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Materials and Methods 

Data 

Genus-level occurrences derive from the Paleobiology Database (PaleoDB; 

https://paleobiodb.org) (18), which at the time of access consisted of 79,976 fossil collections 

with 448,335 occurrences from 18,297 genera. Here we only included resolved fossil 

occurrences. The downloaded taxa comprise the well-preserved benthic marine invertebrates 

(17): Brachiopoda, Bivalvia, Gastropoda, Bryozoa, Echinodermata, Anthozoa, Decapoda, and 

Trilobita. The Paleobiology database assigned fossil collections to paleogeographic coordinates 

based on their present-day geographic coordinates and geologic age using rotation models 

provided by the GPlates (http://www.gplates.org). We plotted the geographic maps of the spatial 

grid cells with the corresponding plate tectonic configuration from GPlates (31). Using the 

Hexbin R-package (32), we aggregated fossil occurrences into a regular grid of hexagons 

covering the Earth’s surface per each stage in the geological timescale (4,906 grid cells with 

count > 0; inner diameter = 10° latitude-longitude) (Fig. S1A). This hexagonal binning procedure 

provides symmetry of neighbors that is lacking in rectangular grids and captures the irregular 

shape of geographic regions more naturally (33). The grid size is a compromise between the lack 

of spatial resolution provided by hexagons with inner diameter > 10° and an increased number of 

hexagons with none count when shortening the inner diameter. Nevertheless, study cases on 

modern marine faunas have demonstrated that network-based biogeographic analyses are robust 

to the shape (square and hexagonal), size (5° to 10° latitude-longitude), and coordinate system 

(geographic and projected) of the grid used to aggregate data (34, 35). 

Network analysis 

We used aggregated occurrence data to generate a multilayer bipartite network (21), 

where layers represent ordered geological stages in the geological timescale (19), and two types 

of nodes in each layer represent taxa and spatiotemporal grid cells (20) (Fig. S1). Whereas each 

taxon can be present in multiple layers, each grid cell is only present in a single layer. To capture 

interdependencies in the occurrence data in a statistically sound way, we linked taxa to 

spatiotemporal grid cells through links with weights (w) adjusted for sampling effort. 

Specifically, for the adjusted weight (wki) between grid cell k and taxa i, we divided the number 

of collections at grid cell k that register taxa i by the total number of collections recorded at grid 

cell k. A similar sampling correction has been employed on previous network-based 

biogeographic analysis using weighted projections from bipartite occurrence networks (17, 20).  

In addition, we combined the last two Cambrian stages, i.e., Jiangshanian Stage (494 to 489.5 

Ma) and Stage 10 (489.5 to 485.4 Ma), into a single layer to account for the lack of data from the 

younger Stage 10 and to maintain an ordered sequence in the multilayer network framework 

(21).  Even though such a gap was placed at the end of the Cambian Period, most grid cells and 

species from the combined Jiangshanian/Stage 10 (494-485.4 Ma) layer clustered into the 

Paleozoic supermodule (see below). The assembled multilayer network of the Phanerozoic 

benthic marine faunas comprises 23,203 nodes (n), including 4,906 spatiotemporal grid cells and 

18,297 genera, joined by 144,754 links (m), distributed into 99 layers (t) (Data S1). 

To identify important dynamical patterns in the spatiotemporal organization of the 

Phanerozoic benthic marine faunas as represented in the assembled multilayer network, we used 

a network clustering approach (Fig. S1B). The conventional approach to partition bipartite 

occurrence networks based on aggregated fossil occurrences applies standard community 

https://paleobiodb.org/
http://www.gplates.org/


 

 

 

detection methods to the one-mode projection of the original network (20). Although such a 

procedure can provide some insights about the biogeographic structure of ancient marine faunas 

(17), it destroys relevant information regarding higher-order interdependences between taxa and 

geographic regions. Instead, here we used the map equation multilayer framework 

(www.mapequation.org), which can operate directly on the multilayer bipartite network and 

thereby preserve higher-order interdependencies. The map equation multilayer framework 

consists of an objective function that measures the quality of a given network partition, the map 

equation itself (23), and Infomap, an efficient search algorithm that optimizes this function over 

different solutions (21). We used this method because it can handle bipartite, weighted, and 

multilayer networks and because it is known for its high performance (36-38). In addition, 

Infomap directly provides the number of hierarchical levels within each layer and thus removes 

the subjectivity inherent in other approaches (38). 

To capture interdependencies beyond nearest neighbors in the assembled network, the 

map equation models a random walk on the nodes within and also across layers (Fig. S1B): With 

probability (1 − 𝑟), a random walker moves between taxa and grid cells guided by the weighted 

intralayer links within its current geological stage, and with probability 𝑟, it moves between taxa 

and grid cells guided by the weighted links in its current geological stage and also in the adjacent 

geological stages. By relaxing the constraint to allow movement within layers in this way, the 

multilayer framework enables coupling between adjacent layers such that it accounts for the 

temporal ordering of geological stages. Consequently, the random walker tends to spend 

extended times in multilayer modules of strongly connected taxa and grid cells across geological 

stages. Infomap can identify these modules because using modules in which the random walker 

persists for relatively long periods optimizes the map equation, which measures how much a 

modular partition of the nodes can compress a description of the random walker on the network.  

Following previous network studies, we used the relax rate 𝑟 = 0.25, which is large enough to 

enable interlayer interdependencies but small enough to preserve intralayer information (38). We 

tested the robustness to the selected relax rate by clustering the assembled network for a range of 

relax rates and comparing each solution to the solution for 𝑟 = 0.25 using the Jaccard Similarity.  

Finally, we obtained the reference solution (Data S2) using the assembled network and the 

following Infomap arguments: -N 200 -i multilayer --multilayer-relax-rate 

0.25 --multilayer-relax-limit 1. The relax limit is the number of adjacent layers 

in each direction to which a random walker can move. Thus, a value of 1 enables the temporal 

ordering of geological stages in the multilayer framework.   

We employed a parametric bootstrap for estimating the significance of the multilayer 

modules delineated in the reference solution. This approach assumes that the assembled network 

accurately captures connections between benthic taxa and grid cells but that there can be 

uncertainty in the strength of those interdependencies from variations in sampling effort through 

time and across space.  We resampled taxon occurrence using a truncated Poisson distribution 

with mean equal to the number of taxon occurrences. The truncated distribution has all 

probability mass between one and the total number of collections in the grid cell, thus avoiding 

false negatives. We obtained the resampled link weight by dividing the sampled number by the 

total number of recorded collections. Using Infomap with the arguments detailed above, we 

clustered these bootstrapped networks and then compared the resulting partitions with the 

reference solution. Specifically, for each reference module, we computed the proportion of 

http://www.mapequation.org/


 

 

 

bootstrapped partitions where we could find a module with Jaccard similarity higher than 0.5 

(P05) and 0.7 (P07) (Tables S1-S2).  In addition, we computed the average probability (median) of 

belonging to a supermodule for nodes of the same layer (Fig. S6). This procedure for estimating 

module significance is described in (39), which includes a case study on biogeographic networks 

of modern vertebrates.   



 

 

 

 
 

Figure. S1. Multilayer network representation of global fossil occurrences and visualization of 

its modular structure. 

(A) Data aggregation.  We aggregated global-scale fossil occurrences into hexagonal spatial grid 

cells. (B) Network representation and clustering. We constructed a multilayer network 

representation (21) of the aggregated data by joining taxa to grid cells in each stage (L1 to L6) 

through links adjusted for sampling effort and layers representing ordered geological stages. We 

used the hierarchical network clustering algorithm called Infomap (22) to delineate groups of 

highly interconnected taxa and grid cells across layers with multilayer modules. (C) Mapping 

evolutionary faunas and domains. We mapped faunas and temporal domains using the 

chronostratigraphic distribution of the module grid cells and per-layer taxa richness. 

  



 

 

 

 
 

Figure. S2. Class-level composition of the four marine evolutionary faunas. 

Clustered taxa define four partially overlapping sets of benthic marine animals. (A) Cambrian 

evolutionary fauna. (B) Paleozoic evolutionary fauna. (C) Mesozoic evolutionary fauna. (D) 

Cenozoic evolutionary fauna. The classes of marine invertebrates that contribute the most to the 

Cambrian, Paleozoic, and combined Paleozoic-Mesozoic mega-assemblages delimited here 

match those from the Three Great Evolutionary Faunas [if you decide not to capitalize and 

italicize this phrase in the manuscript, make that change here also](1). The Cambrian mega-

assemblage comprises trilobites (88%) and lingulates (5%); the Paleozoic domain comprises 

rhynchonellids (19%), trilobites (16%), anthozoans (13%), strophomenids (13%), gastropods 

(11%), crinoids (8%), bivalves (7%), and stenolaemate bryozoans (6%); the Mesozoic domain 

comprises bivalves (25%), gastropods (22%), rhynchonellids (20%), and anthozoans (13%); and 

the Cenozoic domain comprises gastropods (43%), bivalves (25%), decapods (8%), and 

anthozoans (8%). 

  



 

 

 

 
Figure. S3. Lower-level modules in the configuration of the multilayer network of the 

Phanerozoic benthic marine faunas. 

Lower-level modules capture internal structure of the four evolutionary faunas. (A) Second 

hierarchical level (Level 2). Lines represent the genus richness of the faunas associated with 

Cretaceous and Neogene modules.  Horizontal bars represent the number of module grid cells in 

each time interval. The Cenozoic fauna consists of Cretaceous (Cr2 and Cr3), Paleogene (Pg), 

Neogene (Ng), and Quaternary (Q) modules (all P0.7 ≥ 0.99). The Mesozoic fauna consists of 

Triassic (Tr), Jurassic (J1, J2) and Cretaceous (Cr1) modules (all P0.7 ≥ 0.98). The Paleozoic fauna 

consists of Ordovician, Silurian, Devonian, Carboniferous, and Permian modules (all P0.7 ≥ 0.94). 

The Cambrian consists of various small modules (five modules all P0.7 ≥ 0.58; 4 modules all P0.7 

≤ 0.41). (B) Third hierarchical level (Level-3) (Table S2).  Some of these lower-level modules 

form geographically coherent units underlying the evolutionary faunas.   

  



 

 

 

 

Figure. S4. Examples of marine bioregions underlying the four evolutionary faunas. 

Geographic maps of lower-level modules. Circles represent grid cells colored by their module 

affiliation (Data S2). Lower-level modules form geographically coherent bioregions (17, 20) 

underlying the evolutionary faunas in the modular organization of the Phanerozoic marine life.   



 

 

 

 

 
 

Figure. S5. Network clustering robustness to the selected the relax rate (r). 

 

Network clustering results are highly robust to variations in the relax rate (r). The plot illustrates 

the similarity of the reference solution (r = 0.25) with[similarity to?] solutions obtained from 

different relax rates. Results are particularly robust in the domain r ≥ 0.20.  Following previous 

studies on complex networks, we used a relax rate r = 0.25 for the reference solution, which is 

large enough to enable interlayer interdependencies but small enough to preserve intralayer 

information (38). 

  



 

 

 

 

Figure S6. Stage-level significance of the supermodules delineated in the assembled network. 

 

The average probability (median) of belonging to a supermodule for nodes of the same layer was 

calculated according to (39). It shows the instability of the modular structure in the assembled 

network after the Earth's largest mass extinction event (6, 24). This stage-level pattern explains 

the overall significance (P0.7 = 0.25) of the Mesozoic Evolutionary Fauna (Fig. 1, Table S1). 

Abbreviations: Cambrian (Cm); Paleozoic (Pz); Mesozoic (Mz); and Cenozoic (Cz). Boundaries: 

combined Paibian-Jiangshanian―Age10 (PA-J/A10); Permian―Triassic (P/Tr); and 

Hauterivian―Barremian (H/B). 

  



 

 

 

Supplementary Data S1. 

Multilayer network of Phanerozoic benthic marine animals in multilayer network format. This 

standard file specifies nodes and links in two different sections. The first section includes the 

node indexes and names. The second section describes the intralayer link structure; each row 

includes layer index, source node index, target node index, and link weight. Interlayer links 

derive from the intralayer link structure by relaxing the layer constraints on those links with 

probability r. 

 

Supplementary Data S2. 

Reference solution in plain text format. This standard file contains the best hierarchical partition 

(shortest description length) of the attempts. Each row begins with the multilevel module 

assignments of a node in a colon-separated format and ordered from coarse (supermodules) to 

fine level. Modules within each hierarchical level are sorted by the total amount of flow they 

contain – their steady state population of random walkers (23). The decimal number is the 

amount of flow in each node. The last integer corresponds to the index of the node in the 

multilayer network file (Data S1). 

 

Supplementary Table S1. 

Robustness results of the multilayer network analysis of the fossil record of Phanerozoic benthic 

marine faunas: First (supermodules) and second hierarchical levels (Level-2). 

 

Supplementary Table S2. 

Robustness results of the multilayer network analysis of the fossil record of Phanerozoic benthic 

marine faunas: Third hierarchical level (Level-3). 
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