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Abstract 

Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique 

capable of resolving both relative and absolute distances within and between structurally 

dynamic biomolecules. High instrument costs, and a lack of open-source hardware and 

acquisition software have limited smFRET’s broad application by non-specialists. Here, we 

present the smfBox, a cost-effective confocal smFRET platform, providing detailed build 

instructions, open-source acquisition software, and full validation, thereby democratising 

smFRET for the wider scientific community. 

Introduction 

FRET is a photophysical process which results in the transfer of excitation energy from a 

donor fluorophore to an acceptor chromophore1. The efficiency of this transfer process 

scales inversely with the sixth power of the distance between the two chromophores. 

Therefore, by measuring the FRET efficiency (e.g. by observing the emission of the two 

fluorophores under excitation of the donor), spatial information can be determined in the 3-

10 nm range, making FRET a ‘spectroscopic ruler’2 well matched to the dimensions of 

biomolecules such as nucleic acids and proteins3.  In ensemble measurements this can be 

used to detect on-off / relative distance changes such as binding and cleaving in bimolecular 

interactions, or conformational changes (e.g. opening and closing) in unimolecular 

processes. At the single-molecule level FRET is sensitive to heterogeneous subpopulations, 

can measure kinetics of processes at equilibrium4, and as demonstrated by a recent inter-

laboratory benchmarking study5, absolute FRET efficiencies can be used to infer precise 

distances for biomolecular structure determination6–11. Despite these advantages, smFRET 
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is currently rarely used outside specialist labs, largely due to the high costs of commercial 

instruments and lack of self-build, easy to use alternatives.  

Results and Discussion 

Here we present the smfBox12, a cost-effective confocal-based platform capable of 

measuring the FRET efficiency between dye pairs on freely diffusing single molecules, using 

variable alternating laser excitation (ALEX)13 for verification of correct dye stoichiometry and 

the determination of accurate FRET correction factors5,14,15. The smfBox (Fig. 1a,b) is 

constructed from readily-available optics and optomechanical components, replacing an 

expensive microscope body with machined aluminium, which forms a light-tight box housing 

the excitation dichroic, objective, lenses, and pinhole (see supplementary materials and 

online12 for the complete parts list, build and alignment protocols). When assembled, the 

smfBox is sufficiently light-tight to allow safe and effective operation under ambient light 

conditions, as a Class I laser product (eliminating the need for user laser-safety training). 

The smfBox can be operated with either customisable LabVIEW acquisition software, or a 

stand-alone user interface written in C++. Both versions of the software provide all the 

necessary functionality for setting up the microscope (alignment and focusing) and recording 

data (Fig. 1c). The raw data, comprising of photon arrival times and detector ID, are saved in 

the open-source photon-HDF5 data format16, and can subsequently be analysed either with 

the FRETBursts python module17 using the Jupyter Notebooks provided (Supplementary 

Materials 6 and12), or with the MATLAB package PAM18. 

The smfBox detects both donor and acceptor emission from single molecules freely diffusing 

through a confocal spot under alternating laser excitation (Fig. 1 d and e). Emission under 

green excitation is used to determine the FRET efficiency (Supplemental Equation 1), whilst 

the response to the red laser confirms the presence of an active acceptor on the molecule, 

and allows the calculation of the stoichiometry parameter (S - Supplemental Equation 2) and 

the other correction parameters required for accurate FRET determination (Supplemental 

Equations 3-5)5,13,15. The precise ALEX cycle of the smfBox can be fully customised, 

allowing for faster or slower cycles, periodic acceptor excitation (PAX)19, or an asymmetric 

ALEX scheme, which we show can reduce the width of FRET histograms, thereby increasing 

the resolution of different FRET species (see Supplementary Note 1). Furthermore, the 

design of the smfBox includes a 10:90 beam splitter in the excitation path, directing 

excitation light to a photodetector (Fig. 1a) to allow for precise monitoring of both laser 

powers in real time during the experiment, which can be saved into the HDF5 file. Our 

default optimal values of the laser powers, iris width, and ALEX cycle are provided for this 

setup (see online methods).  
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To test the performance of the smfBox we measured the FRET efficiencies of three DNA 

standards (Fig. 2a), which were recently characterised by multiple labs using a range of 

commercial and home-built microscopes5. Using the published correction procedures 

implemented in our open-source python analysis (Jupyter notebooks - see Supplementary 

Methods 6), we obtained data in excellent agreement with those from the other labs in the 

blind study. This provides both an excellent validation of the smfBox, but also a useful 

diagnostic for users to test their own builds of this instrument, as the successful reproduction 

of these data means that all hardware, acquisition and analysis software must be working 

correctly.  

 

Furthermore, we have demonstrated the capability of the smfBox to recover rates of 

molecular conformational dynamics, using DNA hairpins as a test system (Fig. 1b). DNA 

hairpins have been shown to interconvert between a closed and open state, with rates that 

are dependent on NaCl concentration20,21, within time scales accessible to smFRET 

experiments (see Supplementary Note 2). First, we reproduced data for a hairpin used in a 

recent study20, using the dynamic photon distribution analysis (dPDA)4 to determine opening 

and closing rates at a series of NaCl concentrations. Next, we analysed two further hairpins 

(Fig. 1c), identical in DNA sequence, but with a smaller and greater inter-fluorophore 

distance, to test the effects of the magnitude of FRET efficiency change, on the precision of 

the recovered kinetic parameters. As might be expected, the rates of interconversion for the 

hairpin with a higher FRET efficiency closed state could be determined more precisely, 

whereas analysis of the lower-FRET hairpin produced more variable results (Fig. 1d). In 

cases where the static (low-FRET and high-FRET) species have considerable overlap with 

each other (and therefore with the dynamic population) the dPDA model is less well 

constrained, leading to a greater variation in the values of recovered rates for a given 

sample size. These results have implications for the optimal positioning of FRET dyes when 

designing dynamic experiments.  

 

Whilst the microscope we describe is built for ALEX confocal smFRET, its modular design 

makes for easy expansion to a number of related techniques. Without any hardware 

adaptations, the smfBox is capable of fluorescence correlation spectroscopy (FCS – using a 

single continuous-wave laser) and fluorescence cross-correlation spectroscopy (FCCS – 

using both lasers). The addition of one or more pulsed lasers and time-correlated single-

photon counting (TCSPC) electronics will enable fluorescence lifetime correlation 

spectroscopy (FLCS) and pulsed-interleaved excitation (PIE) experiments22. The further 

addition of polarisation filters and two additional APDs would constitute a full multi-parameter 
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fluorescence detection (MFD) set up23. Furthermore, the addition of an XY-stage to the Z-

positioning stage already included would facilitate any number of imaging techniques by 

scanning the sample. A list of recommended components for such expanded applications 

can be found in Supplementary Note 3. 

 

To conclude, we have provided all necessary instructions and software required for the 

construction and operation of a cost-effective and open-source smFRET microscope with 

competitive capabilities12. We demonstrate the smfBox can determine absolute FRET 

efficiencies with the same accuracy as other instruments used by the community5, and can 

recover biomolecular  intercoversion kinetics in the range ~50-500 s-1, in agreement with 

previous studies20. Finally, we have experimentally assessed the ability to determine kinetic 

rates of interconversion using dPDA, for systems with differing magnitudes of FRET 

efficiency change, providing useful information for the design of dynamic smFRET 

experiments. 

 
 
Methods 

 

The smfBox 

Precise details of the construction and operation of the smfBox are described in the 

Supplementary Material and online12. Briefly; the smfBox alternates two lasers (515 nm – 52 

mW and 635 nm – 15 mW, Omicron LuxX plus, powers measured at the laser) by TTL-

controlled modulation of electronic shutters. The beams are coupled into a multi-mode fibre-

bundle before being collimated (10 mm) and cropped (5 mm), then directed into a custom 

built aluminium microscope body. A dichroic mirror (Chroma ZT532/640 rpc 3mm) directs the 

beam into an objective (Olympus UPLSAPO 60× NA = 1.35 oil immersion), and the same 

objective collects the emission, which is focussed onto a 20 μm pinhole and split (Chroma 

NC395323 – T640lpxr) to two avalanche photodiodes (SPCM-AQRH-14 and SPCM-NIR-14, 

Excelitas), where photon arrival times are recorded by a national instruments card (PCIe-

6353). 

 

Accurate FRET experiments 

Three duplex DNA constructs (referred to as 1a, 1b and 1c) labelled with Atto550 (donor) 

and Atto647N (acceptor), and were provided by the Hugel Lab as part of the blind, multi-lab 

FRET study5 (for sequences see Supplemental Methods 5). DNAs were diluted to 

approximately 100 pM in observation buffer 1 (20�mM MgCl2, 5�mM NaCl, 5�mM Tris, pH 

7.5), and ~50 �l placed on a coverslip passivated with 1 mg/ml BSA, and data were 
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acquired by the smfBox. Analysis was done in Anaconda 5.3.0, with Jupyter Notebooks 

using the FRETBursts python module17 (version 0.6.5), briefly: Background in each channel 

was estimated by means of an exponential fit of inter-photon delays. Bursts were identified 

using an all photon sliding window algorithm previously described17,24 with L=10 and F=45 

for both channels, and background was subtracted. Spectral cross talk factors were found by 

combining data from all standards and extracting bursts with a stoichiometry >0.95 as the 

donor only population and <0.175 for the acceptor only population to calculate α and δ. A 

dual channel burst search (DCBS) was then used to extract doubly labelled bursts from each 

30-minute acquisition, and used to find E and S with single Gaussian fits. 2D Gaussian 

positions of each data set were then plotted together and fitted to obtain γ and β. Corrected 

FRET efficiencies of all doubly labelled bursts were then obtained using all four accurate 

FRET parameters as previously described5. See Supplementary Methods 6 for more details. 

Jupyter Notebooks and hdf5 files are attached and can also be found on the smfBox github12 

 

Hairpin dynamics 

DNA hairpins were made from a self-complementary oligonucleotide labelled with Cy3B 

annealed to a short oligonucleotide with Atto647N at different positions (Supplementary 

Methods 5). Oligonucleotides were purchased from LGC Biosearch (UK), with internal amino 

modified–dT bases which were labelled with Cy3B and Atto647N NHS esters purchased 

from GE Healthcare (US) and ATTO-TEC (Germany) respectively. Labelled DNAs were 

purified via polyacrylamide gel electrophoresis and annealed in annealing buffer (50 mM 

NaCl, 10 mM Tris HCl, pH 7.5, 1 mM EDTA), by heating to 95 °C  (5 mins) followed by 

overnight cooling. Hairpins were then diluted to approximately 100 pM in Hairpin buffer (Tris 

50 mM pH 7.5, BSA 0.1 mg/ml, EDTA 1 mM, Glycerol 5%, DTT 1mM) with additional NaCl 

where specified, placed into a chamber made of two coverslips and a silicone gasket (to 

enable >2 hour acquisitions with no sample evaporation, therefore maintaining a constant 

salt concentration), and data were acquired by the smfBox. Data were analysed using the 

MATLAB software package PAM18. Bursts were selected using a sliding window dual 

channel burst search, with a 50 photon threshold and a 500 μs window size.  Doubly labelled 

bursts were selected between 0.2 and 0.85 S, bursts were cut into 0.5, 1, and 1.5 ms lengths. 

To access the precision of the kinetic parameters, acquisitions were split into subsets of 

2000 molecules before further analysis. Dynamic PDA4 was then used to fit a two state 

model to the data using the histogram library method. All hdf5 files for the hairpin 

experiments can be found on the smfBox github.12 
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Figure Legends 
 

Figure 1: The smfBox and smFRET. a: Schematic of the smfBox with parts labelled 

according to Supplementary Tables 1, 2 and 4. Lasers are collimated (L1), cropped (Iris) and 

steered by two mirrors (M1, M2) onto a 10:90 beam splitter (BS1). 10% of the beam is 

focused on to a photodiode for continuous power measurement and alternation cycle 

monitoring. 90% of the beam is directed via dichroic mirror 1 (DC1) to the objective. Light 
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from the back reflection is reflected by DC1 and BS1 onto a CCD camera for accurate 

focusing. Fluorescence emission from the sample passes through the excitation dichroic 

(DC1) and is focused onto a pinhole (P1) to remove out of focus light, before being split by 

colour (DC2) onto one of two avalanche photodiodes (APD0, APD1). b: 3D model of the 

completed smfBox, with the front panel of the microscope body removed. c: A flowchart of 

the smfBox platform showing the functionality of the acquisition software. d: Single 

molecules diffuse through a confocal volume (residence time ~1 ms) constructed by focusing 

the lasers into a near-diffraction-limited spot and using a pinhole to section the emission light 

in a thin focal plane. Lasers (515 nm and 638 nm) are alternated (20 kHz) to unsure multiple 

excitations of the donor and acceptor dyes for each molecule. e: A typical time trace for an 

smFRET experiment. Fluorescently-labelled molecules diffuse through the confocal volume 

emitting bursts of fluorescence. Individual photons generated by emission from the donor 

under donor excitation (DD – green) are recorded on APD0. APD1 records photons emitted 

by the acceptor either under donor excitation (DA – red) or direct acceptor excitation (AA – 

purple). f: 2D ES histogram showing uncorrected FRET efficiency (E*) and stoichiometry (S). 

Donor only molecules appear with low E* but high S, and acceptor only molecules appear 

with low S. Doubly labelled molecules appear with intermediate S. 

 

Figure 2: Experiments validating the smfBox a: Fully corrected FRET efficiency histograms 

of three doubly-labelled DNA standards (1a, 1b and 1c, cartoons with dye accessible 

volumes) measured using the smfBox (grey). Vertical black lines and curves show Gaussian 

fits of our data,  E=0.17±0.07, E=0.57±0.1, E=0.77± 0.07 (mean ± sd) , compared to the 

results from 20 other labs as part of a multi-lab benchmarking study5 (red crosses). b: 

Proximity ratio (uncorrected FRET efficiency) histograms of a DNA hairpin at indicated salt 

concentrations. c: Salt dependent rates for hairpin opening (kopen) and closing (kclose) 

determined by dynamic photon distribution analysis (dPDA)4. d: Proximity ratio histograms of 

High-, Mid- and Low-FRET hairpins (at 400 mM NaCl). Data (grey) were fit using dPDA 

(black) to a two-state model, comprising a closed population (blue), open population (orange) 

and interconverting dynamic population (yellow). e: Plot of rates determined from dPDA of 

nine data sets for each hairpin, each containing 2000 molecules, quoting the mean and 

standard deviation across the data sets, with the mean chi-squared of the fits plotted to the 

right. 
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