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ABSTRACT

A central goal in neuroscience is to understand how dynamic networks of neural activity produce effective12

representations of the world. Advances in the theory of graph measures raise the possibility of elucidating13

network topologies central to the construction of these representations. We leverage a result from the14

description of lollipop graphs to identify an iconic network topology in functional magnetic resonance15

imaging data and characterize changes to those networks during task performance and in populations16

diagnosed with psychiatric disorders. During task performance, we find that task-relevant subnetworks17

change topology, becoming more integrated by increasing connectivity throughout cortex. Analysis of18

resting-state connectivity in clinical populations shows a similar pattern of subnetwork topology changes;19

resting-scans becoming less default-like with more integrated sensory paths. The study of brain network20

topologies and their relationship to cognitive models of information processing raises new opportunities for21

understanding brain function and its disorders.22
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Our mental lives are made up of a series of predictions about the world calculated by our brains. The23

calculations that produce these predictions are a result of how areas in our brain interact. Measures based24

on graph representations can make it clear what information can be combined and therefore help us better25

understand the computations the brain is performing. We make use of cutting-edge techniques that26

overcome a number of previous limitations to identify specific shapes in the functional brain network.27

These shapes are similar to hierarchical processing streams which play a fundamental role in cognitive28

neuroscience. The importance of these structures and the technique is highlighted by how they change29

under different task constraints and in individuals diagnosed with psychiatric disorders.30

INTRODUCTION

How do we link dynamic changes in functional brain structure to the processing of information? Brain31

activity organizes into stable networks that vary in strength and change with task demands Greicius,32

Krasnow, Reiss, and Menon (2003); Smith et al. (2009).33

Because of its ease of implementation and relatively low cost, the analysis of resting functional magnetic34

resonance imaging (rfMRI) data Raichle et al. (2001) in particular has had a tremendous impact, leading to35

several large-scale public initiatives like the Human Connectome Project (HCP) Essen et al. (2013). One of36

the most promising methods used to study rfMRI activation has been to construct network models of37

functional connectivity between areas of the brain E. T. Bullmore and Bassett (2011); Goñi et al. (2014);38

van den Heuvel and Pol (2010). These models are characterized by network measures like efficiency39

Fornito, Zalesky, and Bullmore (2016) and have been applied to a wide variety of challenges including the40

study of psychiatric disorders (for review, see Avena-Koenigsberger, Misic, and Sporns (2017)). Improving41

our ability to interpret the meaning of these measures for brain processing would have tremendous impact.42

To improve our ability to interpret network models of brain connectivity, we seek measures of topology43

that can be related to models of cognitive information processing. The study of the relationship between44

brain network topology and function has been accelerating and is key to explaining dynamic information45

processing in health and disease Stiso and Bassett (2018). To better understand how information is46

processed in a dynamic context, it is necessary to link specific brain-network topologies to cognitively47

meaningful information processing structures. Network analysis of brain data typically involves48
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descriptions of an inferred network. Here, we instead describe brain connections as stochastic processes (in49

our case, using a random walk), avoiding the constraints of a specific network model and instead describing50

general properties of brain functional connectivity in a given mental state. This improved description of51

brain connectivity can then be used to link results from graph theory to network topologies common in52

cognitive models of the brain. As a first step, we utilize a result from the theory of graph measures, which53

establishes that isolated chains of nodes produce maximally long random walks between points on the54

graph. In particular, a lollipop graph consists of a set of fully connected nodes attached to a chain of55

linearly-connected nodes. In a random walk on a lollipop graph, the number of hops required to reach the56

tail of the lollipop stick is greater than for other topological structures Brightwell and Winkler (1990). We57

target extremely long random walks between brain areas as a measure of the presence, and relative58

isolation, of linear chains of nodes. We note that this topology is similar to that found in hierarchical59

processing streams, a structure important in cognitive models. We hypothesize that those brain areas which60

take a long time to reach in a random walk are often situated in such an information processing topology.61

We focus on the tails of random-walk network connectivity distributions to address the following four62

key questions. (i) How does the relative isolation of a linear chain of nodes change the distribution of63

connectivity in a synthetic network? (ii) Are there subnetworks in resting-state cortex that have properties64

similar to a linear chain of nodes? (iii) How are linear-chain subnetworks changed by task demands? (iv)65

Does the characterization of network topology have value in understanding and diagnosing psychiatric66

disorders?67

MATERIALS AND METHODS

Hitting-time functional connectivity model68

One common approach to find the connectivity matrix of a brain network is to threshold the Pearson69

correlation matrix to obtain the adjacency matrix for the network. Although this method is very simple, it70

has some shortcomings that might cause inaccuracy in the results. One challenge is that the Pearson71

correlation coefficient does not account for latent variables, which might result in a high correlation among72

two regions that are not directly connected. In addition, the choice of threshold is arbitrary, creating73

interpretation and generalization issues. To overcome these challenges, we integrated the following changes74

into a standard network analysis pipeline for neuroimaging. First, to compensate for latent variables, we75
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use the partial correlation Smith et al. (2011) to find the connectivity matrix. Let ρij represent the partial76

correlation between xi and xj (the BOLD time series associated with regions i and j, respectively).77

Therefore, we use a weighted brain functional network with adjacency matrix A = [ρij]. The degree of78

node i is di =
∑N

j=1 |ρij|. Second, we normalize edge strength using self loops that preserve the overall79

connectivity of each node relative to others. Third, we characterize the network using the hitting time, a80

random-walk measure that reflects the expected number of edges that need to be crossed to transition from81

one node to another. We next describe the edge strength and hitting time approaches in detail.82

Edge Strength Normalization83

For a random walk, the probability transition matrix is P = [pij], where pij is defined as:84

pij =
|ρij|∑N
j=1 |ρij|

=
|ρij|
di

(1)

The major drawback of this definition is that it fails to distinguish a strongly connected from a weakly85

connected node. Consider a network with 5 nodes (a, b, c, d, e) and 6 edges. Suppose that all edges86

connected to node a have weight 0.9. And, suppose that node b is connected to the same nodes as node a,87

but with edges with weight 0.1 (Fig. 1A). Applying equation (1), both nodes a and b will have the same88

transition probabilities, and therefore, the same relative connectivity.89

To overcome this problem, we add a self loop to nodes with weaker connections. To implement this, we90

find the node with maximum degree in the network. For every other node, we subtract the degree of that91

node from the maximum degree and add that as a self edge to the node. Therefore, the new degree matrix is92

D′ = dmaxI , and the new adjacency matrix is A′ = [ρ′ij], where:93

ρ′ij = ρij, i, j = 1, . . . , N and i 6= j,

ρ′ii = dmax − di, i = 1, . . . , N (2)

dmax = max
i

(di), i = 1, . . . , N and I is the identity matrix.94

Hitting Time95
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A B C

Figure 1: Edge strength normalization to maintain connectivity differences between a strongly connected and a weakly

connected node. (A) A weighted graph with 5 nodes and 6 edges. (B) Adding self loops to nodes with weaker connections

in order to normalize the probabilities. (C) Transition probabilities from nodes a and b after normalization (the transition

probabilities from nodes c, d, and e are not included in this figure).

We run random walk models on the graph with the new transition probability matrix P ′ = D′−1A′ to96

calculate the hitting time matrix H = [hij]. hij , the hitting time from node i to node j is the expected97

number of hops to visit node j for the first time, for a random walk started at node i.98

Hitting time is an asymmetric measure, meaning that hij and hji might be different. For example for a

lollipop graph, the hitting times from the nodes on the complete component to nodes on the chain are much

larger than the reverse direction, because a random walker spends more time in the complete component.

We compute the hitting times between pairs of nodes using the graph-Laplacian method introduced in

spectral graph theory Aldous and Fill (2002). This method is advantageous as it does not require the exact

knowledge of the adjacency matrix, instead using a probabilistic approximation of the adjacency matrix of

the network. Following Lovász and Simonovits (1993), we calculated the normalized graph Laplacian as:

L = D′−1/2(D′ − A′)D′−1/2 = I − P ′ (3)

where, D′ is the degree matrix and A′ is the adjacency matrix of the graph after normalization as defined in

the main text. We used the eigenvalues and eigenvectors of L to calculate the hitting time matrix
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H = [hij] Lovász and Simonovits (1993);

hij =
∑
k>1

d′

λk
(
µ2
kj

d′j
− µkiµkj√

d′id
′
j

), i, j = 1, . . . , N and i 6= j (4)

hii = 0, i = 1, . . . , N

where, d′i is the degree of node i, i = 1, ..., N , and d′ is the sum of all degrees (after normalization, see99

main text). 0 = λ1 < λ2 < · · · < λn are the n eigenvalues of L , and µkj is the jth element of kth100

eigenvector of L Lovász and Simonovits (1993).101

Adding the self loops in the normalization step does not make the graphs reducible or periodic, meeting102

the requirements of the hitting time calculation we use here Norris (1997). Code for analysis in this project103

can be found under the first author’s name on github: https://github.com/SNaGLab.104

RESULTS

To detect and characterize linear chains of nodes, we focus on the random-walk measure of connectivity105

hitting time Lovász and Simonovits (1993) defined above. In synthetic graphs and estimated networks, a106

node is a point in the graph (or area of the brain) and an edge is a connection between two nodes. Hitting107

time between nodes i and j is a random variable describing the number of steps to get from node i to node108

j for the first time (represented as hij) during a random walk, a measure equivalent to mean first-passage109

time Avena-Koenigsberger et al. (2017). Diffusion measures of networks, like hitting time, are becoming110

more commonly used and are the focus of active research Goñi et al. (2013); Lambiotte, Delvenne, and111

Barahona (2014); Shen and Meyer (2008). Diffusion-based measures carry significant methodological112

advantages. First, they overcome common issues caused when thresholding is used to define binary113

connections Goulas, Schaefer, and Margulies (2015); Reijneveld, Ponten, Berendse, and Stam (2007);114

Rubinov and Sporns (2011); Zalesky, Fornito, and Bullmore (2010). Second, they do not require perfect115

knowledge of the network to make a robust estimation of connectivity (i.e. it does not require the exact116

adjacency matrix Lovász and Simonovits (1993)). Third, measures like hitting time are asymmetric,117

meaning hitting time from one node to another may be different from the return trip, giving the best118

opportunity to identify extremeness in connectivity Lovász and Simonovits (1993). Here, we will use119

“hitting time” to refer to the expected number of edges to be traversed rather than the variable itself and120
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“hitting-time distribution” to be the subject-average distribution of the expected number of edges to be121

traversed when moving between combinations of nodes. We begin by looking at the relationship between122

extreme hitting times and synthetic graph structure and then extend those findings to a publicly available123

functional magnetic resonance imaging (fMRI) dataset.124

How does the relative isolation of a linear chain of nodes change the distribution of connectivity125

in a synthetic network? We consider a chain of sequentially connected nodes as a model for a126

hierarchical processing stream. Formally, a chain of sequentially connected nodes can be described as N127

nodes arranged in a line, so that there is an edge between nodes i and i+ 1 for i = 1, . . . , N − 1, and no128

edges between nodes i and j where, j 6= i− 1, i+ 1. Theoretical results have found that a chain of129

sequentially-connected nodes attached to a fully-connected network (i.e. a lollipop graph) results in130

maximal hitting times when the chain is a third of the network Brightwell and Winkler (1990). We now131

compare the distribution of hitting times over nodes in a lollipop graph to small-world Watts and Strogatz132

(1998), random (Erdős-Rényi) Erdős and Rényi (1959), and complete synthetic graphs in Fig. 2. Each133

graph consists of 100 nodes. Random and small-world graphs are an average of 100 configurations. Linear134

chains of nodes result in larger hitting times which produce increased skewness in the hitting-time135

distribution. For example, in Fig. 2, panels A and D represent two extreme examples of hitting-time136

distribution in a network. Due to the presence of a path in A, the hitting time has a long tail (non-zero137

probability) that extends to large values (above 120,000). While in D each node is fully connected to every138

other node and hence, hitting time is the same across all pairs (in this case, 100) and the distribution is a139

single value with no tail. We focus on Kelley skewness Kelley (1923), as our measure of skewness because140

it directly compares the tails of the distribution. Kelley skewness (hereafter just skewness) therefore141

provides a more robust separation of extreme cases from changes in the interior of the distribution.142

Although perfectly isolated linear chains of nodes produce extreme hitting times, it is possible that even143

weak connections to the chain might significantly reduce hitting times to nodes on the chain. To144

characterize changes in the hitting-time distribution when a linear chain of nodes is not perfectly isolated,145

we begin with a random graph and alter its connectivity to isolate a linear chain of nodes (Fig. 3).146

Beginning with 50 nodes, edges of weight 1 were added between each pair of nodes with a probability of147

0.6. We then randomly chose 10 connected nodes in the graph (1/5 of the graph) and reduced the weight of148

edges between those connected nodes and the rest of the network by 0.05 for 19 iterations. This process149
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Figure 2: Hierarchical processing streams in lollipop graphs produce extremely long hitting times. Hitting-time distributions

for (A) lollipop, (B) small world, (C) random and (D) complete graphs with 100 nodes (averaged over 100 runs for small world

and random networks). The graphs on top of the distributions are smaller representations of the graphs used to generate the

distributions. Axis scales change significantly with graph type (e.g. lollipop hitting time is several orders of magnitude larger

than the other graphs).

created a linear subgraph that becomes progressively more isolated until it resembles the stick of a lollipop150

graph. As a control for reduced connectivity across the network as a whole, we took the same graph we151

started with above and reduced all existing edge weights by 0.05 for 19 iterations. To preserve the152

reduction in overall connectivity (edge weights are typically normalized by the total connectivity of a node)153

edge weight reductions were added back as self loops (see Materials and Methods). These self loops are154

required as part of the random-walk to preserve the physiological principle that reduced neuronal activity155

would result in a reduction of connectivity (not just a shift between connections).156

Average hitting time increases as the chain of nodes becomes more isolated but also when the graph157

becomes more disconnected as a whole. Hence, mean hitting time does not distinguish between these two158
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Figure 3: The skewness of the hitting-time distribution distinguishes a reduction of overall connectivity from a subgraph that

becomes more linear. (A) Mean and skewness of hitting-time distribution as the strength of all connections is reduced by 0.05

for 19 iterations. Toy networks for this transition are represented on the x-axis. Reductions in connectivity are added as self

loops. (B) Mean and skewness of hitting-time distribution as the strength of connections between linear component and the rest

of the graph is reduced by 0.05 for 19 iterations. Toy networks on the x-axis represent synthetic graphs with a linear subgraph as

the path (red) is made more linear.

scenarios. However, in our simulations, skewness changed significantly as the linear subgraph becomes159

more isolated but only minimally when the average connectivity of the whole graph decreased. Skewness160

also increased with the relative isolation of the chain of nodes but was present even when each node in the161

chain was somewhat connected to the rest of the graph (Fig. 3).162

We have shown that a lollipop component present in a graph results in significant increase of (Kelley)163

skewness of hitting-time distribution but is this relationship true in heterogeneous topologies? It is164

important to note that other changes in graph structure may also result in extreme hitting times. One165

commonly employed graph measure is modularity, the extent to which the graph can be easily separated166

into different communities.167

To evaluate the effect of modularity on hitting-time distribution, we have tested a large number of168

networks with different levels of Louvain modularity and numbers of chain motifs (3 node linear169

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866855doi: bioRxiv preprint 

https://doi.org/10.1101/866855
http://creativecommons.org/licenses/by-nc/4.0/


components). We generated random networks each with 100 nodes varying the number of edges. To allow170

a comparison across a given number of edges, we generated multiple graphs with the same number of171

edges by choosing k edges uniformly from the full possible set of edges. k was varied from 200 to 1000 in172

intervals of 50 and 1000 to 2500 in intervals of 100. The range of the average degree is [4, 50], with a range173

of Louvain modularity of [.1, .6]. Keeping only those graphs that were connected resulted in 15,243 graphs174

for comparison. Using a linear model, we sought to explain skewness as a function of modularity, number175

of edges, and number of chain motifs. Number of edges (p < .001, t(15241) = 4.16, β = −.0052),176

modularity (p < .001, t(15241) = 37.4, β = 239), and the number of chain motifs177

(p < .001, t(15241) = 13.8, β = 9.5) all independently explain some variance in skewness. In the178

remaining analysis of brain networks, we therefore test whether or not nodes with extreme hitting times179

also become less chain like.180

Are there subnetworks in resting-state cortex that have properties similar to a linear chain of181

nodes? Motivated by the above simulations, we utilized the skewness of the hitting-time distribution to182

identify potential linear chains of nodes in cortical connectivity data. The brain is made up of a large183

number of highly interconnected regions Cherniak (1990) evolved to efficiently integrate a variety of184

sources of information Friston (2010) that can be represented as a network. Graph-theoretic models of the185

brain have been used to effectively segment commonly associated regions of the brain into large-scale186

networks and describe the properties of brain information processing (for review see E. Bullmore and187

Sporns (2009)) in health and disorder Bassett and Sporns (2017); Fox and Greicius (2010).188

Characterizations of brain network changes in development or psychiatric disorder often utilize graph189

measures like efficiency Latora and Marchiori (2001) and small-worldness Watts and Strogatz (1998),190

which typically include the average path length in their definition (for common measurement descriptions,191

see Achard and Bullmore (2007)). Even measures that may not directly utilize the average path length (e.g.192

modularity Newman and Girvan (2004); Stiso and Bassett (2018)) sometimes rely on community detection193

methods that incorporate the average path length. The use of an average path-length rests on the194

assumption that path lengths in that network are normally distributed and so can lead to the195

mischaracterization of the topology of the network. The concern arises because of the use of an average196

and is present in both traditional and diffusion-based graph measures. Overcoming this assumption requires197

the use of specific subnetwork models (for example, see Khambhati, Medaglia, Karuza, Thompson-Schill,198
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and Bassett (2018)) or the capture of deviations from normality in the path-length distribution. Here, we199

use Kelley skewness of the hitting-time distribution to distinguish changes in the network as a whole from200

the presence of network topologies resembling hierarchical processing streams.201

To test for the presence of skewness in cortical connectivity, we generated a hitting-time measure of202

connectivity (see materials and methods) for resting-state functional data from neurotypical participants203

who were part of a large open-source dataset (LA5c, UCLA Consortium for Neuropsychiatric Phenomics204

Poldrack et al. (2016), see supporting information). Network nodes were 180 anatomical regions from the205

multi-modal parcellation of Glasser et al. Glasser et al. (2016). The average hitting-time distribution of206

neurotypical resting-state functional connectivity is positively skewed (Kelley skewness of 15.04 and207

Pearson’s coefficient of skewness of 2.3), Fig.4A. A D'Agostino-Pearson test Trujillo-Ortiz and208

Hernandez-Walls (2003) showed that as a whole the hitting times were not normally distributed209

(Z(skew) = 110, 3496, χ2(2) = 17864.8071, p < 0.001).
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Figure 4: Hitting-time measures of resting-state functional connectivity in neurotypical participants are positively skewed.

(A) Average normalized hitting-time distribution for control subjects during resting-state from the publicly available LA5c

study. (B) Average to-hitting time from all other regions of cortex for lateral (top) and medial (bottom) left maps thresholded to

[158(10%), 267(95%)]. The range of data is [129, 310]. Primary auditory, visual, and somatosensory cortices have the largest

to-hitting times in the cortex.

210
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Although skewness of a distribution can originate from many sources, ranging from a smooth shift of the211

distribution as a whole to far ranging outliers, the particular skewness measure used here (Kelley skewness)212

directly compares the extremes of the distribution (90% compared to 10%), limiting the potential causes of213

the skewness. Limiting our test for skewness to the tails of the distribution is consistent with our aim of214

identifying changes in linear-chain topologies, which have been shown to produce maximal hitting times in215

lollipop networks (see above). The primary auditory, visual, and somatosensory hierarchies, show the216

largest average to-hitting times (Fig. 4B), and are therefore possibly related to chain-like network217

topologies. It is important to note that even the use of a Kelley skewness metric does not guarantee the218

presence of chain-like network topologies. In fact, random graphs generated from a stochastic block model219

that precluded chain-like topologies exhibited Kelley skewness explained by modularity and node degree.220

We generated 100 graphs with 180 nodes from a stochastic block model. To define groups and mixing221

structure, we fixed the probability of connections within communities to be (p = 0.7) and between222

communities to be (q = 0.1). To expand the range of possible modularity, we randomly picked the number223

of nodes in each community until we reach 180 (if the total number of nodes passes 180, we reduce the size224

of the last community to have a total of 180 nodes in the graph). After removing the null values, we ended225

up with 89 graphs with number of communities from 2 to 6 and Louvain modularity levels of 0.03 to 0.42.226

These SBM models contain Kelley skewness which is explained by both modularity227

(β = −1.591e+ 03, t(86) = −10.76, p < 0.001) and degree228

(β = −8.617e− 02, t(86) = −7.39, p < 0.001). Because Kelley skewness may arise from multiple229

sources, we next look for changes in the skewness of the hitting-time distribution during a task and ask230

whether those changes are related to regions of the brain with the largest hitting times during resting scans,231

and then, whether those areas with the largest rest hitting times also become less chain-like.232

How are linear-chain subnetworks changed by task demands? To better interpret the skewness of233

cortical networks during resting-state fMRI, we sought to test whether hitting times become more or less234

skewed during task performance and which connectivity changes underlie those shifts. We compared235

resting-state and balloon analogue risk task (BART) functional connectivity from the LA5c study. The236

BART is a paradigm designed to study risk taking in an experimental setting. Participants in the BART237

decide whether or not to pump a balloon that is at risk of popping. The BART is defined by visual input238

and motor responses without structured auditory stimulation.239
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Hitting times between cortical areas were calculated for fMRI data collected during the performance of240

the BART task using the same processing pipeline as for the resting-state scans. To test for differences in241

skewness, we then ran a linear mixed effect model (lme in R) of skewness of the hitting-time distributions242

(dependent variable) modeling task (with resting-state as a reference), gender, and age as independent243

variables. The task variable was treated as a random effect (BART and resting-state points were paired by244

participant), which characterizes idiosyncratic variation that is due to individual differences. In our first245

model, we found significant difference in skewness for control subjects between BART and rest246

(β = −10.25, t(118) = 0.79, p < 0.001), see Fig. 5. The skewness of hitting-time distribution is247

significantly reduced in the BART (µ = 5.48, σ = 3.96) compared to rest (µ = 15.73, σ = 8.49). Age and248

gender did not significantly explain variance in this model. We next sought to test whether this skewness249

could be related to nodes with extreme hitting times and whether those nodes define network topologies250

that become less chain-like.251

To identify those nodes related to differences between rest and task, we first ask which nodes had the252

largest hitting-time changes. The ten regions with the largest hitting-time changes (paired t-tests comparing253

task and rest hitting times, significantly different with p < 0.05, Bonferroni corrected) are ’V2’, ’V3’, ’V4’,254

’V3A’ and ’PGs’ within the visual cortex, ’1’, ’4’, ’3b’ and ’OP4’ within somatosensory cortex, and the255

area ’PF’, Fig. 5B-D. Regions are labeled according to Glasser et al. (2016). These nodes, which show256

decreased hitting times during task performance, overlap heavily with the visual and motor processing257

streams and correspond to many of the nodes with the largest hitting times during rest scans. This reduction258

in hitting time in the visual and motor pathways during the BART provides support for the role of these259

pathways in skewness but does not address whether differences in the chain-like topology is responsible for260

the change in hitting times.261

To add support for the role of chain-like topologies in large hitting times in brain data, we calculated a262

chain-index for each node that provides a measure of how similar to an isolated chain the local connectivity263

of the node is. For every node in the network located on a three node chain motif, we define a chain index264

by focusing on its two strongest connections. A node is located on a chain motif if its neighbors with the265

two strongest connections are stronger than the remaining connections and if the two strongest connections266

have a significantly weaker connection with each other. Assuming that node i is on a chain motif and has267
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Figure 5: The distribution of skewness vs. task for control subjects. p-values significance codes: . = 0.1, ∗ =< 0.05, ∗∗ =<

0.01, ∗ ∗ ∗ =< 0.001. The skewness of hitting-time distribution for control subjects is significantly smaller when the subjects

are engaged in BART task compared to rest. The 10 nodes with largest hitting time changes are (B) V2, V3, V4, V3A and PGs

(visual), (C) 1, 4, 3b and OP4 (motor) and (D) PF. The size of each node represents the magnitude of difference of average

to-hitting times (range from 19 to 30.2) and thickness of each edge represents the magnitude of difference of partial correlation

in BART compared to rest.

Ni neighbors and nodes i1 and i2 have the strongest connections to node i, we define chain index for node i268

as:269

ζi = ρii1 + ρii2 −
∑Ni

j=3 ρiij270

If a node is located on a perfect chain, the chain index will be at its maximum. If a node has equal271

connections to every other node in the network (the least chain-like network), the chain index will be a272

large negative number that depends on the number of nodes in the network.273
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Comparing connectivity during the BART to rest, the largest reductions in the chain index were for a set274

of nodes that overlapped heavily with those nodes with the largest hitting time (8 of the 10 nodes described275

above), including ’V2’, ’V3’, ’V3A’, ’V6’ and ’V6A’ within the visual cortex, ’1’, ’4’, ’3b’ and ’OP4’276

within somatosensory cortex, and the area ’PF’. Labels are according to Glasser et al. (2016). In277

accordance, the nodes with the largest hitting-time changes also show increased connectivity during the278

BART. Connections from nodes with the largest hitting times that have changed significantly (paired t-tests279

comparing connections from each node during task and rest, p < 0.05 Bonferroni corrected) are indicated280

in Fig. 5 by gray lines, with the thickness of the line indicating the size of the change. During task281

performance, nodes in task-related sensory streams (which have large hitting times during rest) have282

smaller hitting times, becoming less like isolated chains and instead more widely integrated.283

Does the characterization of network topology have value in understanding and diagnosing284

psychiatric disorders? Brain network efficiency, which is commonly defined by the mean distance285

between nodes, has been shown to change in disorders such as Alzheimer’s Dennis and Thompson (2014),286

schizophrenia Besnard et al. (2018); Li et al. (2017), and others Cheng et al. (2016). Reductions in287

measures of efficiency that utilize mean distance could be due to: 1. Reduced overall connectivity; or, 2.288

Subnetwork changes that lead to skewed hitting-time distributions. As described in Fig. 3, we can289

distinguish these possibilities by focusing on skewness. If skewness changes, the differences between290

psychiatric populations and controls is more likely to be due to subnetwork changes than a change in over291

all connectivity. We ran an ordinary least squares regression model with skewness of the resting-state292

hitting-time distribution as the dependent variable, and group (dummy coded, reference controls), gender293

(dummy coded, reference females), and age (mean centered, linear) as independent variables. We analyzed294

resting-state functional data from four patient groups, control, schizophrenia, bipolar and attention deficit295

hyperactivity disorder (ADHD). We found significant differences in skewness between schizophrenia and296

control populations (β = −5.130, t(252) = 1.268, p < 0.001), bipolar and control populations297

(β = −4.060, t(252) = 1.324, p < 0.001), and a trend-level difference between ADHD patients and298

control populations (β = −2.445, t(252) = 1.324, p = 0.066), see Fig. 6. Gender and age did not299

significantly explain variance in this model.300

To identify those nodes related to skewness differences between schizophrenia, bipolar disorder, and301

controls, we first ask which nodes had the largest hitting-time changes. The ten regions with the largest302
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Figure 6: Skewness of the hitting-time distribution is significantly different across patient groups. (A) Distribution of skewness

of the hitting-time distributions in patient and control groups during resting-state scans. Ct, Sz, Bp and Ad stand for control,

schizophrenia, bipolar and ADHD, respectively. Significance codes: . = 0.1, ∗ =< 0.05, ∗∗ =< 0.01, ∗ ∗ ∗ =< 0.001. The

skewness of hitting-time distribution is significantly smaller for subjects with schizophrenia and bipolar disorders compared to

neurotypicals. The 10 nodes with the largest change in hitting time for subjects with schizophrenia include V2, V3, V4, V3A and

V7 (visual, top blue), 1, 2, 24dd and 4 (motor, top green) and A4 (auditory, top red). The 10 nodes with largest change of hitting

time for subjects with bipolar include MT, V4, V3A and V6A (visual, bottom blue), 1, 2, 4 and 7AL (motor, bottom green),

A5 (auditory, bottom red) and VIP and 31pv (bottom yellow). The size of each node represents the magnitude of difference of

average to-hitting times (range from 7.1 to 33.4) and thickness of each edge represents the magnitude of difference of partial

correlation in psychiatric disorder compared to control subjects during rest.

hitting-time changes between (t-tests comparing schizophrenia and control groups for each region,303

significantly different with p < 0.05 Bonferroni corrected) were ’V2’, ’V3’, ’V4’, ’V3A’ and ’V7’ within304

the visual cortex, ’1’, ’2’, ’4’ and ’24dd’ within somatosensory cortex and ’A4’ within the auditory cortex305

for subjects with schizophrenia. For subjects with bipolar disorder, the ten regions with the largest306

hitting-time changes (significantly different in t-tests comparing bipolar and control groups with p < 0.05307

Bonferroni corrected) were ’MT’, ’V4’, ’V3A’ and ’V6A’ within visual cortex, ’1’, ’2’, ’4’ and ’7AL’308

within somatosensory cortex, ’A5’ within auditory cortex and ’VIP’ and ’31pv’. Regions are labeled309
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according to Glasser et al. (2016). Connections that have changed significantly (t-tests comparing310

connections from each node between groups, p < 0.05 Bonferroni corrected) from these nodes are311

indicated by gray lines with the thickness of the line indicating the size of the change.312

We find evidence that individuals with schizophrenia and bipolar disorder have less skewed hitting-time313

distributions than controls during resting-state fMRI. The regions of cortex with the largest hitting-time314

reductions between patient and control populations are in sensory/motor cortex and overlap with many of315

the same regions that have extremely large to-hitting times during rest in controls. It is possible that the316

large hitting-time values found in these regions of the cortex are related to the theoretical finding that317

linear-chains of nodes produce maximal hitting times and that a reduction in hitting time in these regions318

occurs when the nodes are part of a topology that is less chain like. We therefore also compared the chain319

index for schizophrenia, bipolar and control groups. The ten regions with the largest changes of chain index320

(t-tests comparing schizophrenia and control groups for each region, significantly different with p < 0.05321

Bonferroni corrected) are ’V2’, ’V3’, ’V4’, ’V3A’ and ’V7’ within the visual cortex, ’1’, ’OP4’ and ’24dd’322

within somatosensory cortex and ’A4’ and ’A5’ within the auditory cortex for subjects with schizophrenia.323

For subjects with bipolar disorder, the ten regions with the largest changes of chain index (significantly324

different in t-tests comparing bipolar and control groups with p < 0.05 Bonferroni corrected) are ’V4’,325

’V3A’ and ’V6A’ within visual cortex, ’1’, ’2’, ’4’ and ’7AL’ within somatosensory cortex, ’A5’ within326

auditory cortex and ’VIP’ and ’PFcm’. The convergence of evidence of changes in extreme hitting-time327

values in sensory areas of cortex and those same areas being connected in a less chain-like topology in328

schizophrenia and bipolar disorder is consistent with our hypothesis that path-length changes in these329

populations are likely to be related to sub-network topology shifts and not changes the network on average.330

DISCUSSION

We have presented evidence that the skewness of connectivity in cortical brain networks can be used to331

infer likely network topology changes that improve our understanding of information processing in the332

brain. Using random graphs we showed that the isolation of linear motifs is one prominent cause of333

skewness in hitting time even in the presence of mixed topologies. We then showed that skewness, but not334

average of brain-connectivity distributions is related to psychiatric diagnosis. We confirmed that these335

differences in skewness were related to a linear-chain topology by testing for changes in a chain index. In336
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networks for which connectivity is positively skewed, a change in subnetwork topology (and possibly a337

different brain state) is a more parsimonious explanation than changes in average connectivity. These338

topology changes are focused in sensory areas of the brain and when compared to changes brought about339

during task performance, provide an initial mechanistic link between resting-state connectivity changes and340

clinical diagnosis.341

Extremely large hitting times can be linked to linear chain topologies through theoretical work showing342

that lollipop networks result in maximal hitting times Brightwell and Winkler (1990). We have shown343

using a toy problem that the extremeness of hitting-time values scales with how isolated a linear chain of344

nodes is and that the presence of chain motifs is related to extreme hitting-time values even in random345

networks with mixed topologies above and beyond modularity of the network. Resting brain networks also346

have extreme hitting times that are likely related to hierarchical processing in sensory cortex. When they347

are most isolated from the rest of the network, hierarchical processing streams, resemble the chain of nodes348

on the linear component of a lollipop graph. This parallel motivates the use of extremely long random349

walks between brain areas as a measure of the presence, and relative isolation, of hierarchical processing350

streams. In particular, hitting time of a region of interest can be utilized to detect presence of linear351

components likely to be hierarchical processing streams. A central dogma of neuroscience is that sensory352

representations are constructed hierarchically Hubel and Wiese (1962); Kikuchi, Horwitz, and Mishkin353

(2010); Van Essen and Maunsell (1983). Hierarchical processing streams have also been a focal component354

of computer vision models since 1971 Giebel (1971) and a significant contributor to the success of modern355

convolutional neural networks LeCun, Bengio, and Hinton (2015). Their foundational nature has made the356

study of hierarchical processing streams the focus of targeted analyses (e.g. Sepulcre, Sabuncu, Yeo, Liu,357

and Johnson (2012)). Here, we showed that nodes from sensory and motor areas of the brain have extreme358

hitting times which contribute to Kelley skewness. By comparing resting to task-based network topologies,359

we can show that decreases in hitting time are also associated with sensory hierarchies becoming less chain360

like.361

Task changes in functional connectivity can be observed as changes in functional brain network topology.362

Previous work has highlighted the central role of path length and the integration of isolated paths in363

function. In Goni et al. Goñi et al. (2014), a notion of path transitivity – which accounted not only for the364

shortest path, but also local detours along that path – was the best predictor of functional connectivity.365

18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866855doi: bioRxiv preprint 

https://doi.org/10.1101/866855
http://creativecommons.org/licenses/by-nc/4.0/


Similar notions of distributed communicability (related to the diffusion of information over the network)366

were used to quantify the disruption of the global communication in the cortex that was triggered by the367

pharmacogenetic inactivation of the amygdala Grayson et al. (2016), and to detect changes in functional368

connectivity after a stroke Crofts et al. (2011). A thorough review of these concepts and their relationships369

to the notion of mean first-passage time, which is equivalent to the mean hitting time, is provided in370

Avena-Koenigsberger et al. Avena-Koenigsberger et al. (2017). Because the mean hitting time conflates371

overall changes in connectivity with changes to a subnetwork, these changes may be better explained using372

Kelley skewness, which specifically focuses on extreme values and so provides a mechanism to identify373

potential subnetwork changes. Extreme values contributing to connectivity skewness were associated with374

sensory areas of the brain specifically associated with the task. Hitting times in these sensory areas of the375

brain became shorter and less extreme during BART task performance. Sensory areas became more376

strongly connected to distant areas throughout the brain. The nodes with the largest reductions in hitting377

time were found in brain sensory areas related to the BART task (somatosensory and visual areas). One378

additional area also showed a decrease in hitting time, PF. PF is located in the inferior parietal lobule and is379

thought to be related to risk processing Weber and Huettel (2008). In line with its role in the processing of380

visual magnitude, it showed increased connectivity with visual inputs. Broadly, the introduction of a task381

caused sensory processing streams to become better connected to other task relevant areas, and less382

chain-like. This result is somewhat counterintuitive since hierarchical processing pipelines are often383

described as most distinct when active. We do find evidence of increased connectivity within sensory384

networks but these increases in strength within the sensory processing stream are offset by wider385

integration making their network topology less chain like. In addition, whether the processing pipeline386

becomes more or less integrated depends on the calculation underlying the transition probability between387

areas. When similar models are constructed using the raw correlation values, group and task differences in388

the same data set are consistent but in the opposite direction Rezaeinia and Carter (2017). This is likely due389

to the redundant connections and task event correlations Cole et al. (2018) included in raw correlation390

models. Here, we focused on the partial correlation of brain-region time-series which minimizes redundant391

connections, following the state-of-the-art in the field Smith et al. (2011). In spite of the complexities392

raised, the distribution of task relevant information throughout the brain is consistent with what would be393

most likely to improve BART task performance and supports the interpretation of sensory hierarchies as394

existing as relatively isolated linear networks topologies during rest. In future work it would be helpful to395
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incorporate additional multifaceted tasks to generalize these findings to the incorporation of sensory396

information under other constraints.397

Skewness of the connectivity distribution also explains cortical-network differences between psychiatric398

diagnoses. Resting functional connectivity in a large neurotypical population is significantly positively399

skewed. In such a case, average efficiency for such a network would be biased and less representative of the400

network as a whole. An important finding is that changes in connectivity between clinical and control401

populations are due to changes in skewness rather than average differences. In fact, the median of402

connectivity measures changed in the opposite direction with respect to the average. Network connectivity403

changes between clinical and control populations are therefore due to a subset of connections rather than404

the network as a whole. The identification of specific cortical regions involved in topological changes405

between neurotypical and clinical populations provides an opportunity to better understand functional406

changes that occur in those populations as well as opportunities for improving diagnosis. Task performance407

reduced hitting-time skewness by increasing the connectivity between sensory areas and the rest of the408

cortical network. Qualitatively similar changes are seen in clinical populations, implying further work409

exploring network topology changes to specific tasks may help characterize the atypical resting410

connectivity for individuals with a schizophrenia or bipolar diagnosis. A testable prediction from this411

implied mechanistic difference would be that individuals with these diagnoses spend less time in activities412

typically associated with resting fMRI (e.g. future planning).413

The results presented were based on theoretical predictions and applied to a publicly available dataset in414

a rigorous manner. We would like to document the following caveats and qualifications. First, although415

linear components in networks produce maximal hitting times in theory, it is possible that other network416

topologies could also produce some degree of skewness. To answer this concern, we showed that in toy417

examples skewness was related to short linear graphs or linear graphs that were still connected to the rest of418

the graph. We also found that the hitting-time distribution of both small-world, lollipop, and random graphs419

are skewed but that skewness in both cases is dominated by linear paths, even with a linear-path that420

comprises significantly less than a third of the graph. It is, however, important to note that the number of421

linear topologies does not explain all of the variance in Kelley skewness and so there could be other422

contributing topologies, perhaps related to modularity and degree. In our human fMRI analyses, the423

network as a whole, did not become less connected (see supplementary materials) and those areas with424
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extreme values become less chain-like when they have smaller hitting times. Thus, the relationship425

between extreme hitting times and linear paths is robust. In addition, past work on sensory hierarchies426

Hubel and Wiese (1962); Kikuchi et al. (2010); Van Essen and Maunsell (1983), recent work showing427

parallels between convolutional neural networks and sensory networks Güçlü and van Gerven (2015); Kell,428

Yamins, Shook, Norman-Haignere, and McDermott (2018); Khaligh-Razavi and Kriegeskorte (2014), and429

the integration of sensory networks during task performance (see above) are all consistent with the430

presence of linear components in the cortical network. Second, we focused on a cortical model of brain431

function and the absence of subcortical nodes could have affected the topology of the network model.432

However, the inclusion of subcortical connections to cortical network endpoints should not change433

connectivity measures since the path would still produce larger hitting times (the largest times may then be434

shifted to the middle of the sensory hierarchy).435

CONCLUSION

In conclusion, establishing a link between network topologies, hierarchical processing pipelines, task436

engagement, and psychiatric disorders provides an opportunity to interpret cortical network changes in the437

light of cognitive models of brain function. The interpretation of network connectivity and information438

processing topologies is an area of significant focus for neuroscience Fornito and Bullmore (2015). The439

widespread collection of rfMRI in particular provides a unique opportunity to extend this work to numerous440

psychiatric disorders and compare these findings with the growing body of open-source fMRI task data.441

SUPPORTIVE INFORMATION

Data.442

We used the functional magnetic resonance imaging (fMRI) data from the LA5c Study Poldrack et al.443

(2016), collected by the UCLA Consortium for Neuropsychiatric Phenomics (CNP), which is funded by the444

NIH Roadmap Initiative. This data was obtained from the OpenfMRI database. Its accession number is445

ds000030. The dataset is formatted according to the Brain Imaging Data Structure K. J. Gorgolewski et al.446

(2016) (BIDS) standard. This study contains neuroimaging data from 290 participants. We ended up with a447

sample number of 255 subjects after removing subjects with missing functional measurements. In this448

sample, there are 119 healthy individuals (labeled as control), 49 individuals diagnosed with schizophrenia,449
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48 individuals diagnosed with bipolar disorder and lastly 39 individuals diagnosed with attention deficit450

hyperactivity disorder (ADHD). The focus of the LA5c Study is to understand memory and cognitive451

functional structures across patient groups. Therefore, the data set includes resting-state fMRI data as well452

as fMRI data collected during several different tasks. In this paper we focus on the analysis of resting-state453

and balloon analogue risk task (BART) fMRI data for the four specified groups. We focused on the BART454

because it has reliable visual input which has been shown to produce large-scale changes in sensory455

cortical hierarchies, which could be compared to the internally-driven resting-state network. In addition,456

we develop variants of the BART and so we have expertise with the task and any findings would have local457

applications. We obtained the preprocessed data which is de-identified, motion corrected and coregistered458

to Montreal Neurological Institute (MNI) standard space K. Gorgolewski, Durnez, and Poldrack (2017).459

We used FSL Jenkinson, Beckmann, Behrens, Woolrich, and Smith (2012); Smith et al. (2004) to correct460

for motion and apply a high-pass filter to remove low-frequency noise (cut-off frequency of 100 seconds).461

The data also includes potential confound regressors K. Gorgolewski et al. (2017). In order to remove the462

effect of motion artifacts, we used the 36-parameter motion regression technique introduced in Satter et al.463

Satterthwaite et al. (2013), which has been shown to be most effective in decoupling modular structure464

from subject motion Ciric et al. (2017).465

Parcellation.466

The fMRI data has the following parameters; the matrix consists of 64× 64 voxels for 34 slices recorded467

with a TR of 2 seconds. In total, there are 147 time samples for resting-state data and 267 time samples for468

BART data. To extract a reliable cortical network for each participant, we reduced the number of nodes by469

averaging over voxels within an anatomical region. We used the multi-modal parcellation developed by470

Glasser, et al. Glasser et al. (2016) to map the fMRI data into a more sparse decomposition framework.471

There are 180 regions in each hemisphere, which increase the neuroanatomical precision for studying the472

structural and functional organization. This parcellation is based on multiple neurobiological properties,473

connectivity, functional and architecture, which improves the consistency across subjects.474

HITTING TIME VS. DEGREE DISTRIBUTION

To compare the ability of hitting time and degree distributions to distinguish the presence of linear475

components, we generated a random graph with N = 50 nodes in which a connection between each node476
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randomly occurred with p = 0.6. We then attached a linear component of length 1 to the graph and kept477

increasing its length by 1 for 20 iterations (Fig. 7A). Skewness of the hitting-time distribution increases as478

we increase the length of linear component (Fig. 7B, blue/solid). The skewness of degree distribution479

remains close to constant (Fig. 7B, black/dashed). The change in other features of degree distribution such480

as mean or median do not reliably reflect the linear component either. Depending on the relative size of481

network and linear component, we might observe change in the degree distribution, but it is not consistent482

and is not most closely related to the presence of linear components.

Length of linear component
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Figure 7: The hitting-time distribution of a graph becomes more skewed as the length of a linear subgraph increases. (A)

We started with a random graph with 50 nodes, added a linear component of length 1 and increased the length of the linear

component by 1 for 20 iterations. (B) Skewness of the hitting-time distribution increased significantly as the length of linear

component increased. The degree distribution does not demonstrate a consistent relationship with linear path length.

483

MEAN AND MEDIAN OF HITTING-TIME DISTRIBUTION

Effect of task on mean and median of hitting-time distribution.484

Aligned with the tests for skewness, we seek the effect of task on mean and median of hitting-time485

distribution. We ran a linear mixed effect model by adding a random effect for participant (BART and486

resting-state points were paired by participant). We found that mean of hitting-time distribution is487

significantly smaller for BART compared to rest (β = −1.6, t(118) = 0.13, p < 0.001).488

Finally, a linear mixed effects model on the median of hitting times reveals a significant positive effect of489

BART vs. rest, (β = 1.3, t(118) = 0.16, p < 0.001), Fig. 8.490
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Figure 8: The distribution of (A) mean and (B) median vs. task for control subjects. p-values significance codes:

. = 0.1, ∗ =< 0.05, ∗∗ =< 0.01, ∗ ∗ ∗ =< 0.001.

Effect of psychiatric disorders on mean and median of hitting-time distribution.491

To test the effect of psychiatric disorders on the average efficiency, we run an ordinary least squares492

regression model with mean of hitting-time distribution as the dependent variable. The independent493

variables are group (coded as a dummy variable with the control group as the reference group), gender494

(coded as a dummy variable with the female gender acted as the reference category) and age (mean495

centered, linear). We found significant differences between schizophrenia versus control496

(β = −1.113, t(252) = 0.255, p < 0.001), bipolar versus control497

(β = −1.064, t(252) = 0.252, p < 0.001) and ADHD patients versus control498

(β = −0.835, t(252) = 0.266, p = 0.002). The qualitative results are similar to skewness, but the499

coefficients are approximately one quarter the magnitude of those in the model explaining skewness.500

Finally, if we run a similar model with the median of the resting-state hitting-time distribution as the501

dependent variable, we only find a trend toward significance between schizophrenia and control in the502

opposite direction (β = 0.473, t(252) = 0.244, p = 0.054). Hierarchical sensory processing streams503

identified above as those with the longest hitting times show the largest changes between control and504

diagnosed groups, Fig. (9).505
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Figure 9: Mean of hitting-time distribution is significantly different across patient groups. Distribution (A) mean and (B)

median of the hitting-time distribution in patient and control groups during resting-state scans. p-values significance codes:

. = 0.1, ∗ =< 0.05, ∗∗ =< 0.01, ∗ ∗ ∗ =< 0.001.
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