics, the inferred 167

parameters are valid. We used Eq. (3) to estimate the standard deviations of the model 168

parameters. The σi estimates for the parameters are the lower bounds, and thus, may 169

not be informative here. Further, these estimates are derived based on a local sensitivity 170

analysis. A structural/practical identifiability analysis [9] or a bootstrapping approach 171

to obtain the parameter confidence intervals is probably more relevant here. 172

Using the FIM, we are able to construct the correlation matrix R for the parameters. 173

Nearly perfect correlations (|Rij | ≈ 1) suggest that the FIM is singular and the 174

correlated parameters may not be practically identifiable. For the glycolysis model, as 175

shown in Fig. S3, no perfect correlations can be found in R (except for the anti-diagonal 176

elements), which suggests that the model described by Eq. (4) is practically identifiable. 177

Cell apoptosis model 178

Although the glycolysis model is highly nonlinear and difficult to learn, we have shown 179

that its parameters can be identified. To investigate the performance of our algorithm 180

for non-identifiable systems, we study a cell apoptosis model, which is a core 181

sub-network of the signal transduction cascade regulating the programmed cell 182

death-against-survival phenotypic decision [22]. The equations defining the cell 183

apoptosis model and the values of the rate constants for the model are taken from [22] 184

and listed in Table S2 in the Supporting Information. 185

Although the model is derived using simple mass-action kinetics and its dynamics is 186

easy to learn with our algorithm, most of the parameters are not identifiable due to 187

both structural and practical non-identifiability. To infer the dynamics of this model, 188

we only use random samples of measurements collected for one observable (x4), where 189

we assume that the measurements are corrupted by a zero-mean Gaussian noise and 5% 190

standard deviation as shown in Fig. 4. Furthermore, it is possible to use different initial 191

conditions in order to produce different cell survival outcomes. The initial conditions for 192

all the species are given in the Supporting Information, while we use x7(0) = 2.9× 104 193

(molecules/cell) to model cell survival (see Fig. 4(top)) and x7(0) = 2.9× 103 194

(molecules/cell) to model cell death (see Fig. 4(bottom)). 195

Using the systems-informed neural networks and the noisy input data, we are able to 196

infer the dynamics of the system accurately as shown in Figs. S4 and 5. These results 197

show excellent agreement between the inferred and exact dynamics of the cell 198

survival/apoptosis models using one observable only. 199

We report the inferred parameters for the cell apoptosis model in Table 2, where we 200

have used noisy observations on x4 under two scenarios of cell death and survival for 201

comparison. The results show that only four parameters, namely k1, kd2, kd4, kd6 can be 202
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Fig. 4. Cell apoptosis noisy observation data given to the algorithm for parameter
inference. Measurements are corrupted by a zero-mean Gaussian noise and standard
deviation of σ = 0.05µ. Data for the observable x4 only are randomly sampled during
the time window of 0− 40 hours for two scenarios: (top) cell survival and (bottom) cell
death.

identified with relatively high accuracy using the cell survival data, while with cell 203

death data, only two parameters kd2, kd4 can be identified. We observe that the 204

standard deviations for some of the parameter estimates are extremely large (e.g., for 205

kd1, kd3), but are always finite. Thus, the standard deviations estimated using the FIM 206

are not informative in practical identifiability analysis. 207

Table 2. Parameter values for cell apoptosis model and their corresponding inferred
values (the unit for each parameter is given in Table S2). Note that the standard
deviations are estimated using Eq. (3) as practical identifiability analysis using the
Fisher Information Matrix.

Cell Survival Cell Death

Parameter Target Value Inferred Value
Standard
Deviation Inferred Value

Standard
Deviation

k1 2.67× 10−9 0.98× 10−9 1.4× 10−5 0.25× 10−9 8.0× 10−5

kd1 1× 10−2 1.42× 10−4 79.7 3.03× 10−9 396.6
kd2 8× 10−3 6.29× 10−3 11.6 1.56× 10−3 107.4
k3 6.8× 10−8 0.13× 10−8 2.7× 10−4 0.14× 10−8 8.7× 10−4

kd3 5× 10−2 4.36× 10−5 168.0 1.6× 10−4 675.7
kd4 1× 10−3 0.92× 10−3 0.48 0.82× 10−3 3.9
k5 7× 10−5 1.93× 10−7 0.58 4.12× 10−4 1.3
kd5 1.67× 10−5 6.67× 10−11 0.16 5.55× 10−11 32.1
kd6 1.67× 10−4 1.36× 10−4 8.1× 10−5 6.05× 10−11 3.7× 10−4

To have a better picture of the practical identifiability analysis, we have plotted the 208

correlation matrix R in Fig. S5. We observe perfect correlations |Rij | ≈ 1 between 209

some parameters. Specifically, parameters k1 − kd1, and k3 − kd3 have correlations 210

above 0.99 for cell survival model, which suggests that these parameters may not be 211
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Fig. 5. Cell apoptosis inferred dynamics from noisy observations compared with the
exact solution. Predictions are performed on equally-spaced time instants in the interval
of 0− 40 hours. The scattered observations are plotted using symbols only for the
observable x4. The exact data and the scattered observations are computed by solving
the system of ODEs given in Eq. (5).

identified. This is generally in agreement with the parameter inference results in Table 212

2 with some exceptions. Our parameter inference algorithm suggests that k1 is 213

identifiable, whereas kd1 is not for the cell survival model. Thus, in order to increase the 214

power of the practical identifiability analysis and to complement the correlation matrix, 215

we have computed the FIM null eigenvectors and for each eigenvector we identified the 216

most dominant coefficients, which are plotted in Fig. S6. We observe that there are 217

three and five null eigenvectors associated with the zero eigenvalues of the FIM for the 218

cell survival and cell death models, respectively. The most dominant coefficient in each 219

null eigenvector is associated with a parameter that can be considered as practically 220

non-identifiable. These parameters include kd1, kd3, k5 for the cell survival model, which 221

agree well with the results of our algorithm. On the contrary, our algorithm suggests 222

that parameters k3, kd5 are not identifiable, whereas the above analysis has not been 223

able to tag these parameters correctly. This could be due to the fact that they are 224

structurally non-identifiable parameters due to issues related to the model itself such as 225

redundancy in the equations. Similar analysis can be done for the cell death model for 226

which our algorithm only identifies two parameters namely kd2, kd4. 227

Ultradian endocrine model 228

The final test case for assessing the performance of the proposed algorithm is to infer 229

parameters of the ultradian model for glucose-insulin interaction. We use a relatively 230
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simple ultradian model [23] with 6 state variables and 30 parameters. This is a minimal 231

model developed in a non-pathophysiologic context and represents relatively simple 232

physiologic mechanics. 233

In the ultradian model, the primary state variables are the glucose concentration G, 234

the plasma insulin concentration Ip, and the interstitial insulin concentration Ii, which 235

are appended with a three stage filter (h1, h2, h3) that reflects the response of the 236

plasma insulin to glucose levels [23]. The resulting system of ODEs, the nominal values 237

for the parameters of the ultradian model along with the initial conditions for the 6 238

state variables are given in the Supporting Information. 239

Fig. 6. Ultradian glucose-insulin model observation data given to the algorithm for
parameter inference. Noiseless measurements on glucose level (G) only are randomly
sampled in the time window of 0− 1800 minutes (∼ one day).

The nutritional driver IG(t) is the systematic forcing of the model that represents 240

the external sources of glucose from nutritional intake. Although the nutritional intake 241

(modeled by the N discrete nutrition events) is required to be defined and properly 242

recorded by the patients, it is not always accurately recorded or may contain missing 243

values. Therefore, it would be useful to employ systems-informed neural networks to not 244

only infer the model parameters given the nutrition events, but also to assume that the 245

intake is unknown (hidden forcing) and infer the nutritional driver in Eq. (7)f as well. 246

Model parameter inference given the nutrition events 247

We consider an exponential decay functional form for the nutritional intake 248

IG(t) =
∑N
j=1mjk exp(k(tj − t)), where the decay constant k is the only unknown 249

parameter and three nutrition events are given by 250

(tj ,mj) = [(300, 60) (650, 40) (1100, 50)] (min, g) pairs. The only observable is the 251

glucose level measurements shown in Fig. 6 (generated here synthetically by solving the 252

system of ODEs), which are sampled randomly to train the neural networks for the time 253

window of 0− 1800 minutes. 254

For the first test case, we set the parameters Vp, Vi, Vg to their nominal values and 255

infer the rest of the parameters. The inferred values are given in Table S4 (column Test 256

1), where we observe good agreement between the target and inferred values. For the 257

second test, we infer the values of Vp, Vi, while we set Vg = 10 lit. This is because one 258

of these three volumes cannot be identified uniquely, and we choose to keep Vg fixed. 259

Note that giving Vg a generic value will not change the inferred dynamics as other 260

parameters will be adjusted by the algorithm to fit the observations and satisfy the 261

equations. For example, as given in Table S4 (column Test 2), the nominal value of the 262

product (C5Vp) in Eq. (7)d is 78 whereas the inferred value of this product given by the 263

algorithm is 77.8. 264
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Using the inferred parameters of the system of ODEs, we are able to solve the 265

equations for unseen time instants. We perform forecasting for the second test case after 266

training the algorithm using the glucose data in the time interval of t = 0− 1800 min 267

and inferring the model parameters. Next, we consider that there is a nutrition event at 268

time tj = 2000 min with carbohydrate intake of mj = 100 g. As shown in Fig. S7, we 269

are able to forecast with high accuracy the glucose-insulin dynamics, more specifically, 270

the glucose levels following the nutrition intake. 271

Model parameter inference with hidden nutrition events 272

As detailed in the following, one of the significant advantages of the systems-informed 273

neural network is its ability to infer the hidden systematic forcing in the model. For 274

example, in the glucose-insulin model, the nutritional driver IG is the forcing that we 275

aim to infer as well. Here, we use the glucose measurements to train the model for the 276

time interval t = 0− 1800 min shown in Fig. 6, while we assume that the nutritional 277

driver is additionally unknown (we include IG in the neural networks along with the 278

state variables). The algorithm is capable of inferring the dynamics of the model as well 279

as the systematic forcing IG as shown in Fig. S8. The neural networks have successfully 280

inferred IG indicating exactly when the nutrition events have occurred. However, its 281

functional form is complex and not as easily interpretable as the original exponential 282

decay function expressed by Eq. (7)f. 283

Note that the results in Fig. S7 are produced by solving the system of ODEs given 284

in Eq. (6) and Eq. (7), where the inferred parameters were used to reproduce the 285

dynamics (for t = 0− 1800 min) and perform forecasting (for t = 1800− 3000 min). In 286

Fig. S8, we have used the neural networks to reproduce the dynamics for the training 287

time interval. In order to perform forecasting, we need to estimate the parameters of 288

the nutritional intake written in the form of an exponential decay function. Using a 289

separate optimization algorithm (we use the Nelder-Mead simplex algorithm [24]) to 290

minimize the squared error between the exponential form of the IG and the neural 291

networks predictions, we are able to estimate the nutrition events pairs (tj ,mj) and the 292

exponential decay constant k. All the inferred parameters are given in Table S5. 293

Fig. 7. Ultradian glucose-insulin inferred dynamics and forecasting compared with the
exact solution. Predictions are performed on equally-spaced time instants in the interval
of 0− 3000 minutes. Note that the parameter k in the intake function IG as well as the
timing (tj) and carbohydrate content (mj) of each nutrition event are treated as
unknown and are estimated using the inferred dynamics by the neural networks for IG.
Given the inferred parameters and the exponential form of IG, we can accurately
forecast the glucose levels following the event at time t = 2000 min.

Having the nutrition events as well as all other unknown parameters estimated, we 294
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are able to solve the system of ODEs given in Eq. (6) and Eq. (7), where we are 295

interested to forecast the glucose levels for t = 1800− 3000 min assuming there has 296

been a nutritional intake of (tj ,mj) = (2000, 100). The predictions for the glucose G 297

and the nutritional driver IG are shown in Fig. 7, which show excellent agreement in 298

the forecasting of glucose levels. 299

Discussion 300

We presented a novel and simple to implement “systems-biology-informed” deep 301

learning algorithm that can reliably and accurately infer the hidden dynamics described 302

by a mathematical model in the form of a system of ODEs. The system of ODEs is 303

encoded into a plain “uninformed” deep neural networks and is enforced through 304

minimizing the loss function that includes the residuals of the ODEs. Enforcing the 305

equations in the loss function adds additional constraints in the learning process, which 306

leads to several advantages of the proposed algorithm: first, we are able to infer the 307

unknown parameters of the system of ODEs once the neural network is trained; second, 308

we can use a minimalistic amount of data on a few observables to infer the dynamics and 309

the unknown parameters; third, the enforcement of the equations adds a regularization 310

effect that makes the algorithm robust to noise (we have not used any other 311

regularization technique); and lastly, the measurements can be scattered, noisy and very 312

few. Although not pursued in this work, it is possible to separate the time instants at 313

which the data are collected from the time instants that we enforce the residuals. Hence, 314

we can have only few measurements and virtually an infinite number of time instants at 315

which we enforce the equations for the minimization of the loss function. 316

The problem of structural and practical non-identifiability (such as the one 317

encountered in the cell apoptosis model) is a long-standing problem in the field of 318

systems identification, and has been under extensive research. Our goal in this work 319

was not to propose a new identifiablity analysis method. However, we are able to use 320

the algorithm to detect the non-identifiable parameters that can guide us to redesign 321

the experiment, modify the model or collect additional measurements. Structural 322

non-identifiabilities originate from incomplete observation of the internal model states. 323

Our focus was mostly on practical identifiablity using local sensitivity analysis and the 324

FIM. Since a structural non-identifiability is independent of the accuracy of available 325

experimental data, it cannot be resolved by a refinement of existing measurements. One 326

way to resolve this issue is through increasing the number of observed species. 327

Conclusion 328

We have used three benchmark problems to assess the performance of the algorithm 329

including a highly nonlinear glycolysis model, a non-identifiable cell apoptosis model 330

and an ultradian glucose-insulin model for glucose forecasting based on the nutritional 331

intake. Given the system of ODEs and initial conditions of the state variables, the 332

algorithm is capable of accurately inferring the whole dynamics with one or a few 333

observables, where the unknown parameters are also inferred during the training 334

process. An important and very useful outcome of the algorithm is its ability to infer 335

the systematic forcing or driver in the model such as the nutritional intake in the 336

glucose-insulin model. 337
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S1 Fig. Glycolysis oscillator noiseless observation data given to the 339

algorithm for parameter inference. 340

S2 Fig. Glycolysis oscillator inferred dynamics compared with the exact 341

solution. 342

S3 Fig. Correlation matrix for the parameters of glycolysis model. 343

S4 Fig. Cell survival inferred dynamics from noisy observations compared 344

with the exact solution. 345

S5 Fig. Correlation matrix for the parameters of the cell apoptosis model. 346

S6 Fig. Fisher information matrix null eigenvectors of the cell apoptosis 347

model. 348

S7 Fig. Ultradian glucose-insulin inferred dynamics and forecasting 349

compared with the exact solution. 350

S8 Fig. Ultradian glucose-insulin inferred dynamics with hidden 351

nutritional driver. 352

S1 Table Full list of parameters for glycolytic oscillator model [19]. 353

S2 Table Full list of parameters for cell apoptosis model [22]. 354

S3 Table Full list of parameters for the ultradian glucose-insulin 355

model [25]. 356

S4 Table Parameter values for the ultradian glucose-insulin model and 357

their corresponding inferred values (units for the parameters are given in 358

Table S3). 359

S5 Table Parameter values for the ultradian glucose-insulin model and 360

their corresponding inferred values (units for the parameters are given in 361

Table S3). 362
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