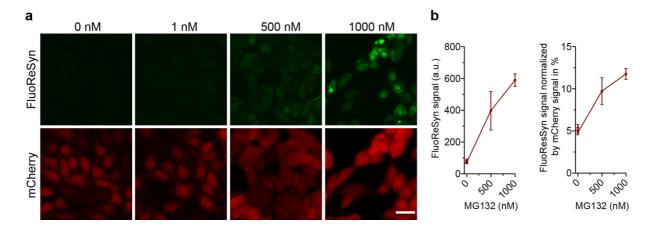
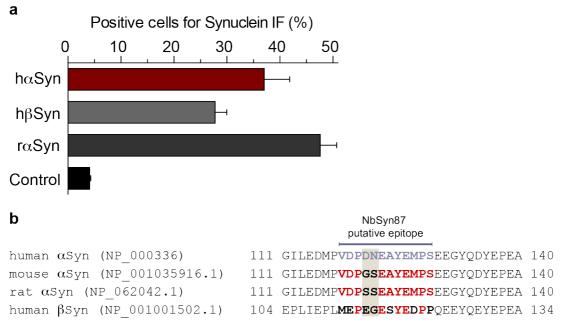

## **Supplementary Data**

## A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol


Christoph Gerdes<sup>1</sup>, Natalia Waal<sup>2</sup>, Thomas Offner<sup>3,4</sup>, Eugenio F. Fornasiero<sup>1</sup>, Nora Wender<sup>1</sup>, Hannes Verbarg<sup>1</sup>, Ivan Manzini<sup>3,4</sup>, Claudia Trenkwalder<sup>5,6</sup>, Brit Mollenhauer<sup>6,7</sup>, Timo Strohäker<sup>8</sup>, Markus Zweckstetter<sup>8,9</sup>, Stefan Becker<sup>9</sup>, Silvio O. Rizzoli<sup>1</sup>, Buket Basmanav<sup>1,10\*</sup>, Felipe Opazo<sup>1,2\*</sup>

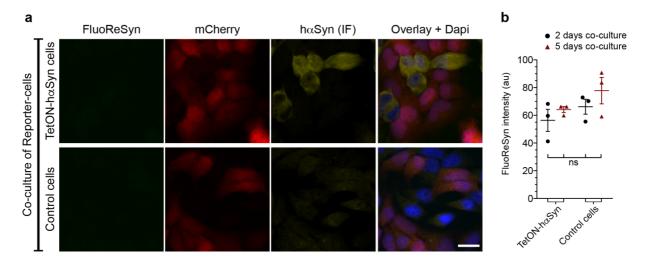
<sup>1</sup>Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073 Göttingen, Germany <sup>2</sup>Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073 Göttingen, Germany <sup>3</sup>Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390 Giessen, Germany. <sup>4</sup>Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany <sup>5</sup>Department of Neurosurgery, University Medical Center Göttingen, D-37075 Göttingen, Germany <sup>6</sup>Paracelsus-Elena-Klinik, Klinikstraße 16, 34128 Kassel, Germany <sup>7</sup>Department of Neurology, University Medical Center Göttingen, D-37075 Göttingen, Germany <sup>8</sup>German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany <sup>9</sup>Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany <sup>10</sup>Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073 Göttingen, Germany


\*Correspondence should be addressed to: Buket Basmanav (<u>buketbasmanav@gmail.com</u>) and Felipe Opazo (fopazo@gwdg.de)




Supp. Figure 1| NbSyn87 binding to h $\alpha$ Syn and hRpn10 and the biochemical characterization of Reporter-cells. (a, b) Increasing amounts of h $\alpha$ Syn (a) or hRpn10 (b) were spotted on a nitrocellulose membrane and detected using NbSyn87 directly coupled to Alexa 647. BSA was spotted as control protein and its signal was used as background for normalization. Error bars represent the s.e.m from 3 independent experiments. (c) Induction response curve of the Reporter-cells to determine the optimal duration of doxycycline administration at a concentration of 0.5  $\mu$ g/ml. Error bars represent the s.e.m from 4 independent experiments. (d) Full Western blots membranes from Fig. 1f.




**Supp. Figure 2 | Determination of the optimal concentration for MG132 administration.** (a) Fully induced Reporter-cells were exposed to different concentrations of MG132 for 16h. The mCherry signal (red) indicate that the cells are producing FluoReSyn, however, only starting from 500 nM of MG132, the FluoReSyn signal begins to appear (green). (b) Quantification of the FluoReSyn signal (green) in arbitrary units (a.u.) or normalized to the signal of mCherry. Error bars represent the s.e.m from 3 independent experiments with several hundreds of cells analyzed per experiment.



**Supp. Figure 3** | **Specificity of FluoReSyn for haSyn.** (a) Quantification of the signal obtained after immunostaining synucleins with a pan-Synuclein antibody. Error bars represent the s.e.m from 3 independent experiments. (b) Amino acid sequence alignment of the putative epitope recognized by NbSyn87 for haSyn (letters in light purple), mouse and rat aSyn or human  $\beta$ Syn. (accession numbers for each sequence are on the figure). Red letters show a match amino acid to the putative epitope, black letters represent mismatches. The core difference between the sequences is highlighted by a background box.



Supp. Figure 4 | TetON induction of stably-transfected HEK293 cells expressing untagged haSyn. (left plot) Fluorescence intensity of cells immunostained for synuclein after being induced or not with 0.5  $\mu$ g/ml of doxycycline for 16h. (right plot) Percentage of cells displaying a positive immunofluorescense signal for synuclein. Error bars represent the s.e.m from 3 independent experiments.



**Supp. Figure 5 | Co-culture of Reporter cells with TetON-haSyn cells.** (a) Reporter-cells cocultured with either a doxycycline inducible haSyn expressing cell line (TetON-haSyn) or the wildtype HEK293 cell line without endogenous haSyn expression. Induced Reporter-cells can be identified by their mCherry signal while induced TetON-haSyn cells can be identified by the haSyn immunofluorescence (IF, yellow). (b) Quantitative analysis of FluoReSyn signal intensity of cells with mCherry above 300 AU after 2 or 5 days of co-culturing. Scatter plots show 3 independent experiments  $\pm$  sem for all condition. Significance was assessed by One-Way ANOVA and Tukey's Post-hoc test. ns, non-significant. Per replication and condition more than 550 cells were analyzed.

|    |        |     | Diamagia                                                               |
|----|--------|-----|------------------------------------------------------------------------|
| ID | Gender | Age | Diagnosis                                                              |
| 1  | f      | 64  | Muscular pain-fasciculation syndrome                                   |
| 2  | f      | 73  | RLS                                                                    |
| 3  | m      | 77  | FTD                                                                    |
| 4  | f      | 60  | RLS                                                                    |
| 5  | m      | 73  | CBD                                                                    |
| 6  | m      | 74  | SCA                                                                    |
| 7  | m      | 68  | PSP                                                                    |
| 8  | f      | 82  | PSP                                                                    |
| 9  | f      | 71  | PSP                                                                    |
| 10 | f      | 64  | FTD                                                                    |
| 11 | m      | 87  | Vascular parkinsonism                                                  |
| 12 | m      | 88  | Essential tremor                                                       |
| 13 | m      | 76  | Vascular dementia                                                      |
| 14 | f      | 81  | PSP                                                                    |
| 15 | m      | 70  | PSP                                                                    |
| 16 | f      | 81  | NPH without evidence for other neurodegenerative disorders             |
| 17 | f      | 73  | CBD                                                                    |
| 18 | m      | 76  | RLS                                                                    |
| 19 | m      | 73  | NPH without evidence for other neurodegenerative disorders             |
| 20 | f      | 69  | NPH without evidence for other neurodegenerative disorders             |
| 21 | f      | 77  | NPH without evidence for other neurodegenerative disorders             |
| 22 | m      | 75  | PSP                                                                    |
| 23 | f      | 73  | CBD                                                                    |
| 24 | f      | 64  | SCA                                                                    |
| 25 | m      | 60  | PSP                                                                    |
| 26 | f      | 75  | SCA                                                                    |
| 27 | f      | 77  | Steroid responsive encephalopathy associated with                      |
|    |        |     | autoimmune thyroiditis                                                 |
| 28 | f      | 71  | Essential tremor                                                       |
| 29 | m      | 69  | PSP                                                                    |
| 30 | f      | 75  | Dystonic tremor                                                        |
| 31 | m      | 84  | PNP                                                                    |
| 32 | f      | 35  | PNP                                                                    |
| 33 | f      | 65  | Neuroleptic-induced dyskinesia                                         |
| 34 | m      | 48  | RLS                                                                    |
| 35 | f      | 59  | PSP                                                                    |
| 36 | m      | 76  | PNP                                                                    |
| 37 | m      | 65  | NPH without evidence for other neurodegenerative disorders             |
| 38 | m      | 60  | SCA                                                                    |
| 39 | f      | 71  | CBD                                                                    |
| 40 | f      | 80  | Benign paroxysmal positional vertigo                                   |
| 40 | f      | 73  | RLS                                                                    |
| 41 | m      | 67  | PSP                                                                    |
|    |        |     | rsr<br>al dementia: FTD, frontotemporal dementia: NPH, normal pressure |

Supp. Table 1. Demographic and clinical characteristics of the individuals in the CSF study

m, male; f, female; CBD, corticobasal dementia; FTD, frontotemporal dementia; NPH, normal pressure hydrocephalus; PNP, peripheral neuropathy; PSP, progressive supranuclear palsy; RLS, restless legs syndrome; SCA, spinocerebellar ataxia.