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Abstract: 
The human proteome is a major source of therapeutic targets. Recent genetic association 

analyses of the plasma proteome enable systematic evaluation of the causal consequences 

of variation in plasma protein levels. Here, we estimated the effects of 1002 proteins on 225 

phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 

associations supported by evidence from MR, 130 (31.5%) were not supported by results of 

colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium 

(LD) is widespread in naive phenome-wide association studies of proteins. Combining MR 

and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects 

between 65 proteins and 52 disease-related phenotypes (www.epigraphdb.org/pqtl/). 

Evaluation of data from historic drug development programmes showed that target-

indication pairs with MR and colocalization support were more likely to be approved, 

evidencing the value of our approach in identifying and prioritising potential therapeutic 

targets. 
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Despite increasing investment in research and development (R&D) in the pharmaceutical 

industry 
1
, the rate of success for novel drugs continues to fall 

2
. Lower success rates make 

new therapeutics more expensive, reducing availability of effective medicines and 

increasing healthcare costs. Indeed, only one in ten targets taken into clinical trials reaches 

approval 
2
, with many showing lack of efficacy (~50%) or adverse safety profiles (~25%) in 

late stage clinical trials after many years of development 
3 4

. For some diseases, such as 

Alzheimer’s disease, the failure rates are even higher 
5
.  

 

Thus, early approaches to prioritize target-indication pairs that are more likely to be 

successful are much needed. It has previously been shown that target-indication pairs for 

which genetic associations link the target gene to related phenotypes are more likely to 

reach approval
6
. Consequently, systematically evaluating the genetic evidence in support of 

potential target-indication pairs is a potential strategy to prioritise development 

programmes. While systematic genetic studies have evaluated the putative causal role of 

both methylome and transcriptome on diseases 
7
 

8
, studies of the direct relevance of the 

proteome are in their infancy 
9
 
10

. 

 

Plasma proteins play key roles in a range of biological processes, are frequently 

dysregulated in disease, and represent a major source of druggable targets 
11

 
12

 
13 14

. 

Recently published genome-wide association studies (GWAS) of plasma proteins have 

identified 3606 conditionally independent single nucleotide polymorphisms (SNPs) 

associated with 2656 proteins (‘protein quantitative trait loci’, pQTL) in more than 1000 

participants 
9 15 16 17 18

. 
 
These genetic associations offer the opportunity to systematically 

test the causal effects of a large number of potential drug targets on the human disease 

phenome through Mendelian randomization (MR) 
19

. In essence, MR exploits the random 

allocation of genetic variants at conception and their associations with disease risk factors 

to uncover causal relationships between human phenotypes 
20, and has been described in 

detail previously 
21

 
22

.  

 

For MR analyses of molecular phenotypes such as proteins, unlike more complex exposures, 

an intuitive way to categorise protein-associated variants is into cis-acting pQTLs located in 

the vicinity of the encoding gene (defined as ≤ 500kb from the leading pQTL of the test 

protein in this study) and trans-acting pQTLs located outside this window. The cis-acting 

pQTLs are considered to have a higher biological prior and have been widely employed in 

relation to some phenome-wide scans of drug targets such as CETP 
23

, HMGCR 
12

, PLA2G7 
24

 

and IL6R 
25

 
26

. Trans-acting pQTLs may operate via indirect mechanisms and are therefore 

more likely to be pleiotropic 
27

 
28

. However, non-pleiotropic trans-acting pQTLs may increase 

the reliability of the protein-phenotype associations.  

 

Here, we pool and cross-validate pQTLs from five recently published GWAS and use them as 

instruments to systematically evaluate the potential causal role of 968 plasma proteins on 

the human phenome, including 153 diseases and 72 risk factors available in the MR-Base 

database 
29

. Results of all analyses are available in an open online database 

(www.epigraphdb.org/pqtl/), with a graphical interface to enable rapid and systematic 

queries. 
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Results 
Characterising genetic instruments for proteins 
Figure 1 summarises the genetic instrument selection and validation process. We curated 

3606 pQTLs associated with 2656 proteins from five GWAS 
9 15 16 17 18

. After removing 

proteins and SNPs in the major histocompatibility complex (MHC) region due to the complex 

LD structure of this region and performing strict LD clumping (r
2
<0.001 for SNPs in 10Mb 

window), we retained 2113 pQTLs associated with 1699 proteins and considered them as 

genetic instruments for the MR analysis (Online Methods: Instrument selection; instruments 

listed in Supplementary Table 1). Of these, 1062 of the 2113 instruments were identified in 

multiple studies (e.g. pQTLs from SOMAscan in Sun et al. 
9
 and pQTLs from OLINK in 

Folkersen et al.
16

) and the remaining 1051 pQTLs were only identified in one study. By 

testing the heterogeneity of the pQTLs effect across studies (Online Methods: Consistency 

test estimating instrument heterogeneity across studies), we found that the SNP effects of 

each of the pQTLs were similar across studies (78.5% of the pQTLs showed little evidence of 

heterogeneity) and effects of all pQTLs were also in high correlation across studies 

(Supplementary Figure 1 and 2; Supplementary Table 2). The proportion of cis and trans 

instruments in the two major platforms, SOMAscan and OLINK, were similar (SOMAscan: 

38.1% cis and 61.9% trans instruments; OLINK: 44.8% cis and 55.2% trans instruments; 

Supplementary Table 1).  

 

We then conducted a validation process in which we categorised the instruments into three 

tiers based on their likely utility for MR analysis (Online Methods: Instrument validation). In 

summary, we curated 1064 instruments for 955 proteins with the highest relative level of 

reliability (tier 1, Supplementary Table 1), 62 instruments which exhibited SNP effect 

heterogeneity across studies (where we could test it), indicating uncertainty in the reliability 

of one or all instruments (tier 2, Supplementary Table 1 and 3), and 987 non-specific 

instruments which were associated with more than five proteins (tier 3, Supplementary 

Table 1). For the 263 tier 1 instruments associated with between two and five proteins, we 

aimed to distinguish between vertical and horizontal pleiotropy of these instruments by 

integrating protein-protein interaction (PPI) and pathway information (Online methods: 

Distinguishing vertical and horizontal pleiotropic instruments using biological pathway data). 

68 instruments influenced multiple proteins in the same biological pathway (Supplementary 

Table 1), and thus are likely to reflect vertical pleiotropy and remain valid instruments since 

they do not violate the ‘exclusion restriction’ assumptions of MR 
22 27

.  

 

Amongst the 1126 tier 1 and 2 instruments, 783 (69.5%) were cis-acting (within 500kb of the 

leading pQTL) and 343 were trans-acting. Of 1002 proteins with a valid instrument, 765 had 

only a single cis or trans instrument. 66 were influenced by both cis and trans SNPs 

(Supplementary Table 4) and 153 had multiple independent cis instruments (381 cis 

instruments showed in Supplementary Table 5).  

 
Estimated effects of plasma proteins on human phenotypes  
We undertook two-sample MR to systematically evaluate evidence for the causal effects of 

1002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 disease 

related risk factors (Supplementary Table 6, Online Methods: Phenotype selection). As cis-

pQTLs were considered to have a higher biological prior for a direct and specific impact of 

the SNP upon the protein (compared to trans pQTLs), we grouped the MR analyses based on 
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whether the instruments were acting in cis or trans. Overall, we observed 413 protein-trait 

associations with MR evidence (P< 3.5x10
-7 at a Bonferroni-corrected threshold) using either 

cis or trans instruments (or both for proteins with multiple instruments). 

 

Genetically predicted associations between proteins and phenotypes may indicate causality 

(the protein causally influences the phenotype); reverse causality (genetic liability to a 

disease influences the protein); confounding by LD between the leading SNPs for proteins 

and phenotypes, or horizontal pleiotropy (the protein-phenotype association is not 

mediated by the target protein, but the dual associations are a result of two distinct 

biological phenomena) (Supplementary Figure 3). Given these alternative explanations, we 

conducted a set of sensitivity analyses designed to increase confidence that the MR 

association reflects a causal effect of the protein on the phenotype: tests of reverse 

causality using bi-directional MR 
30 and MR Steiger filtering 31 32; heterogeneity analyses for 

proteins with multiple instruments 
33

, and colocalization analysis 
34

 to investigate whether 

the genetic associations with both protein and phenotype shared the same causal variant 

(Figure 1). To avoid unreliable inference from colocalization analysis due to the potential 

presence of multiple neighbouring association signals, we also developed and performed 

pair-wise conditional and colocalization analysis (PWCoCo) of all conditionally independent 

instruments against all conditionally independent association signals for the outcome 

phenotypes (Online methods: Pair-wise conditional and colocalization analysis; Figure 2). 

 

Estimating protein effects on human phenotypes using cis pQTLs 
In the cis-pQTL MR analyses, we identified 111 putatively causal effects of 65 proteins on 52 

phenotypes (Figure 3, Supplementary Table 7), with strong evidence of MR (P< 3.5x10
-7

) 

and colocalization (posterior probability>80%; after applying PWCoCo) between the protein- 

and phenotype-associated signals. A further 69 potential associations had evidence from 

MR but did not have strong evidence of colocalization (posterior probability<80%; 

Supplementary Table 8), highlighting the potential for confounding by LD and the 

importance of colocalization analyses as a follow-up strategy in MR of proteins. Evidence of 

potentially causal effects supported by colocalization was identified across a range of 

disease categories including anthropometric and respiratory phenotypes, as well as 

cardiovascular and autoimmune diseases (Supplementary Table 7; Supplementary Note 1) 

and our findings replicated some previous reported associations (Supplementary Note 2). 

 

Of 437 proteins with tier 1 or tier 2 cis instruments from Sun
9
 and Folkersen et al.

16
, 153 

(35%) had multiple conditionally independent SNPs in the cis region identified by GCTA-

COJO 35 (Online methods: Instruments selection; conditional signals in Supplementary Table 

5). We applied an MR model which takes into account the LD structure between 

conditionally independent SNPs in these cis regions 
36

 
37

. In this analysis, we identified 10 

additional associations, which had not reached our Bonferroni corrected P-value threshold 

in the single variant cis analysis (Supplementary Table 9A). Generally, the MR estimates 

from the multi-cis MR analyses were consistent with the single-cis instrumented analyses 

(Supplementary Table 9B).  

 

In regions with multiple cis instruments, 16 of the 111 top cis MR associations only showed 

evidence of colocalization after conducting PWCoCo analysis for both the proteins and the 

human phenotypes (Supplementary Table 7). For example, interleukin 23 receptor (IL23R) 
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had two conditionally independent cis instruments: rs11581607 and rs3762318 
9
. 

Conventional MR analysis combining both instruments showed a strong association of IL23R 

with Crohn’s disease (OR=3.22, 95%CI= 2.93 to 3.53, P=6.93x10
-131

; Supplementary Table 

9B). In addition, there were 4 conditionally independent signals (conditional P value<1x10
-7

) 

predicted for Crohn’s disease in the same region (Crohn’s disease data from de Lange et al 
38

). In the marginal colocalization analyses, we observed no evidence of colocalization 

(Figure 4 and Supplementary Figure 4, colocalization probability=0). After performing 

PWCoCo with each distinct signal in an iterative fashion, we observed compelling evidence 

of colocalization between IL23R and Crohn’s disease for the top IL23R signal (rs11581607) 

(Figure 4, colocalization probability=99.3%), but limited evidence for the second 

conditionally independent IL23R hit (rs7528804) (colocalization probability = 62.9%). 

Additionally, for haptoglobin, which showed MR evidence for LDL-cholesterol (LDL-C), there 

were two independent cis instruments. There was little evidence of colocalization between 

the two using marginal associations (colocalization probability=0.0%). However, upon 

performing PWCoCo, we observed strong evidence of colocalization for both instruments 

(colocalization probabilities = 99%; Supplementary Table 10; Supplementary Figure 5). Both 

examples demonstrate the complexity of the associations in regions with multiple 

independent signals and the importance of applying appropriate colocalization methods in 

these regions. Of the 413 associations with MR evidence (using cis and trans instruments), 

283 (68.5%) also showed strong evidence of colocalization using either a traditional 

colocalization approach (260 associations) or after applying PWCoCo (23 associations), 

suggesting that one third of the MR findings could be driven by genetic confounding by LD 

between pQTLs and other causal SNPs. 

 

Due to potential epitope-binding artefacts driven by protein-altering variants, some of the 

cis instruments could be artefactual 
39

. We therefore conducted a sensitivity MR analysis 

that excluded 122 tier 1 or tier 2 cis instruments that are in the coding region or in LD 

(r
2
>0.8) with genetic variants in the coding region (Supplementary Table 7 and 8, filtered by 

column “VEP” including missense, stop-lost/gained, start-lost/gained and splice-altering 

variants).  Of the 538 cis instruments for which we were still able to conduct an MR analysis 

after removing variants in the coding region, 77 protein-phenotype associations still had 

strong MR and colocalization evidence, suggesting that these are robust to epitope-binding 

artefacts. 

 

Using trans-pQTLs as additional instrument sources 
Trans pQTLs are more likely to influence targets though pleiotropic pathways. For example, 

among the 1316 trans instruments we identified from 5 studies, 73.5% were associated with 

more than 5 proteins, compared with 1.8 % of cis instruments (Supplementary Table 1). 

However, trans pQTLs that overlap disease associations can highlight previously 

unsuspected candidate proteins through which loci may influence disease risk 
9
. In a MR 

context, including non-pleiotropic trans-pQTLs may increase the reliability of the protein-

phenotype associations since (1) they will increase variance explained of the tested protein 

and increase power of the MR analysis; (2) the causal estimate will not be reliant on a single 

locus; and (3) further sensitivity analyses, such as heterogeneity test of MR estimates across 

multiple instruments, can be conducted. Therefore, we extended our MR analyses to 

include 343 trans instruments, where they were associated with fewer than 5 proteins. 192 
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of the 343 (56%) trans instruments were associated with just one protein or involved in a 

single biological pathway (Supplementary Figure 6B). 
 
We implemented two strategies to utilize trans instruments to increase power of identifying 

causal links between proteins and phenotypes. Firstly, we combined cis and trans 

instruments for 66 proteins that had both cis and trans instruments (noted as cis + trans 

analysis). However, none reached our pre-defined Bonferroni-corrected threshold, and only 

two protein-phenotype associations showed some weak evidence (P<1x10
-5

) 

(Supplementary Table 11). Secondly, we performed trans-only MR analyses of 293 proteins, 

and identified 158 associations with 44 phenotypes that also had strong evidence (posterior 

probability>0.8) of colocalization (Supplementary Table 12). A further 54 trans-only MR 

associations did not have strong evidence of colocalization (Supplementary Table 13).  

 

Some of the trans analyses with MR and colocalization evidence suggest causal pathways 

that are confirmed by evidence from rare pathogenic variants or existing therapies. For 

example, although we had no cis instrument for Protein C (Inactivator Of Coagulation 

Factors Va And VIIIa) (PROC) (Supplementary Figure 7A), we found strong evidence for a 

causal association between PROC levels and deep venous thrombosis (DVT) (P=1.27x10
-10

; 

colocalization probability>0.9) using a trans pQTL (rs867186; Supplementary Figure 7B), 

which is a missense variant in PROCR 
40

, the gene encoding the endothelial protein C 

receptor (EPCR). Patients with mutations in PROC have protein C deficiency, a condition 

characterised by recurrent venous thrombosis for which replacement protein C is an 

effective therapy. 

 

From 47 proteins with multiple trans instruments, we identified four additional MR 

associations, but none showed strong evidence of colocalization (Supplementary Table 13). 

Proteins with multiple trans instruments showed little evidence of heterogeneity, which is 

comparable to the multiple cis MR (Supplementary Table 14).  

 

Estimating protein effects on human phenotypes using pQTLs with heterogeneous 
effects across studies 
Among the 2113 selected instruments in Supplementary Table 1, we checked whether the 

same instrument was observed in other studies. We found 50.2% (1062) of the instruments 

(or proxy SNPs with r
2
>0.8) had association information in at least two studies 

(Supplementary Table 15). For these 1062 SNPs, we examined any differences in effect size 

between studies using the pair-wise Z test (where we defined a Z statistic greater than 5 as 

indicating evidence for heterogeneity). Of the 494 tier 1 or tier 2 instruments where we 

could test for heterogeneity across studies, we found that 62 (12.6%) showed evidence of 

difference in effect size across studies (so called Tier 2 instruments). Recognising that effect 

heterogeneity does not preclude identification of genuine causal effects, we performed MR 

analyses using the most significant SNP across studies and report the findings with caution. 

Some proteins that are targets of approved drugs were found to have potential causal 

effects in this analysis, such as interleukin-6 receptor (IL6R) on rheumatoid arthritis 
41, and 

coronary heart disease (CHD) 
25

 
26

 (Supplementary Table 16). Tocilizumab, a monoclonal 

antibody against IL6R, is used to treat rheumatoid arthritis, while canakinumab, a 

monoclonal antibody against interleukin-1 beta (an upstream inducer of interleukin-6), has 
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been shown to reduce cardiovascular events specifically among patients who showed 

reductions in interleukin-6 
42

. 

 

As another test of heterogeneity across studies, where the same protein was measured in 

two or more studies, we performed colocalization analysis of each pQTL (in one study) 

against the same pQTL (in another study) for the two studies in which we had access to full 

summary results (Sun et al. 
9 and Folkersen et al.

. 16
). Of the 41 proteins measured in both 

studies, 78 pQTLs could be tested using conventional colocalization and PWCoCo 

(Supplementary Table 15). We found weak evidence of colocalization for 51 pQTLs 

(posterior probability<0.8), which suggested either two different signals were present within 

the test region or the protein has a pQTL in one study but not in the other. In either case, as 

one of the two distinct signals may be genuine, we performed MR analysis of these 25 

pQTLs using instruments from each study separately. 8 associations had MR evidence but 

only one showed colocalization evidence (IL27 levels on human height; Supplementary 

Table 17).  

 
Orienting causal direction in protein-phenotype associations  
For potential associations between proteins and phenotypes identified in the previous 

analyses (single cis, cis + trans and trans-only analyses), we undertook two sensitivity 

analyses to highlight results due to reverse causation: bi-directional MR 
30

 and Steiger 

filtering 
31

 
32

 (Online Methods: Distinguishing causal effects from reverse causality). In 

general, we found no strong evidence of reverse causality for genetic predisposition to 

diseases on protein level changes, in either bi-directional MR analyses or Steiger filtering. Of 

360 associations to which we were able to apply the MR Steiger filtering analysis, only 57 

(15.8%) showed some evidence of reverse causality (i.e. effect from human phenotypes to 

proteins), with the majority of these being trans instruments (n=56) (Supplementary Note 3 

and Supplementary Data 1).  

 

Drug target prioritisation and repositioning using phenome-wide MR 
Recent MR studies highlight the value of hypothesis-free (“phenome-wide”) MR in building a 

comprehensive picture of the causal effects of risk factors on human phenotypes 
8
 

43
 

44
. 

Given that human proteins represent the major source of therapeutic targets, we sought to 

mine our results for targets of molecules already approved as treatments or in ongoing 

clinical development. We first compared MR findings for 1002 proteins against 225 

phenotypes with historic data on progression of target-indication pairs in Citeline’s 

PharmaProjects (downloaded on the 9
th

 of May 2018). Of 783 target-indication pairs with an 

instrument for the protein and association information for a phenotype similar to the 

indication for which the drug had been trialled, 9.2% (73 pairs) had successful (approved) 

drugs, 69.1% had failed drugs (including 195 drugs which in the clinical stage and 354 drugs 

failed in the preclinical stage) and 20.3% were for drugs still under development (161 pairs). 

The 268 pairs for successful (73) or failed (195) drugs (88 unique proteins and 66 unique 

phenotypes) were selected for further analyses (Supplementary Table 19). We observed 8 

target-indication pairs for successful drugs with positive MR and colocalization evidence 

(Supplementary Table 20). In addition to the PROC and IL6R examples discussed earlier, we 

found Proprotein convertase subtilisin/kexin type 9 (PCSK9) (target for evolocumab) for 

hypercholesterolemia and hyperlipidemia, Angiotensinogen (AGT) for hypertension, IL12B 

for psoriatic arthritis and psoriasis and TNF Receptor Superfamily Member 11a (TNFRSF11A) 
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for osteoporosis. Of 195 target indication pairs that had failed to gain approval after clinical 

trials for a variety of reasons, none had sufficient MR and colocalization evidence to reach 

our threshold. We further removed 75 target indication pairs which may upwardly bias the 

comparison between MR and drug trials from the 268 pairs (Online Methods: Drug target 

validation and repositioning) (Supplementary Table 21). The comparison using the 

remaining 193 pairs indicated that protein-phenotype associations with MR and 

colocalization evidence are more likely to be successful drugs (Table 1). Although we 

acknowledge the limited sample size of the test set, this does support the utility of pQTL MR 

analyses with colocalization as a source of target identification and prioritization.  

 

Previous efforts have highlighted the opportunity of using genetics for drug repositioning 
45

. 

We identified 3 approved drugs for which we found pQTL MR and colocalization evidence 

for 5 phenotypes other than the primary indication and 23 drug targets under development 

for 33 alternative phenotypes (Supplementary Table 22). For example, our phenome-wide 

MR analysis suggested that lifelong higher urokinase-type plasminogen activator (PLAU) 

levels are associated with lower inflammatory bowel disease (IBD) risk (OR=0.75, 95%CI= 

0.69 to 0.83, P= 1.28x10
-9

; Supplementary Figure 8), potentially identifying a repositioning 

opportunity for IBD. However, we note this opportunity with caution given the multitude of 

considerations in such a strategy. For example, the drug Kinlytic (urokinase) was initially 

developed for use as a thrombolytic in the treatment of acute myocardial infarction and 

ischaemic stroke, and thus a target-mediated adverse effect is an increase in bleeding and 

potential haemorrhage. In addition, the current agent is administered intravenously which 

precludes it as an option as a long-term preventative treatment. While our data suggest that 

Kinlytic might be protective in the aetiology of IBD, a careful risk benefit assessment would 

be required as part of an investigation into whether drugs targeting urokinase might be 

repurposed for the treatment of IBD.  

 

We also evaluated drugs in current clinical trials and identified 8 additional protein-

phenotype associations with MR and colocalization evidence. Examples include 

lipoprotein(a) (LPA) for blood lipids and angiopoietin like 3 (ANGPTL3) for blood lipids 

(Supplementary Table 23), for which we observe MR evidence implicating an increased 

likelihood of success.  

 

Finally, we compared the 1002 instrumentable proteins (i.e. those that passed our 

instrument selection procedure) against the druggable genome 
46

. 682 of the 1002 

instrumentable proteins overlapped with the druggable genome (all proteins: 68.1%; 

proteins with cis instruments: 72.6%; proteins with trans instruments: 60.1%; 

Supplementary Table 24 and Online Methods: Enrichment of proteome-wide MR with the 

druggable genome). A further enrichment analysis was conducted to assess the overlap 

between putative causal protein-phenotype associations and the druggable genome 

(Supplementary Table 25). Of the 295 top findings (120 proteins on 70 phenotypes) with 

both MR and colocalization evidence, 250 of them (87.7%) overlapped with the druggable 

genome (Figure 5 and Supplementary Table 25). Although the druggable genome is 

continuously evolving 
47

 
48

 
49

 
50

, this enrichment analysis reveals that MR findings for the 

tested bone diseases, cancers and psychiatric diseases are less represented in tier 1 of the 

druggable genome, in comparison with cardiovascular and immune-mediated diseases.  
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Discussion  

MR analysis of molecular phenotypes against disease phenotypes provides a promising 

opportunity to validate and prioritise novel or existing drug targets through prediction of 

efficacy and potential on-target beneficial or adverse effects 
51

 
52

 
53

. Our phenome-wide MR 

study of the plasma proteome employed five pQTL studies to robustly identify and validate 

genetic instruments for thousands of proteins. We used these instruments to evaluate the 

potential effects of modifying protein levels on hundreds of complex phenotypes available 

in MR-Base 
29 in a hypothesis-free approach 

19. We confirmed that protein-phenotype 

associations with both MR and colocalization evidence predicted a higher likelihood of a 

particular target-indication pair being successful and highlight 283 potentially causal 

associations (111 in the cis-only analysis). Collectively, we underline the important role of 

pQTL MR analyses as an evidence source to support drug discovery and development and 

highlight a number of key analytical approaches to support such inference.  

 

In particular, we note the distinct opportunities and requirements for MR of molecular 

phenotypes, such as proteins, compared to other complex exposures such as BMI 
54

. 

Particular features of such molecular exposures require a different approach. For example, 

the number of instruments is often limited, restricting the opportunity to apply recently 

developed pleiotropy robust approaches 
55

 
56

 
33

. New methods such as MR-robust adjusted 

profile scoring (MR-RAPS) 
57

 allow inclusion of many weak instruments in the MR analysis 

and have been applied to a recent proteome-wide MR study 
10

. However, we note some 

examples where inclusion of multiple weaker instruments can reduce power and yield 

different results to those based on cis instruments alone 
51

 
58

. A major advantage of 

proximal molecular exposures such as transcriptomics and proteomics is the ability to 

include cis instruments (or interpretable trans instruments) with high biological plausibility, 

limiting the likelihood of horizontal pleiotropy 
27

 
28

. However, undue focus on single SNP MR 

approaches brings susceptibility to other pitfalls 
22

. For example, our understanding of the 

effects of IL6R and PROC on the soluble protein levels is not enough to make strong 

inference of the direction of effects.  

 

To provide robust MR estimates for proteins, we note the important role of a number of 

sensitivity analyses following the initial MR in order to distinguish causal effects of proteins 

from those driven by horizontal pleiotropy, genetic confounding through LD 
22

 and/or 

reverse causation 
31 32. 

Of note, only two-thirds of our putative causal associations had 

strong evidence of colocalization, suggesting that a substantial proportion of the initial 

findings were likely to be driven by genetic confounding through LD between pQTLs and 

other disease-causal SNPs. To avoid misleading results, we suggest that for regions with 

multiple molecular trait QTLs, it is important to consider methods such as PWCoCo, which 

can avoid the assumptions of traditional colocalization approaches of just a single 

association signal per region 
59

. In the current study, application of PWCoCo identified 

evidence of colocalization for 23 additional protein-phenotype associations hidden to 

marginal colocalization 
59

. We note the proliferation of approaches to identify shared 

genetic effects between molecular phenotypes and disease 
60 63 64

, and that recent 

recommendations support the use of colocalization as a follow up analysis to reduce false 

positives 
63

 
64

.  
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An important limitation of this work is that protein levels are known to differ between cell 

types 
65

. In this study, we have estimated the role of protein measured in plasma on a range 

of complex human phenotypes but are unable to assess the relevance of protein levels in 

other tissues. Whilst eQTL studies highlight a large proportion of eQTLs being shared across 

tissues 
37

, there are many which show cell type and state specificity 
66

, highlighting the 

potential value of applying the current approach to data from proteomics analyses in other 

cell types and tissues. We also hypothesize that in instances with multiple conditionally 

distinct pQTLs, but where we observe colocalization of only certain conditionally distinct 

pQTL-phenotype pairs, that this may reflect underlying cell- and state-specific heterogeneity 

in bulk plasma pQTLs, among which only certain cell-types or states are causal 
67

. Although 

pQTL studies have not yet been performed as systematically across tissues or states as eQTL 

studies, it remains encouraging that our analyses using plasma proteins identify associations 

across a range of disease categories, including for psychiatric diseases for which we may 

expect key proteins to function primarily in the brain.  

 

Evaluating the potential of MR to inform drug target prioritisation, we demonstrated that 

the presence of pQTL MR and colocalization evidence for a target-indication pair predicts a 

higher likelihood of approval. One of the limitations of our approach is the lack of 

comprehensive coverage of genetic data for all phenotypes for which drugs are in 

development, as well as our inability to instrument the entire proteome through pQTLs. As 

such, ongoing expansions in the scale, diversity and availability of GWAS will be important in 

providing more precise estimates of the value of MR and colocalization in drug target 

prioritization and in enabling its broader application.  

 

Another potential limitation of our work is the presence of epitope-binding artefacts driven 

by coding variants that may yield artefactual cis pQTLs 
39

. In particular, such instances may 

lead to false negative conclusions where, in the presence of a silent missense variant 

causing an artefactual pQTL but with no actual effect on protein function or levels, we do 

not correctly instrument the target protein. In instances where the missense variant appears 

to be driving the association with the phenotype, we suggest that causal inference may 

remain valid but inference on direction of association is challenged. Finally, the limited 

coverage of the proteome afforded by current technologies, leaves the possibility of 

undetected pleiotropy of instruments. While cis-pQTLs are less likely to be prone to 

horizontal pleiotropy than trans-pQTLs, it is well known from studies of gene expression that 

cis variants can influence levels of multiple neighbouring genes and hence the same is likely 

to be true for proteins 
68

. Future larger GWAS of the plasma proteome are likely to uncover 

many more variant-protein associations, increasing the apparent pleiotropy of many pQTLs.  

 

Conclusion 

In conclusion, this study systematically identified 283 putatively causal effects between the 

plasma proteome and the human phenome using the principles of MR and colocalization. 

These observations support, but do not prove, causality, as potential horizontal pleiotropy 

remains an alternative explanation. Our study provides both an analytical framework and an 

open resource to prioritise potential new targets on the basis of MR evidence and a valuable 

resource for evaluation of both efficacy and repurposing opportunities by phenome-wide 

evaluation of on-target associations.  
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Online methods 
Instrument selection  

pQTLs from five GWAS (Sun et al., Emilsson et al., Suhre et al., Folkersen et al. and Yao et al.) 
9
 

15 16 17 18
 were used for the instrument selection (Figure 1). We first mapped SNPs to 

genome build GRCh37.p13 coordinates and then used the following criteria to select 

instruments:  

• We selected SNPs that were associated with any protein (using a P value threshold 

≤5x10
-8

) in at least one of the five studies, including both cis and trans pQTLs.  

• Due to the complex LD structure of SNPs within the human Major Histocompatibility 

Complex (MHC) region, we removed SNPs and proteins coded for by genes within 

the MHC region (chr6: from 26Mb to 34Mb).  

• We then conducted linkage disequilibrium (LD) clumping for the instruments with 

the TwoSampleMR R package 
29

 to identify independent pQTLs for each protein. We 

used r
2
 < 0.001 as the threshold to exclude dependent pQTLs in the cis (or trans) 

gene region. 

 
After instrument selection, 2113 instruments were kept for further instrument validation 

(Supplementary Table 1).  The instrument selection process, and the number of instruments 

for proteins at each step in the process, is illustrated in Figure 1. 

 

We incorporated conditionally distinct signals from protein association data through 

systematic conditional analysis. Of the 5 studies, Sun et al. reported conditionally distinct 

results for both cis and trans pQTLs, which have been used in our study. Folkersen et al. 

have shared summary statistics, with which we performed approximate conditional analyses 

ourselves using GCTA-COJO 
35

, with genotype data from mothers in the Avon Longitudinal 

Study of Parents and Children (ALSPAC) as the LD reference panel 
69 70

 (a description of the 

ALSPAC cohort can be found in Supplementary Note 6). Conditionally independent signals in 

the cis region for Sun and Folkersen et al. were reported in Supplementary Table 5. The 

other studies have no summary statistics available or insufficient SNP density for conditional 

analysis. 

 

Instrument validation 

For the 2113 instruments, we further classified them into three groups (noted as tier 1, tier 

2 and tier 3 instruments) using two major instrument filtering steps: a pleiotropy test and a 

consistency test. More details of instrument validation, including harmonization of proteins 

and instruments and statistical tests for consistency can be found in Supplementary Note 5. 

 

Test estimating instrument specificity 
Absence of horizontal pleiotropy is one of the core assumptions for MR. This assumes that 

the genetic variant should only be related to the outcome of interest through the 

instrumented exposure. We noted that some SNPs were associated with more than one 

protein. For example, APOE SNP rs7412 is associated with a set of proteins such as ADAM11, 

APBB2 and APOB. We plotted a histogram of the number of proteins each instrument was 

associated with (Supplementary Figure 6) and considered instruments associated with more 

than 5 proteins as highly pleiotropic and assigned them as Tier 3 instruments (which were 

excluded from all analyses). For instruments associated with fewer than (or equal to) 5 

proteins, we reported the number of proteins each of them (and their proxies with LD r
2
>0.5) 
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was associated with to indicate the level of potential pleiotropy. To further distinguish 

vertical and horizontal pleiotropy for these instruments, we used biological pathway 

information from Reactome (https://reactome.org/) and protein-protein interaction 

information from STRING DB (https://string-db.org/) implemented in EpiGraphDB 

(www.epigraphdb.org).  

 

Distinguishing vertical and horizontal pleiotropic instruments using biological 
pathway data  
Non-specific instruments may exhibit vertical pleiotropy (pQTL associated with proteins on 

the same pathway) or horizontal pleiotropy (pQTL associated with proteins on different 

pathways). Vertical pleiotropy does not violate the “exclusion restriction criterion” of MR 

but horizontal pleiotropy does 
22

 
27

. For any instrument associated with multiple proteins, if 

these proteins are mapped to the same biological pathway and/or a protein-protein 

interaction (PPI) exists between them, then, by definition, the instrument is more likely to 

act through vertical pleiotropy and it is more likely to be a valid instrument for MR. 

Consequently, as an approach to distinguish vertical from horizontal pleiotropy, we checked 

the number of pathways and PPIs each protein is involved in for all the instruments 

associated with 2 to 5 proteins. We used EpiGraphDB (http://www.epigraphdb.org) to 

extract the most specific (lowest level) pathway information related to each protein from 

Reactome 
71 72

 and high confidence PPIs from StringDB (confidence score >0.7) 
73 74

. First, we 

systematically evaluated the number of pathways each protein is involved in (either directly 

or as part of a complex), and how many PPIs they have. Note, that although the original 

databases are curated, we may expect some missing information. We further evaluated how 

many pathways and PPIs are shared between groups of proteins that are associated with 

the same SNP or SNPs in strong LD (r
2
>0.8). The number of shared components for each 

group of proteins is presented in Supplementary Table 1, and Supplementary Data 2 

depicts a detailed comparison within each group using Venn diagrams. 

 

After this analysis, 68 instruments associated with multiple proteins were mapped to the 

same pathway (or same PPI), and were considered as valid instruments. Given there are 

other pathways and PPIs that may be not included in Reactome and STRING, we kept tier 1 

and 2 instruments associated with 1 to 5 proteins for the main MR analysis, but we recorded 

the number of proteins and number of pathways these instruments are associated with as 

an indication of potential pleiotropy. 

 
Consistency test estimating instrument heterogeneity across studies 
We pooled pQTLs from 5 studies, which have employed different proteomics arrays. The 

two main assays were the SOMAscan aptamer-based multiplex protein array 
75

 and the 

OLINK ProSeek CVD array 
76

. The SOMAscan platform is based on the technology called Slow 

Off-rate Modified Aptamer (SOMAmer), for which reagents consist of a short single-

stranded DNA sequence that incorporates a series of modifications that give the SOMAmer 

“protein-like” appendages. The OLINK ProSeek method is based on the highly sensitive and 

specific proximity extension array, which involves the binding of distinct polyclonal 

oligonucleotide-labelled antibodies to the target protein followed by quantification by real-

time quantitative PCR. We noted some examples where SNPs were reported to be 

associated with a protein in one study but did not reach the genome-wide p-value threshold 

for statistical significance in other studies including the same protein. In these instances, we 
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investigated whether this reflected no statistical evidence of association (in which case, this 

inconsistency may indicate potentially artefactual associations) or simply fluctuation of 

association strength with directionally consistent signals in both studies (which would 

provide supporting evidence for an instrument). Among the 2113 pQTLs selected as 

instruments, we looked up available protein GWAS results (Sun et al., Suhre et al. and 

Folkersen et al. with full GWAS summary statistics; Yao et al and Emilsson et al with pQTLs 

only) and found 1062 pQTLs (or proxies with r2>0.8) with association information in at least 

two studies (Supplementary Table 15). We then tested the beta-beta correlation using the 

Pearson correlation function in R. The results of the beta-beta correlations of SNP effects for 

each pair of studies and the number of SNPs included in each correlation analysis can be 

found in Supplementary Table 2. More details of the consistency test can be found in 

Supplementary Note 5.   

 

We performed two consistency tests on the instruments which were present across studies. 

The first consistency test was a heterogeneity test using a pair-wise Z statistic to investigate 

whether there was statistical evidence of heterogeneity between effect sizes in different 

studies (for all pQTL studies included in our analysis where: 1) effect sizes were always in SD 

unit; 2) using similar sets of covariates). If the Z score was greater than 5 (equal to a P value 

of 0.001), we considered the instrument to have strong evidence of heterogeneity indicating 

inconsistency of effect sizes between studies. The second consistency test was a 

colocalization analysis, which estimates the posterior probability (PP) of the same protein 

measured in different studies sharing the same causal pQTL within a 1Mb window around 

the pQTL with the smallest P value. The default priors for colocalization analysis were used 

here (the prior probability a SNP is associated with the protein is 1x10
-4

; the prior probability 

a SNP is associated with the human phenotype is 1x10
-4

; and the prior probability a SNP is 

associated with both the protein and the phenotype is 1x10
-5

). We also applied the pair-wise 

conditional and colocalization analysis (PWCoCo) for regions with multiple pQTLs to avoid 

the assumptions of traditional colocalization approaches of just a single association signal 

per region (details in Online methods: Pair-wise conditional and colocalization analysis). A 

lack of evidence (i.e. PP<Y80%) in the conventional colocalization and PWCoCo analysis 

would suggest that the pQTL reported in the two studies did not share the same causal 

signals within the region, therefore are not consistent between the studies.  The 

colocalization analysis was conducted using the “coloc” R package 
34

. For instruments with 

SNP association information in both Sun et al and Folkersen et al, we were able to conduct 

colocalization analysis. However, due to lack of sufficient SNP coverage, it was not possible 

to conduct colocalization analysis to compare the pQTLs from the Emilsson et al, Suhre et al 

and Yao et al studies. We therefore conducted a LD check for these pQTLs instead. For 

proteins measured in multiple studies, we estimated the LD between the sentinel variant for 

each pQTL from one study and the top 30 associated SNPs of the other study in the same 

region. For pQTLs that showed only weak LD (r
2
 < 0.8) with any of the top 30 associated 

SNPs in the other study, we considered the pQTLs to not share the same causal SNP in the 

region and therefore be inconsistent instruments.  

 

Instruments showing evidence of high heterogeneity across studies using either the pair-

wise Z test (pair-wise Z > 5) or colocalization analysis (PP<80%), were flagged as Tier 2 

instruments.  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/627398doi: bioRxiv preprint 

https://doi.org/10.1101/627398
http://creativecommons.org/licenses/by-nd/4.0/


  
 

16 
 

Recognising that lack of replication and effect heterogeneity does not preclude at least one 

of these effects being genuine, we used these instruments separately for the follow-up 

genetic analyses (Supplementary Table 3) and reported the findings with caution. We 

designated instruments passing both pleiotropy and consistency tests as Tier 1 instruments 

and used them as primary instruments for the MR analysis.  

 
Identifying cis and trans instruments    
We further split tier 1 instruments into two groups: 1) cis-acting pQTLs within a 500Kb 

window from each side of the leading pQTL of the protein were used for the initial MR 

analysis (defined as the cis-only analysis) 
22

; (2) trans-acting pQTLs outside the 500Kb 

window of the leading pQTL were designated as trans instruments. Whilst trans instruments 

may be more prone to pleiotropy, their inclusion could increase statistical power as well as 

the scope of downstream sensitivity analyses (e.g. tests for heterogeneity between 

instruments). Therefore, for the proteins with cis instruments, we also looked for additional 

trans instruments and if these were available, we conducted further MR analyses using both 

sets of instruments (defined as the "cis + trans" analysis).  

 

For cis instruments from Sun et al. 
9
 and Folkersen et al. 

16
, we searched the original GWAS 

paper and found multiple conditional cis instruments using the following selection criteria:  

1. The proteins have cis-acting pQTLs. 

2. The cis-acting pQTLs passed our instrument selection procedure (defined as either 

tier 1 or 2 instruments).  

3. The conditionally independent signals were reported in Sun et al 
9
.  

4. LD clumping was conducted to remove pQTLs with high LD (r
2
<0.6).  

 

After selection, 381 conditionally independent cis pQTLs associated with 153 proteins were 

selected to conduct the “multiple cis” MR analysis.  

 

For cis instruments, we looked up their predicted consequence via Variant Effect Predictor 
77

 

(VEP: https://www.ensembl.org/info/docs/tools/vep/index.html) hosted by Ensembl. We 

identified coding variants (including missense, stop-lost/gained, start-lost/gained and splice-

altering variants), as epitope-binding artefacts driven by coding variants may yield 

artefactual cis pQTLs 
39

. We then conducted a sensitivity MR analysis that excluded cis 

instruments which are in the coding region to further avoid the potential issue of epitope-

binding artefacts driven by coding variants. 

 

Phenotype selection 

We obtained effect estimates for the association of the pQTLs with complex human 

phenotypes using GWAS summary statistics which were included in the MR-Base database 

(http://www.mrbase.org). We used the following inclusion criteria to select complex 

phenotypes to be analysed: 

• The GWAS with the greatest expected statistical power (e.g. largest sample size / 

number of cases) when multiple GWAS records of the same phenotype / risk factor 

were available in MR-Base.  

• GWAS with betas, standard errors and effect alleles for all tested variants (i.e. full 

GWAS summary statistics available). 
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Diseases were defined as primary outcomes. Risk factors were defined as secondary 

outcomes. After selection, 153 diseases and 72 risk factors (such as lipids and glucose 

phenotypes) were included as outcomes for the MR analyses (Supplementary Table 6).  

 

Causal inference and sensitivity analyses  

The following sections describe the two-sample MR analyses using single or small numbers 

of instruments on 153 diseases and 72 risk factors (Supplementary Table 6). Positive 

associations between genetic instruments and phenotypes may indicate a number of 

potential scenarios: 1) the protein has a causal effect on the phenotype (the scenario of 

causality we wish to identify), 2) that the phenotype has a causal effect on protein (the 

reverse causality scenario), 3) confounding through LD between pQTLs and variants 

associated with the phenotype (for simplicity we refer to this as the ‘linkage disequilibrium 

scenario’) or 4) that the pQTL shares causal variants with the phenotype, but the association 

of the pQTL with the phenotype is not mediated by the hypothesised protein target (the 

‘horizontal pleiotropy” scenario)  (see Supplementary Figure 3). Most of the current 

sensitivity analysis methods, such as MR Egger regression 
55 

and Weighted Median 
42

, need a 

large number of independent instrumental SNPs in order to test for pleiotropy. Due to the 

small number of independent pQTLs available per protein we were therefore unable to 

implement these sensitivity analyses. To identify possible violations of assumptions of MR 

and to distinguish between the aforementioned scenarios, we therefore conducted the 

following sensitivity analyses: colocalization analysis 
34

, tests for heterogeneity between 

instrumental SNPs 
33

, bi-directional MR 
30

 and Steiger filtering 
31

 
32

 (Figure 1).  

 

Estimating the causal effects of proteins on human phenotypes using MR 
In the initial MR analysis, proteins were treated as the exposures and 225 complex human 

phenotypes as the outcomes (Figure 1 – Estimate putative causal relationship). Due to high 

correlation amongst some of the tested phenotypes (e.g. coronary heart disease (CHD) and 

myocardial infarction), we used the PhenoSpD method 
79 80

 to provide a more appropriate 

estimate of the number of independent tests. We selected a p-value threshold of 0.05, 

corrected for the number of independent tests, as our threshold for prioritising MR results 

for follow up analyses (number of tests= 142,857; P< 3.5x10
-7

). 

 

MR analysis using single locus instruments 

Firstly, the strongest cis pQTL variants for each protein were used as the instrumental 

variable (described as ‘single cis’ analysis). The Wald ratio 
81

 method was used to obtain MR 

effect estimates. In this analysis, the MR effect estimates were sensitive to the particular 

choice of pQTLs, since only the most strongly associated SNPs within each genomic region 

were used as instruments. Burgess et al recently suggested that more precise causal 

estimates can be obtained using multiple genetic variants from a single gene region, even if 

the variants are correlated 
37 36 . Sun et al reported proteins with multiple cis instruments

9
, 

so after quality checking and LD clumping (r
2
<0.6), we used the remaining cis SNPs against 

all 225 phenotypes to further evaluate the MR findings from our initial MR analysis and 

identify potential novel associations (described as ‘multiple cis’ analysis) (Supplementary 

Table 5). A generalised inverse variance weighted (IVW) model considering the LD pattern 

between the multiple cis SNPs was used to estimate the MR effects. In this analysis, weights 

for the contribution of each SNP were obtained using pairwise LD (r
2
) calculations obtained 

from the 1000 Genomes European ancestry reference samples.  
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MR analysis using multi-locus instruments 

Among the measured proteins reported in Sun et al, 34% had both cis and trans pQTLs and 

30% had only trans pQTLs. Trans pQTLs that overlap phenotype association loci can provide 

information about previously unsuspected candidate proteins 
9
. Also, using both cis and 

trans instruments can provide additional accuracy and statistical power to detect causal 

effects 
 82

. Therefore, as well as MR using only cis pQTLs, we also conducted MR on proteins 

with both cis and trans pQTLs (noted as the cis + trans MR analysis) and proteins with only 

trans pQTLs (noted as trans-only analysis). In the cis + trans MR analysis, we tested the 

protein-phenotype associations of 66 proteins with both cis and trans instruments. The IVW 

method was used to obtain MR effect estimates. In the trans-only MR analysis, we used 351 

trans instruments for 298 proteins. The IVW method was used when two or more trans 

instruments were included in the analysis, whereas the Wald ratio method was used when 

only one trans instrument was included in the analysis.  

 

MR analysis software 

The majority of MR analyses (including Wald ratio, IVW, single SNP MR, bi-directional MR, 

MR Steiger filtering and heterogeneity test across multiple instruments) were conducted 

using the MR-Base TwoSampleMR R package (github.com/MRCIEU/TwoSampleMR) 
29

. The 

IVW analysis considering LD pattern was conducted using the MendelianRandomization R 

package (https://cran.r-project.org/web/packages/MendelianRandomization/index.html) 
83

. 

The MR results were plotted as forest plots and Miami plots using code derived from the 

ggplot2 package in R (https://cran.r-project.org/web/packages/ggplot2/index.html). 

 

Distinguishing causal effects from genomic confounding due to linkage disequilibrium 
Results that survived the multiple testing threshold in the MR analysis were evaluated using 

a stringent Bayesian model (colocalization analysis) to estimate the posterior probability (PP) 

of each genomic locus containing a single variant affecting both the protein and the 

phenotype 
34 (Figure 1 – Distinguishing causal effects from confounding due to LD). The 

default priors were used for the analysis. A PP > 80% in this analysis would suggest that the 

two association signals are likely to colocalize within the test region. Colocalization analysis 

is commonly conducted for cis QTLs 
7
 
8
 but under studied for trans QTLs. Given trans pQTLs 

show stronger pleiotropic effect than cis pQTLs (Supplementary Figure 6B) and may 

influence human phenotypes indirectly, this analysis is even more meaningful for pQTLs in 

the trans regions. We therefore applied colocalization to both cis and trans pQTLs. For 

protein and phenotype GWAS lacking sufficient SNP coverage or missing key information 

(e.g. allele frequency or effect size) in the test region, we conducted a LD check for the 

sentinel variant for each pQTL against the 30 strongest SNPs in the region associated with 

the phenotype as an approximate colocalization analysis. r
2
 of 0.8 between the sentinel 

pQTL variant and any of the 30 strongest SNPs associated with the phenotype was used as 

evidence for approximate colocalization. For all MR top findings, we treated colocalised 

findings (PP>=80%) as “Colocalised” and LD checked findings (r
2
>=0.8) as “LD checked”; 

other findings that did not pass the colocalization or LD check analysis were annotated as 

“Not colocalized”. For MR findings using multiple instruments (e.g. cis + trans analysis), we 

tested each pQTL with the phenotype separately. Only if all pQTLs colocalised with the 

phenotype at r
2
>=0.8 did we treat this finding as colocalised.  

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/627398doi: bioRxiv preprint 

https://doi.org/10.1101/627398
http://creativecommons.org/licenses/by-nd/4.0/


  
 

19 
 

Pair-wise conditional and colocalization analysis  
The presence of multiple conditionally distinct association signals within the same genomic 

region will influence the performance of colocalization analysis. We therefore developed an 

analysis pipeline to integrate conditional and colocalization approaches for regions with 

multiple conditionally independent pQTLs. Where there was convincing MR evidence below 

the P-value threshold of 3.5x10
-7

, but no good evidence of colocalization using the marginal 

SNP effects of the exposures and outcomes (in total 148 MR associations in both cis and 

trans regions), we performed pairwise colocalization analyses of all conditionally distinct 

pQTLs against all identified conditionally distinct association signals in the outcome data 

(noted as pair-wise conditional and colocalization analysis: PWCoCo). The conditional 

analysis for proteins and human phenotypes was conducted using the GCTA-COJO package 
35

, with genotype data from mothers in the Avon Longitudinal Study of Parents and Children 

(ALSPAC) as the LD reference panel 
69 70

 (a description of the ALSPAC cohort can be found in 

Supplementary Note 6). Figure 2 demonstrates the 9 possible pair-wise combinations of 

various conditional signals for proteins and phenotypes at which there are 2 independent 

signals in the region (the 9 combinations listed in the following 3x3 table).  

  Marginal effect of the 

exposure (M) 

Joint effect of the 

exposure conditional 

on the top hit (C1) 

Joint effect of the 

exposure conditional 

on second hits (C2) 

Marginal effect of the 

outcome (M) 

MvM C1vM C2vM 

Joint effect of the 

outcome conditional 

on the top hit (C1) 

MvC1 C1vC1 C2vC1 

Joint effect of the 

outcome conditional 

on second hits (C2) 

MvC2 C1vC2 C2vC2 

Box 1. The 9 possible pair-wise combinations of various conditional signals for proteins and 

phenotypes in a 3x3 table.  

 

For protein-phenotype associations which only showed colocalization evidence after we 

applied PWCoCo, we recorded the PWCoCo model which showed colocalization evidence in 

a new column “PWCoCo_model”, in Supplementary Tables 7, 8, 11, 12, 13, 16 and 17. 

 

Heterogeneity test of MR findings 
For MR analyses using two or more instruments, we conducted heterogeneity tests to 

estimate the variability in the causal estimates obtained for each SNP (i.e. how consistent is 

the causal estimate across all SNPs used as separate instruments) (Figure 1 — Consistency 

of the causal estimate across all SNPs). Cochran’s Q test statistic was calculated for the IVW 

analyses, which is expected to be chi-squared distributed with number of SNPs minus one 

degrees of freedom 
33

. Lower heterogeneity suggests a lower chance of violations of 

assumptions in MR estimates, such as the presence of confounding through horizontal 

pleiotropy 
84

. 

 

Distinguishing causal effects for proteins on phenotypes from reverse causality 
With sufficiently large sample sizes, a SNP associated with an outcome through a mediating 

exposure could reach the conventional threshold for statistical significance in both the 

outcome and exposure GWAS. Therefore, using such thresholds to define instruments could 
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lead to situations where the instrumental SNP influences the hypothesised exposure via the 

hypothesised outcome (i.e. the hypothesised outcome actually has a causal effect on the 

hypothesised exposure and not vice versa). In order to mitigate the potential impact of this 

limitation, we used two approaches to identify directions of causality: bi-directional MR and 

Steiger filtering. 
 

Reverse Mendelian randomization  

For associations between proteins and phenotypes identified in the MR analysis, we applied 

bi-directional MR to evaluate evidence for causal effects in the reverse direction by 

modelling complex phenotypes as our exposure and plasma protein as our outcome. 

Instruments for complex phenotypes were selected based on a threshold of P < 5 x 10
-8

 from 

GWAS after LD clumping to identify independent variants. The IVW method was applied to 

estimate the causal effects of phenotypes on proteins where more than one instrument was 

available, otherwise the Wald ratio was used. MR-Egger 
55

 was used as a sensitivity analysis 

to test for potential pleiotropic effects.  

 
Identifying the direction of effects for instruments using Steiger filtering  

Due to lack of sufficient SNP association information (e.g. allele information, effect size, 

standard error) for some pQTL studies, it was not possible to conduct bi-directional MR 

using all proteins as outcomes. Therefore, we conducted Steiger filtering as an alternative 

method to test the directionality of protein-phenotype associations. The Steiger method 
85

 

has been implemented in the TwoSampleMR R package 
29

 to assess directionality of 

instrument-phenotype associations 
31 32

.  

 

The process of choosing valid instruments using Steiger filtering follows these steps: 

1. Select the top findings from all five studies using a p-value threshold of 3.5 x 10
-7 

(which is the Bonferroni P value threshold of the MR analysis). 

2. Classify instruments in each MR analysis based on Steiger filtering:  

• 'TRUE': evidence for causality in the expected direction i.e. protein precedes 

phenotype. 

• 'FALSE': evidence for causality in the reverse direction i.e. phenotype precedes 

protein. Instruments with ‘FALSE’ were removed from the sensitivity analysis.  

• 'NA': no result (due to insufficient summary data from the study to estimate the 

SNP-protein and/or SNP-phenotype correlation, e.g. missing effect allele 

frequencies in the outcome data or missing numbers of cases and controls for 

binary phenotypes). 

For disease phenotypes, we estimated the variance explained on the liability scale. Based on 

step 2, we set up a flag (categorical variable) to record the direction of the effects of the 

SNPs using Steiger filtering.  

 

Steiger filtering acts slightly different for MR using cis or trans pQTLs. For cis pQTLs, 

measurement error may bias the results. For trans pQTLs, a confounder may bias the results. 

However, the bias from these issues is expected to be minimal.  

 

Drug target validation and repositioning  
Approved drug targets have previously been shown to be enriched for gene-phenotype 

associations 
6
. We therefore wished to assess whether approved drug targets were enriched 
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for protein-phenotype associations, as obtained in the present study using MR. We assessed 

the support for approved drug targets among our MR findings using Fisher’s exact test. 

Target-indication pairs for successful and failed drugs were identified using a manually 

annotated version of PharmaProjects database from Citeline 

(https://pharmaintelligence.informa.com/). The phenotypes used in the MR analyses and 

the indications listed in Citeline’s PharmaProjects (downloaded on the 9th of May 2018) 

were then manually mapped to MeSH headings as a common ontology. This allowed us to 

match the protein-phenotype associations with corresponding target-indication pairs. To 

improve this matching, we implemented a similarity matrix, derived from all MeSH headings 

in the manual mapping, and retained matches with a relative similarity greater than 0.7 for 

our analyses (the similarity matrix has been previously described in Nelson et al. 
6
). We then 

compared whether the target-indication pair represented a successful or failed drug against 

whether there was a signal or not for the corresponding protein-phenotype pair among our 

MR findings. For the purposes of this test, a signal was defined as an MR result with a p-

value less than 3.5 x 10
-7

 (which is the Bonferroni P value threshold of the MR analysis) with 

supporting evidence from colocalization analysis. We further conducted a set of sensitivity 

analyses based on the following criteria to increase the reliability of the enrichment analysis:  

1. We checked the direction of effect of MR findings and drug trial results for the 8 

approved drugs using therapeutic direction information from PharmaProjects. 

2. For target-indication pairs linked to similar phenotypes (for example, the same 

target associated with angina and myocardial infarction), we removed one of them 

to avoid double counting the same association.  

3. To avoid the influence of epitope-binding artefacts, we removed MR results 

estimated using missense variants as an instrument.   

4. We checked whether approved drugs had been motivated by genetics from Drug 

Bank (https://www.drugbank.ca/), which may have inflated the OR estimate.  

 

In total, we removed 75 target-indication pairs based on criteria 2 (45 pairs), 3 (23 pairs) and 

4 (2 pairs; some pairs appeared in multiple situations) and conducted the comparison 

between protein-phenotype associations using MR and target-indication pairs from 

PharmaProjects, both on each criterion separately and on all criteria together 

(Supplementary Table 21). 

 

Phenome-wide MR has demonstrated the potential to validate, repurpose and predict on-

target side effects of drug targets. Of the protein-phenotype associations that showed 

evidence of colocalization identified in the cis-only, cis+trans, trans-only or MR analyses 

using pQTLs with heterogeneous effects across studies (noted as Tier 2 instruments), we 

first looked up how many proteins with MR evidence were established drug targets in the 

Informa PharmaProjects database. We then looked up how many of the associations were 

established target-indication pairs in the PharmaProjects database. More importantly, we 

predicted the potential adverse effects and repositioning opportunities of all marketed 

drugs and drugs under development using phenome-wide MR. The forest plots illustrating 

phenome-wide MR results were drawn using the R package “ggplot2” 

(https://ggplot2.tidyverse.org/).  
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Enrichment of proteome-wide MR with the druggable genome  
Previously, Finan et al systematically identified 4479 genes as the newest druggable genome 

compendium 
46

. This study stratified the druggable genome set into three tiers. Tier 1 (1427 

genes) included efficacy targets of approved small molecules and biotherapeutic drugs, as 

well as targets modulated by clinical-phase drug candidates; tier 2 was composed of 682 

genes encoding proteins closely related to drug targets, or with associated drug-like 

compounds; and tier 3 contained 2370 genes encoding secreted or extracellular proteins, 

distantly related proteins to approved drug targets, and members of key druggable gene 

families not already included in tier 1 or tier 2. We assessed whether the 1002 proteins we 

selected for the MR analyses overlapped with the 4479 genes from the druggable genome 

(Supplementary Table 24). The proteins were mapped based on the HGNC name of the 

encoding genes. We further assessed the overlap based on whether the protein had cis or 

trans instruments and based on the druggable genome tiers.  

In addition to the above comparison between instrumentable and druggable genome, we 

also assessed the enrichment of top pQTL MR findings with the druggable genome. 295 

protein-phenotype associations (120 proteins on 70 phenotypes) with both MR and 

colocalization evidence were selected for this analysis. We stratified the 120 proteins into 4 

groups based on their druggability: tier 1 contained 23 proteins, tier 2 contained 11 proteins, 

tier 3 contained 58 proteins, and 28 proteins remained unclassified. The 70 phenotypes 

were stratified into 8 groups: 8 autoimmune diseases, 3 bone phenotypes, 8 cancer 

phenotypes, 12 cardiovascular phenotypes, 4 glycemic phenotypes, 2 lung phenotypes, 4 

psychiatric phenotypes and 29 other phenotypes. The protein-phenotype associations with 

MR and colocalization evidence were coloured separately based on their druggability tiers. 

More details of this enrichment analysis are shown in Supplementary Table 25 and Figure 5. 

 

Data availability 

The data (GWAS summary statistics) used in the analyses described here are freely 

accessible in the MR-Base platform (www.mrbase.org). All our analysis results for 989 

proteins against 225 human phenotypes are freely available to browse, query and download 

in EpiGraphDB (http://www.epigraphdb.org/pqtl/). An application programming interface 

(API) and R package documented on the website enable users to programmatically access 

data from the database. 

 

Code availability 

The code used in the Mendelian randomization analyses described here are freely accessible 

in the TwoSampleMR R package via GitHub (https://github.com/MRCIEU/TwoSampleMR). 

Full documentation for the R package is also provided 

(https://mrcieu.github.io/TwoSampleMR/). We implemented the colocalization analysis 

using the coloc R package (created by Chris Wallace et al.), which can be downloaded here 

(https://cran.r-project.org/web/packages/coloc/index.html).  
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Table 1. Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence 

 

 
Mendelian randomization and colocalization evidence 

Target-indication pair approved  

after clinical trials 

YES NO 

YES 6 40 

NO 0 147 

 

Note: The protein-phenotype association pairs were grouped into four categories: 1) pairs with both MR/colocalization and drug trial evidence; 

2) pairs with MR and colocalization evidence but no drug trial evidence; 3) pairs with no strong MR or colocalization evidence but with drug 

trial evidence; and 4) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was p< 3.5x10
-7

; the cut off for 

colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects database. The MR and 

colocalization analysis results involved in this analysis including both Tier 1 and Tier 2 instruments in both cis and trans region. More results 

comparing MR and trial evidence for cis-only and tier 1 instruments can be found in Supplementary Table 21. 
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Figure Legend  
Figure 1. Study design of this phenome-wide MR study of the plasma proteome. The study 

included instrument selection and validation, outcome selection, 4 types of MR analyses, 

colocalization, sensitivity analyses and drug target validation.   

 
Figure 2. A demonstration of pair-wise conditional and colocalization (PWCoCo) analysis. 

Assume there are two conditional independent association pQTL signals (SNP 1 and SNP 2) 

and two conditional independent outcome signals (SNP 1 and SNP3) in the tested region. A 

naïve colocalization analysis using marginal association statistics will return weak evidence 

of colocalization (showed in regional plots A and D). By conducted the analyses conditioning 

on SNP 2 (plot B) and 1 (plot C) for the pQTLs and conditioning on SNP 1 (plot E) and 3 (plot 

F) for the outcome phenotype, each of the 9 pair-wise combinations of pQTL and outcome 

association statistics (represented as lines with different colours in the middle of this figure) 

will be tested using colocalization. In this case, the combination of plot B and plot E shows 

evidence of colocalization but the remaining 8 do not.  

 

Figure 3. Miami plot for the cis-only analysis, with circles representing the MR results for 

proteins on human phenotypes. The labels refer to top MR findings with colocalization 

evidence, with each protein represented by one label. The colour refers to top MR findings 

with P<3.09x10
-7

, where red refers to immune mediated phenotypes, blue refers to 

cardiovascular phenotypes, green refers to lung related phenotypes, purple refers to bone 

phenotypes, orange refers to cancers, yellow refers to glycemic phenotypes, brown refers to 

psychiatric phenotypes, pink refers to other phenotypes and grey refers to phenotypes that 

showed less evidence of colocalization. The X-axis is the chromosome and position of each 

MR finding in the cis region. The Y-axis is the -log10 P value of the MR findings, MR findings 

with positive effects (increased level of proteins associated with increasing the phenotype 

level) are represented by filled circles on the top of the Miami plot, while MR findings with 

negative effects (decreased level of proteins associated with increasing the phenotype level) 

are on the bottom of the Miami plot.  

 

Figure 4. Regional association plots of IL23R plasma protein level and Crohn’s disease in the 

IL23R region. A. and B. the regional plots of IL23R protein level and Crohn’s disease without 

conditional analysis, Plot B listed the sets of conditional independent signals for Crohn’s 

disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the 

second IL23R hit rs3762318, r2=0.42 in the 1000 Genome Europeans) and rs11209026 (a 

proxy for the top IL23R hit rs11581607, r2=1 in the 1000 Genome European), conditional P 

value < 1x10-7; C. the regional plot of IL23R with the joint SNP effects conditioned on the 

second hit (rs3762318) for IL23R; D. the regional plot of Crohn’s disease with the joint SNP 

effects adjusted for other independent signals except top IL23R signal rs11581607; E. the 

regional plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for 

IL23R; F. the regional plot of Crohn’s disease with the joint SNP effects adjusted for other 

independent signals except second IL23R signal rs3762318. The heatmap of the 

colocalization evidence for IL23R association on Crohn’s disease (CD) in the IL23R region was 

presented in Supplementary Figure 4. 

 

Figure 5. Enrichment of phenome-wide MR of the plasma proteome with the druggable 

genome. In this figure, we only showed proteins with convincing MR and colocalization 
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evidence with at least one of the 70 phenotypes. The X-axis shows the categories of 70 

human phenotypes, where the phenotypes have been grouped into 8 categories: 8 

autoimmune diseases (red), 3 bone phenotypes (purple), 8 cancers (orange), 12 

cardiovascular phenotypes (blue), 4 glycemic phenotypes (yellow), 2 lung phenotypes 

(green), 4 psychiatric phenotypes (brown) and 29 other phenotypes (pink). The Y-axis 

presents the tiers of the druggable genome (as defined by Finan et al) of 120 proteins under 

analysis, where the proteins have been classified into 4 groups based on their druggability: 

tier 1 contained 23 proteins which are efficacy targets of approved small molecules and 

biotherapeutic drugs, tier 2 contained 11 proteins closely related to approved drug targets 

or with associated  drug-like compounds, tier 3 contained 58 secreted or extracellular 

proteins or proteins distantly related to approved drug targets, and 28 proteins have 

unknown druggable status (Unclassified). The cells with colours are protein-phenotype 

associations with strong MR and colocalization evidence. Cells in green are associations 

overlapped with tier 1 druggable genome, where cells in yellow, red or purple were 

associations with tier 2, tier 3 or unclassified. More detailed information shown in 

Supplementary Table 25.  
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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