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Table. 2: Summary of pupal and adult injection. Go here represents injected adults and adults 263 

emerged from injected pupae. Infection was determined using real-time strain specific Wolbachia 264 

assays. 265 

 266 

Effect of Wolbachia on the survival of flies post adult injection  267 

In order to understand the population dynamics of the flies inside the cage, survival assays were 268 

performed. The results revealed that by day seven less than 20% of the wMelPop and less than 50% 269 

of wMel and wAlbB injected flies were alive (Fig. 5). Both wMelPop (log-rank statistic = 16.92, p<0.0001) 270 

and wMel (log-rank statistic= 11.96, p=0.0005) significantly reduced longevity of female BF. However, 271 

there was no significant effect of the wAlbB strain in comparison to the control injected flies (log-rank 272 

statistic = 0.25, p=0.62). 273 

Wolbachia dynamics and tropism post pupal microinjection 274 

 A similar quantitative assay to that used for injected adult BF was carried out to track the dynamics and 275 

tropisms of the three Wolbachia strains post pupal injection. The extra time in the pupal phase resulted 276 

in 66-100% infection in the somatic tissue with wAlbB and wMel (N=6) and 83-100% with wMelPop 277 

(N=6) 13 days post pupal injection (Fig. 6 A-C). Furthermore, in 16% of cases the ovaries of females 278 

injected with wMel and wMelPop Wolbachia were found to be infected. Also, two first generation flies 279 

from wMel-injected pupae and four eggs from wAlbB-injected pupae were found positive for Wolbachia 280 

infection (Table 2). Analysis of Wolbachia dynamics showed approximately the same pattern as for 281 
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adult injection, where density initially decreased in the first seven days, then significantly recovered by 282 

day nine in wMel (Kruskal-Wallis test: p<0.0001), and day 13 in wMelPop and wAlbB post pupal injection 283 

(Kruskal-Wallis test: p<0.0001) (Fig. 6 D-F). 284 

Effect of Wolbachia on survival of buffalo flies post pupal microinjection 285 

A significant decrease in the longevity of BF post pupal injection was found in both sexes of wMelPop-286 

injected BF (Male: log-rank statistic = 20.25, p<0.0001, Female: log-rank statistic =29.04, p<0.0001), 287 

but the effect was not significant with the two other strains (wAlbB: male (log-rank statistic = 2.267, 288 

p=0.132), female (log-rank statistic = 3.275, p=0.071)), wMel: male (log-rank statistic = 3.027, 289 

p=0.1545), female (log-rank statistic = 3.467, p=0.063)) (Fig. 7).  290 

 291 

Effect of Wolbachia on adult emergence rate 292 

Infection of the somatic tissues by Wolbachia can have consequences on physiological processes. Non-293 

injected control flies emerged from pupae after 3-7 days, whereas mock-injected control flies emerged 294 

from 5-7 days, wAlbB after 6-7 days and wMel and wMelPop injected flies at 5-7 days post injection 295 

(Fig. 8A). It is important to note that emergence in wMel and wMelPop injected flies was less than 2% 296 

on day 5. Overall, there was significant decrease in the percent emergence of wMel (30.01 + 3.91) 297 

(Tukey’s multiple comparison test, p=0.0030) and wMelPop (27.98 + 3.92) (Tukey’s multiple 298 

comparison host test, p=0.0011) injected flies compared to the control injected flies (46.95 + 4.15), but 299 

no significant difference was observed with the wAlbB-injected flies (Tukey’s multiple comparison test: 300 

p=0.77) (Fig. 8B). Nearly 5% of the flies that emerged from the wMelPop-injected pupae were too weak 301 

to completely eclose from the pupal case and had deformed wings (Fig. 8 C-D).   302 

Effect of Wolbachia on egg production  303 

Difference between infected females and non-infected females in egg production was also analysed 304 

following pupal injection with the three different strains of Wolbachia. Over 14 days there was a 305 

significant reduction in the total eggs laid by females infected with wAlbB (p=0.012), wMel (p=0.0052), 306 

and wMelPop (p=0.0051) in comparison with the mock-injected flies (Fig. 9).  307 

 308 

Discussion 309 
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Embryonic microinjection is by far the most frequently used technique to develop Wolbachia-310 

transinfected insect lines, mainly because Wolbachia injected into the germ cells of the developing 311 

embryo provides a direct route for infection of the germ tissues in the early stage of differentiation [14]. 312 

However, this technique is also the most challenging step because the invasive procedure of egg 313 

microinjection can result in high mortality of eggs and optimal methods differ for different insect species 314 

[14, 45, 46]. Another disadvantage of this technique is that inability to determine the sex of an embryo 315 

prior to injection means that approximately half of the injected flies will be males that do not transmit 316 

Wolbachia to the next generation [14]. This means that many thousands of eggs must often be 317 

microinjected using specialised equipment before successful Wolbachia transinfection is achieved [14] 318 

and as male embryos cannot be identified, half of this effort is functionally wasted. With BF, less than 319 

1% of more than 2000 embryos we injected subsequently hatched because the tough chorion of BF 320 

eggs caused difficulties with needle penetration, rapid blunting and high breakage rate of microinjector 321 

needles, frequent chorion tearing, and embryo damage. Treatment with sodium hypochlorite to soften 322 

the chorion, prior partial desiccation of eggs to reduce hydrostatic pressure, and the use of halocarbon 323 

oils to prevent egg desiccation during injection did not markedly improve the survival rate. Similar 324 

difficulties were experienced when attempting to use microinjection for gene transfection in closely 325 

related Haematobia irritans eggs. In this instance, the researchers opted to use electroporation, which 326 

is unsuitable for the introduction of bacteria [47]. 327 

Although embryonic microinjection has been the primary method used to develop transinfected insects, 328 

adult microinjection can be advantageous in that females can be selected for injection [14]. Further, 329 

adult microinjection can be performed using a simple syringe and small-bore needles delivering higher 330 

volumes of Wolbachia to overcome the host immunological response [14]. Our results with adult 331 

injection of Wolbachia were promising. Despite that injections in first few batches were made mainly 332 

with Wolbachia grown in D. melanogaster cells (wAlbB, wMel and wMelPop strain), not previously 333 

adapted in Haematobia cells, infection rates and persistence in the injected flies were high (generally > 334 

90%). In a few batches, transmission to the next generation was confirmed.  335 

As oviposition by BF may begin as early as three days after eclosion from the pupae and continue until 336 

death, knowledge of Wolbachia distribution and dynamics in injected females was critical for us to 337 

identify the optimal timing for collecting infected eggs for the establishment of an infected colony (11-338 

15 days). Wolbachia density significantly decreased to day five due to host immune response but 339 
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recovered by day eleven after injection. A similar result was obtained when wMelPop and wAlbB were 340 

injected into Anopheles gambiae adult mosquitoes [13]. The initial host immune response was 341 

anticipated as the densities of wAlbB, wMel, and wMelPop Wolbachia in Haematobia cells were also 342 

observed to initially decrease, possibly due to an innate immune response mediated by the Imd pathway 343 

(unpublished data). Real-time PCR analysis of dissected tissues nine days after injection showed 344 

Wolbachia to be present in all the vital somatic tissues, except for the ovarial tissues, suggesting that 345 

Wolbachia might need extra time to infect the ovaries. However, injection with wAlbB, wMel and 346 

wMelPop Wolbachia caused >40% death in flies by day seven post injection, further reducing the 347 

likelihood of collecting infected eggs. Therefore, we hypothesised that microinjecting 1-2 h old pupae 348 

would give more time than with adult microinjection for Wolbachia to multiply, spread and establish in 349 

the ovaries. Pupal injection has previously been conducted with Trichogramma wasps and resulted in 350 

successful ovarian infections and persistence of Wolbachia in the wasp colony for 26 generations [48].  351 

With BF, wMel and wMelPop overcame host immune responses and established in both somatic and 352 

germline tissues. Further, in two instances, next-generation (G1) BF from wAlbB and wMel injected 353 

pupae were positive for Wolbachia, indicating next-generation transmission as a result of pupal 354 

injection. The main disadvantages of pupal injection in comparison with adult injection were limitation 355 

on the volume of Wolbachia that could be injected and inability to distinguish female from male pupae 356 

for injection.  357 

The wMelPop strain is a virulent type of Wolbachia, and its over replication in somatic tissues and brain 358 

cells, known in other infected insects [49, 50], may have been the reason for the early death of BF. 359 

Further, in the studies of Wolbachia kinetics we found a higher density of wMelPop than with the other 360 

two strains following both adult and pupal injection. Reduction in the longevity of infected Ae. aegypti 361 

mosquitoes caused by infection with wMelPop, decreasing the potential extrinsic incubation time for the 362 

dengue virus, was one of the characteristics that led to the hypothesis that wMelPop infection would 363 

reduce dengue spread [51]. Infection with wMelPop could also markedly reduce BF lifespan and their 364 

ability to transmit Stephanofilaria sp. nematodes. These nematodes have been implicated in the 365 

development of buffalo fly lesions, a significant production and welfare issue in north-Australian cattle 366 

[52]. Stephanofilaria has an extrinsic incubation period of up to 3 weeks in Haematobia spp. [53] and 367 

the life-shortening effects of Wolbachia shown in our study could markedly reduce the vector 368 

competency of infected flies. There is also the possibility the Wolbachia infection could more directly 369 
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compromise the vector competency of BF for Stephanofilaria, as has been seen in the case another 370 

filarial nematode, Brugia pahangi transmitted by mosquitoes and in the case transmission of the dengue 371 

virus by Ae. Aegypti [54, 55] .   372 

Fecundity of insects has a significant influence on population dynamics of insect populations [56]. The 373 

successful establishment of Wolbachia in new host populations directly relates to the strong CI, vertical 374 

transmission and relatively more fertile egg production by infected females [57]. Wolbachia have been 375 

found to enhance and reduce egg production depending upon both the strain of the nematode and the 376 

host [15, 57-62]. We found that wAlbB, wMel, and wMelPop significantly reduced total egg production 377 

in pupal injected flies. Also, Wolbachia infection caused delayed and decreased adult emergence of BF 378 

post pupal injection. Wolbachia being an endosymbiont lacks nutritional biosynthetic pathways and 379 

depends on its host for wide range of nutrition [63, 64]. Hence, the fitness costs observed in injected 380 

BF could be the result of competition between high density of Wolbachia and BF for nutritional resources 381 

such as amino acids and lipids [63, 64]. Another possibility could be that as Wolbachia was found in all 382 

of the critical tissues involved in the endocrine cascades for egg production and maturation in insects 383 

(midgut, neuron, fat bodies and ovary), it interfered with egg production by this means [65]. In addition, 384 

delayed larval development associated with wMelPop infection has been documented in mosquitoes 385 

on a number of occasions [17, 19]. If these deleterious effects are a consistent feature of Wolbachia 386 

infection in BF, they could have a significant impact in altering population dynamics or even crashing 387 

BF populations [17, 66]. For instance, female BF lay eggs in fresh cattle manure pats, where eggs take 388 

approximately seven days to develop into pupae depending upon the temperature and moisture content 389 

of the pat [67]. Prolonged larval development and time to eclosion of Wolbachia-infected BF, together 390 

with adult lifespan reduction might decrease overwintering and survival of BF, particularly during periods 391 

of unfavourable fly conditions and at the edge of the BF range. 392 

In this work, we have shown that BF are competent hosts for the growth of wMel, wMelPop and wAlbB 393 

Wolbachia strains and that infection can induce a number of fitness effects in the injected flies. However, 394 

embryonic injection has proven challenging with BF and to date we have not been able to establish a 395 

sustainably infected isofemale line using this technique. Pupal and adult microinjection gave much 396 

higher fly survival rates, high titres of Wolbachia in somatic tissues and ovarian infection and 397 

transmission to the next generation in a number of instances. Despite relatively limited testing, this gives 398 
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hope for the future establishment of Wolbachia-infected strains of BF for the future design of Wolbachia-399 

based control programs.  400 
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 600 

Fig. 1. Challenges with buffalo fly embryonic microinjection. A. Embryonic microinjection had a 601 

detrimental effect on embryo hatching. B. 40-60 min old embryos survived injection better than 10 – 30 602 

min old embryos. C. Eggs were dechorionated by treating with 2.5% sodium hypochlorite for 30 s and 603 

covered with 2:1 mix of halocarbon oil 700 and 27 to prevent desiccation. Eggs were sensitive to 604 

treatment and survival decreased further with the injection. Error bars are SEM. Analysis was by 605 

Student’s Unpaired t-test in (A) and Tukey’s multiple comparison test in (B) and (C); ****p<0.0001. 606 
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 608 

Fig. 2. Wolbachia dynamics post adult microinjection of female buffalo flies assessed using real-time 609 

PCR. (A-C) Wolbachia dynamics measured over eleven days post-injection by analysing N = 6 for each 610 

day. Here, Wolbachia titre is expressed relative to the host genome. Kruskal – Wallis test and Dunn’s 611 

multiple comparison test were used to compare titres at day zero. All error bars are SEM. Bars with 612 

different letters in each graph are significantly different. 613 
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 615 

Fig. 3. Fluorescence in situ hybridisation images showing localisation of Wolbachia six days post adult 616 

injection. Wolbachia is distributed throughout the BF (Blue: host, Red: Wolbachia). A. wMel in head and 617 

thorax. B. wMelPop in the abdominal region. C. wMelPop in the head, mouthparts, thorax and leg. D. 618 

Control no probe. T: Thorax, H: Head, A: Abdomen, M: Mouthparts, L: Leg. 619 
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 621 

Fig. 4. Wolbachia tropism post adult microinjection of female buffalo flies assessed using real-622 

time PCR. (A-C) shows Wolbachia tropism in female (N = 6) nine days post adult injection. None of the 623 

Wolbachia strains was found in the ovaries. Bars represent SEM. 624 
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 626 

Fig. 5. Survival of female buffalo flies post adult injection with Wolbachia. Triplicate cages of adult flies 627 

each containing ten females were maintained under lab culturing conditions. The number of dead flies 628 

were recorded until all died. A significant reduction in survival was observed in wMel (p<0.0005) and 629 

wMelPop (p<0.0001) injected flies by Log-rank (Mantel-cox) tests.  630 
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 632 

Fig. 6. Wolbachia tropism and dynamics post pupal microinjection of female buffalo flies assessed using 633 

real-time PCR. A-C show Wolbachia tropism in female BF (N = 6) 13 days post pupal injection. Ovary 634 

infection was detected in wMel, and wMelPop injected flies. D-F show Wolbachia dynamics measured 635 

over 15 days post-injection. Here, Wolbachia density is expressed relative to the host genome. Kruskal-636 

Wallis and Dunn’s multiple comparison tests were used to compare titres to those at day zero. Bars 637 

with different letters are significantly different (p<0.05). Scale on the Y axis for wMelPop (F) is different 638 

to that for the other two strains (D,E) indicating faster growth rate with wMelPop. 639 
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 641 

Fig. 7. Survival of buffalo flies post pupal injection with Wolbachia. Triplicate cages of flies eclosed from 642 

pupae on the same day (ten males and ten females per cage) were maintained in lab culturing 643 

conditions. Mortality was recorded daily until all flies were dead. Log-rank (Mantel-cox) showed a 644 

significant reduction in the male wMelPop (p<0.0001) and female wMelPop (p< 0.0001) injected flies.   645 
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 647 

Fig. 8. Fitness effects on buffalo fly post pupal injection with Wolbachia. A. Wolbachia delayed adult 648 

emergence. B. A significant decrease in adult emergence was observed in wMel (p=0.0030) and 649 

wMelPop (p=0.0011) injected pupae when analysed using Tukey’s multiple comparison test. Nearly 5 650 

% of wMelPop flies either failed to completely eclose from the pupal case or had deformed wings.  651 
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 653 

Fig. 9. Fecundity of buffalo flies post Wolbachia pupal injection. Flies started laying eggs from day three 654 

post-emergence and continued until day sixteen. Eggs laid from triplicate cages each having ten 655 

females was recorded every day for (A) wAlbB (B) wMel and (C) wMelPop. D. A significant difference 656 

between the total number of eggs laid per female over 13 days was found in flies infected with wAlbB 657 

(p=0.0123), wMel (p=0.0052) and wMelPop (p=0.0051) (Tukey’s multiple comparison test).  658 
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